Serveur d'exploration sur le peuplier

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

De Novo Genome Assembly of Populus simonii Further Supports That Populus simonii and Populus trichocarpa Belong to Different Sections.

Identifieur interne : 000612 ( Main/Exploration ); précédent : 000611; suivant : 000613

De Novo Genome Assembly of Populus simonii Further Supports That Populus simonii and Populus trichocarpa Belong to Different Sections.

Auteurs : Hainan Wu [République populaire de Chine] ; Dan Yao [République populaire de Chine] ; Yuhua Chen [République populaire de Chine] ; Wenguo Yang [République populaire de Chine] ; Wei Zhao [République populaire de Chine] ; Hua Gao [République populaire de Chine] ; Chunfa Tong [République populaire de Chine]

Source :

RBID : pubmed:31806765

Abstract

Populus simonii is an important tree in the genus Populus, widely distributed in the Northern Hemisphere and having a long cultivation history. Although this species has ecologically and economically important values, its genome sequence is currently not available, hindering the development of new varieties with wider adaptive and commercial traits. Here, we report a chromosome-level genome assembly of P. simonii using PacBio long-read sequencing data aided by Illumina paired-end reads and related genetic linkage maps. The assembly is 441.38 Mb in length and contain 686 contigs with a contig N50 of 1.94 Mb. With the linkage maps, 336 contigs were successfully anchored into 19 pseudochromosomes, accounting for 90.2% of the assembled genome size. Genomic integrity assessment showed that 1,347 (97.9%) of the 1,375 genes conserved among all embryophytes can be found in the P. simonii assembly. Genomic repeat analysis revealed that 41.47% of the P. simonii genome is composed of repetitive elements, of which 40.17% contained interspersed repeats. A total of 45,459 genes were predicted from the P. simonii genome sequence and 39,833 (87.6%) of the genes were annotated with one or more related functions. Phylogenetic analysis indicated that P. simonii and Populus trichocarpa should be placed in different sections, contrary to the previous classification according to morphology. The genome assembly not only provides an important genetic resource for the comparative and functional genomics of different Populus species, but also furnishes one of the closest reference sequences for identifying genomic variants in an F1 hybrid population derived by crossing P. simonii with other Populus species.

DOI: 10.1534/g3.119.400913
PubMed: 31806765
PubMed Central: PMC7003099


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">
<i>De Novo</i>
Genome Assembly of
<i>Populus simonii</i>
Further Supports That
<i>Populus simonii</i>
and
<i>Populus trichocarpa</i>
Belong to Different Sections.</title>
<author>
<name sortKey="Wu, Hainan" sort="Wu, Hainan" uniqKey="Wu H" first="Hainan" last="Wu">Hainan Wu</name>
<affiliation wicri:level="1">
<nlm:affiliation>Key Laboratory of Forest Genetics & Biotechnology of Ministry of Education, Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, China.</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>Key Laboratory of Forest Genetics & Biotechnology of Ministry of Education, Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037</wicri:regionArea>
<wicri:noRegion>Nanjing 210037</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Yao, Dan" sort="Yao, Dan" uniqKey="Yao D" first="Dan" last="Yao">Dan Yao</name>
<affiliation wicri:level="1">
<nlm:affiliation>Key Laboratory of Forest Genetics & Biotechnology of Ministry of Education, Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, China.</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>Key Laboratory of Forest Genetics & Biotechnology of Ministry of Education, Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037</wicri:regionArea>
<wicri:noRegion>Nanjing 210037</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Chen, Yuhua" sort="Chen, Yuhua" uniqKey="Chen Y" first="Yuhua" last="Chen">Yuhua Chen</name>
<affiliation wicri:level="1">
<nlm:affiliation>Key Laboratory of Forest Genetics & Biotechnology of Ministry of Education, Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, China.</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>Key Laboratory of Forest Genetics & Biotechnology of Ministry of Education, Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037</wicri:regionArea>
<wicri:noRegion>Nanjing 210037</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Yang, Wenguo" sort="Yang, Wenguo" uniqKey="Yang W" first="Wenguo" last="Yang">Wenguo Yang</name>
<affiliation wicri:level="1">
<nlm:affiliation>Key Laboratory of Forest Genetics & Biotechnology of Ministry of Education, Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, China.</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>Key Laboratory of Forest Genetics & Biotechnology of Ministry of Education, Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037</wicri:regionArea>
<wicri:noRegion>Nanjing 210037</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Zhao, Wei" sort="Zhao, Wei" uniqKey="Zhao W" first="Wei" last="Zhao">Wei Zhao</name>
<affiliation wicri:level="1">
<nlm:affiliation>Key Laboratory of Forest Genetics & Biotechnology of Ministry of Education, Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, China.</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>Key Laboratory of Forest Genetics & Biotechnology of Ministry of Education, Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037</wicri:regionArea>
<wicri:noRegion>Nanjing 210037</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Gao, Hua" sort="Gao, Hua" uniqKey="Gao H" first="Hua" last="Gao">Hua Gao</name>
<affiliation wicri:level="1">
<nlm:affiliation>Key Laboratory of Forest Genetics & Biotechnology of Ministry of Education, Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, China.</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>Key Laboratory of Forest Genetics & Biotechnology of Ministry of Education, Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037</wicri:regionArea>
<wicri:noRegion>Nanjing 210037</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Tong, Chunfa" sort="Tong, Chunfa" uniqKey="Tong C" first="Chunfa" last="Tong">Chunfa Tong</name>
<affiliation wicri:level="1">
<nlm:affiliation>Key Laboratory of Forest Genetics & Biotechnology of Ministry of Education, Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, China tongchf@njfu.edu.cn.</nlm:affiliation>
<country wicri:rule="url">République populaire de Chine</country>
<wicri:regionArea>Key Laboratory of Forest Genetics & Biotechnology of Ministry of Education, Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037</wicri:regionArea>
<wicri:noRegion>Nanjing 210037</wicri:noRegion>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2020">2020</date>
<idno type="RBID">pubmed:31806765</idno>
<idno type="pmid">31806765</idno>
<idno type="doi">10.1534/g3.119.400913</idno>
<idno type="pmc">PMC7003099</idno>
<idno type="wicri:Area/Main/Corpus">000573</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">000573</idno>
<idno type="wicri:Area/Main/Curation">000573</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">000573</idno>
<idno type="wicri:Area/Main/Exploration">000573</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">
<i>De Novo</i>
Genome Assembly of
<i>Populus simonii</i>
Further Supports That
<i>Populus simonii</i>
and
<i>Populus trichocarpa</i>
Belong to Different Sections.</title>
<author>
<name sortKey="Wu, Hainan" sort="Wu, Hainan" uniqKey="Wu H" first="Hainan" last="Wu">Hainan Wu</name>
<affiliation wicri:level="1">
<nlm:affiliation>Key Laboratory of Forest Genetics & Biotechnology of Ministry of Education, Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, China.</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>Key Laboratory of Forest Genetics & Biotechnology of Ministry of Education, Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037</wicri:regionArea>
<wicri:noRegion>Nanjing 210037</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Yao, Dan" sort="Yao, Dan" uniqKey="Yao D" first="Dan" last="Yao">Dan Yao</name>
<affiliation wicri:level="1">
<nlm:affiliation>Key Laboratory of Forest Genetics & Biotechnology of Ministry of Education, Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, China.</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>Key Laboratory of Forest Genetics & Biotechnology of Ministry of Education, Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037</wicri:regionArea>
<wicri:noRegion>Nanjing 210037</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Chen, Yuhua" sort="Chen, Yuhua" uniqKey="Chen Y" first="Yuhua" last="Chen">Yuhua Chen</name>
<affiliation wicri:level="1">
<nlm:affiliation>Key Laboratory of Forest Genetics & Biotechnology of Ministry of Education, Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, China.</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>Key Laboratory of Forest Genetics & Biotechnology of Ministry of Education, Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037</wicri:regionArea>
<wicri:noRegion>Nanjing 210037</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Yang, Wenguo" sort="Yang, Wenguo" uniqKey="Yang W" first="Wenguo" last="Yang">Wenguo Yang</name>
<affiliation wicri:level="1">
<nlm:affiliation>Key Laboratory of Forest Genetics & Biotechnology of Ministry of Education, Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, China.</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>Key Laboratory of Forest Genetics & Biotechnology of Ministry of Education, Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037</wicri:regionArea>
<wicri:noRegion>Nanjing 210037</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Zhao, Wei" sort="Zhao, Wei" uniqKey="Zhao W" first="Wei" last="Zhao">Wei Zhao</name>
<affiliation wicri:level="1">
<nlm:affiliation>Key Laboratory of Forest Genetics & Biotechnology of Ministry of Education, Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, China.</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>Key Laboratory of Forest Genetics & Biotechnology of Ministry of Education, Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037</wicri:regionArea>
<wicri:noRegion>Nanjing 210037</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Gao, Hua" sort="Gao, Hua" uniqKey="Gao H" first="Hua" last="Gao">Hua Gao</name>
<affiliation wicri:level="1">
<nlm:affiliation>Key Laboratory of Forest Genetics & Biotechnology of Ministry of Education, Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, China.</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>Key Laboratory of Forest Genetics & Biotechnology of Ministry of Education, Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037</wicri:regionArea>
<wicri:noRegion>Nanjing 210037</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Tong, Chunfa" sort="Tong, Chunfa" uniqKey="Tong C" first="Chunfa" last="Tong">Chunfa Tong</name>
<affiliation wicri:level="1">
<nlm:affiliation>Key Laboratory of Forest Genetics & Biotechnology of Ministry of Education, Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, China tongchf@njfu.edu.cn.</nlm:affiliation>
<country wicri:rule="url">République populaire de Chine</country>
<wicri:regionArea>Key Laboratory of Forest Genetics & Biotechnology of Ministry of Education, Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037</wicri:regionArea>
<wicri:noRegion>Nanjing 210037</wicri:noRegion>
</affiliation>
</author>
</analytic>
<series>
<title level="j">G3 (Bethesda, Md.)</title>
<idno type="eISSN">2160-1836</idno>
<imprint>
<date when="2020" type="published">2020</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass></textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">
<i>Populus simonii</i>
is an important tree in the genus
<i>Populus</i>
, widely distributed in the Northern Hemisphere and having a long cultivation history. Although this species has ecologically and economically important values, its genome sequence is currently not available, hindering the development of new varieties with wider adaptive and commercial traits. Here, we report a chromosome-level genome assembly of
<i>P. simonii</i>
using PacBio long-read sequencing data aided by Illumina paired-end reads and related genetic linkage maps. The assembly is 441.38 Mb in length and contain 686 contigs with a contig N50 of 1.94 Mb. With the linkage maps, 336 contigs were successfully anchored into 19 pseudochromosomes, accounting for 90.2% of the assembled genome size. Genomic integrity assessment showed that 1,347 (97.9%) of the 1,375 genes conserved among all embryophytes can be found in the
<i>P. simonii</i>
assembly. Genomic repeat analysis revealed that 41.47% of the
<i>P. simonii</i>
genome is composed of repetitive elements, of which 40.17% contained interspersed repeats. A total of 45,459 genes were predicted from the
<i>P. simonii</i>
genome sequence and 39,833 (87.6%) of the genes were annotated with one or more related functions. Phylogenetic analysis indicated that
<i>P. simonii</i>
and
<i>Populus trichocarpa</i>
should be placed in different sections, contrary to the previous classification according to morphology. The genome assembly not only provides an important genetic resource for the comparative and functional genomics of different
<i>Populus</i>
species, but also furnishes one of the closest reference sequences for identifying genomic variants in an F
<sub>1</sub>
hybrid population derived by crossing
<i>P. simonii</i>
with other
<i>Populus</i>
species.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="In-Process" Owner="NLM">
<PMID Version="1">31806765</PMID>
<DateRevised>
<Year>2020</Year>
<Month>04</Month>
<Day>14</Day>
</DateRevised>
<Article PubModel="Electronic">
<Journal>
<ISSN IssnType="Electronic">2160-1836</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>10</Volume>
<Issue>2</Issue>
<PubDate>
<Year>2020</Year>
<Month>02</Month>
<Day>06</Day>
</PubDate>
</JournalIssue>
<Title>G3 (Bethesda, Md.)</Title>
<ISOAbbreviation>G3 (Bethesda)</ISOAbbreviation>
</Journal>
<ArticleTitle>
<i>De Novo</i>
Genome Assembly of
<i>Populus simonii</i>
Further Supports That
<i>Populus simonii</i>
and
<i>Populus trichocarpa</i>
Belong to Different Sections.</ArticleTitle>
<Pagination>
<MedlinePgn>455-466</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1534/g3.119.400913</ELocationID>
<Abstract>
<AbstractText>
<i>Populus simonii</i>
is an important tree in the genus
<i>Populus</i>
, widely distributed in the Northern Hemisphere and having a long cultivation history. Although this species has ecologically and economically important values, its genome sequence is currently not available, hindering the development of new varieties with wider adaptive and commercial traits. Here, we report a chromosome-level genome assembly of
<i>P. simonii</i>
using PacBio long-read sequencing data aided by Illumina paired-end reads and related genetic linkage maps. The assembly is 441.38 Mb in length and contain 686 contigs with a contig N50 of 1.94 Mb. With the linkage maps, 336 contigs were successfully anchored into 19 pseudochromosomes, accounting for 90.2% of the assembled genome size. Genomic integrity assessment showed that 1,347 (97.9%) of the 1,375 genes conserved among all embryophytes can be found in the
<i>P. simonii</i>
assembly. Genomic repeat analysis revealed that 41.47% of the
<i>P. simonii</i>
genome is composed of repetitive elements, of which 40.17% contained interspersed repeats. A total of 45,459 genes were predicted from the
<i>P. simonii</i>
genome sequence and 39,833 (87.6%) of the genes were annotated with one or more related functions. Phylogenetic analysis indicated that
<i>P. simonii</i>
and
<i>Populus trichocarpa</i>
should be placed in different sections, contrary to the previous classification according to morphology. The genome assembly not only provides an important genetic resource for the comparative and functional genomics of different
<i>Populus</i>
species, but also furnishes one of the closest reference sequences for identifying genomic variants in an F
<sub>1</sub>
hybrid population derived by crossing
<i>P. simonii</i>
with other
<i>Populus</i>
species.</AbstractText>
<CopyrightInformation>Copyright © 2020 Wu et al.</CopyrightInformation>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Wu</LastName>
<ForeName>Hainan</ForeName>
<Initials>H</Initials>
<Identifier Source="ORCID">0000-0003-2890-9702</Identifier>
<AffiliationInfo>
<Affiliation>Key Laboratory of Forest Genetics & Biotechnology of Ministry of Education, Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, China.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Yao</LastName>
<ForeName>Dan</ForeName>
<Initials>D</Initials>
<Identifier Source="ORCID">0000-0001-5937-3467</Identifier>
<AffiliationInfo>
<Affiliation>Key Laboratory of Forest Genetics & Biotechnology of Ministry of Education, Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, China.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Chen</LastName>
<ForeName>Yuhua</ForeName>
<Initials>Y</Initials>
<Identifier Source="ORCID">0000-0002-4530-8653</Identifier>
<AffiliationInfo>
<Affiliation>Key Laboratory of Forest Genetics & Biotechnology of Ministry of Education, Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, China.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Yang</LastName>
<ForeName>Wenguo</ForeName>
<Initials>W</Initials>
<Identifier Source="ORCID">0000-0002-5191-828X</Identifier>
<AffiliationInfo>
<Affiliation>Key Laboratory of Forest Genetics & Biotechnology of Ministry of Education, Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, China.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Zhao</LastName>
<ForeName>Wei</ForeName>
<Initials>W</Initials>
<Identifier Source="ORCID">0000-0002-7130-7670</Identifier>
<AffiliationInfo>
<Affiliation>Key Laboratory of Forest Genetics & Biotechnology of Ministry of Education, Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, China.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Gao</LastName>
<ForeName>Hua</ForeName>
<Initials>H</Initials>
<AffiliationInfo>
<Affiliation>Key Laboratory of Forest Genetics & Biotechnology of Ministry of Education, Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, China.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Tong</LastName>
<ForeName>Chunfa</ForeName>
<Initials>C</Initials>
<Identifier Source="ORCID">0000-0001-9795-211X</Identifier>
<AffiliationInfo>
<Affiliation>Key Laboratory of Forest Genetics & Biotechnology of Ministry of Education, Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, China tongchf@njfu.edu.cn.</Affiliation>
</AffiliationInfo>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D013485">Research Support, Non-U.S. Gov't</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2020</Year>
<Month>02</Month>
<Day>06</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>United States</Country>
<MedlineTA>G3 (Bethesda)</MedlineTA>
<NlmUniqueID>101566598</NlmUniqueID>
<ISSNLinking>2160-1836</ISSNLinking>
</MedlineJournalInfo>
<CitationSubset>IM</CitationSubset>
<KeywordList Owner="NOTNLM">
<Keyword MajorTopicYN="Y">Illumina sequencing</Keyword>
<Keyword MajorTopicYN="Y">PacBio sequencing</Keyword>
<Keyword MajorTopicYN="Y">Populus simonii</Keyword>
<Keyword MajorTopicYN="Y">genetic linkage maps</Keyword>
<Keyword MajorTopicYN="Y">genome assembly</Keyword>
</KeywordList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="pubmed">
<Year>2019</Year>
<Month>12</Month>
<Day>7</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2019</Year>
<Month>12</Month>
<Day>7</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2019</Year>
<Month>12</Month>
<Day>7</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>epublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">31806765</ArticleId>
<ArticleId IdType="pii">g3.119.400913</ArticleId>
<ArticleId IdType="doi">10.1534/g3.119.400913</ArticleId>
<ArticleId IdType="pmc">PMC7003099</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>Science. 2018 Oct 19;362(6412):343-347</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">30166436</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>BMC Evol Biol. 2007 Nov 08;7:214</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17996036</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genome Biol. 2015 Jan 13;16:3</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25583564</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genome Biol. 2015 Aug 06;16:157</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26243257</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 2007;35(9):3100-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17452365</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>BMC Genomics. 2016 Aug 18;17:656</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27538483</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2016 Nov 22;113(47):E7619-E7628</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27821754</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Bioinformatics. 2009 Jul 15;25(14):1754-60</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19451168</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mob DNA. 2015 Jun 02;6:11</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26045719</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 2006 Jul 1;34(Web Server issue):W435-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16845043</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Protoc Bioinformatics. 2009 Mar;Chapter 4:Unit 4.10</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19274634</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Plant. 2018 Dec 3;11(12):1482-1491</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">30342096</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Theor Appl Genet. 2004 Feb;108(4):657-62</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14564399</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2013 May 30;497(7451):579-84</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23698360</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Genet. 2019 Jun;51(6):1052-1059</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">31152161</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Bioinformatics. 2017 Jul 15;33(14):2202-2204</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28369201</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS Genet. 2008 Oct;4(10):e1000212</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18846212</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Hortic Res. 2018 Aug 15;5:50</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">30131865</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Bioinformatics. 2003 Jan 22;19(2):301-2</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12538260</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Biol Evol. 2013 Apr;30(4):772-80</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23329690</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell Rep. 2013 Sep;32(9):1407-25</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23652820</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS One. 2012;7(2):e30619</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22312429</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Commun. 2019 Jan 25;10(1):464</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">30683940</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>BMC Bioinformatics. 2015 May 22;16:169</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25994840</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Genet. 2019 Mar;51(3):541-547</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">30804557</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Gigascience. 2019 Feb 1;8(2):</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">30689848</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genome Biol. 2004;5(2):R12</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14759262</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>BMC Bioinformatics. 2011 Dec 22;12:491</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22192575</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>BMC Bioinformatics. 2005 Feb 15;6:31</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15713233</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 2013 Jul;41(12):e121</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23598997</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 1997 Mar 1;25(5):955-64</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9023104</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 2018 Jul 2;46(W1):W71-W75</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">29788377</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>G3 (Bethesda). 2019 May 7;9(5):1331-1337</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">30923135</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Bioinformatics. 2014 May 1;30(9):1312-3</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24451623</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Brief Bioinform. 2018 Nov 14;:</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">30445432</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Gigascience. 2018 Dec 1;7(12):</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">30481296</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS One. 2016 Mar 10;11(3):e0150692</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26964097</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Commun. 2013;4:2797</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24256998</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Bioinformatics. 2015 Oct 1;31(19):3210-2</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26059717</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Bioinformatics. 2019 Jun 1;35(12):2153-2155</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">30398564</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Commun. 2018 Feb 7;9(1):541</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">29416032</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>BioData Min. 2017 Dec 19;10:38</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">29270228</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Hortic Res. 2018 Nov 20;5:72</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">30479779</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS One. 2014 Aug 12;9(8):e103645</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25116432</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 2001 Jan 1;29(1):22-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11125040</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genome. 2002 Jun;45(3):541-55</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12033623</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Theor Appl Genet. 1994 Oct;89(2-3):167-78</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24177824</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Front Plant Sci. 2017 Apr 12;8:571</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28446920</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>BMC Genomics. 2006 Dec 28;7:327</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17194304</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Trends Plant Sci. 2019 Aug;24(8):700-724</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">31208890</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Bioinformatics. 2005 Sep 15;21(18):3674-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16081474</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Front Plant Sci. 2019 Jan 22;10:5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">30723484</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Gigascience. 2018 Aug 1;7(8):</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">30107523</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genes (Basel). 2017 Dec 28;9(1):</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">29283420</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genome Res. 2008 Dec;18(12):1979-90</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18757608</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 1999 Jan 1;27(1):29-34</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9847135</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 2018 Jan 4;46(D1):D335-D342</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">29112718</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2006 Sep 15;313(5793):1596-604</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16973872</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Methods. 2015 Jan;12(1):59-60</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25402007</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Bioinformatics. 2001 Sep;17(9):847-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11590104</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2018 Nov 13;115(46):E10970-E10978</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">30373829</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Bioinformatics. 2009 Aug 1;25(15):1972-3</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19505945</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Biotechnol J. 2019 Feb;17(2):451-460</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">30044051</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Bioinformatics. 2006 May 15;22(10):1269-71</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16543274</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS One. 2014 Nov 19;9(11):e112963</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25409509</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Methods. 2016 Dec;13(12):1050-1054</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27749838</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Bioinformatics. 2011 Mar 15;27(6):764-70</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21217122</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Gigascience. 2017 Sep 1;6(9):1-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28938721</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Genet. 2016 Jan;48(1):84-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26569123</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Sci China Life Sci. 2019 May;62(5):609-618</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">30661181</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell Res. 2014 Oct;24(10):1274-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24980958</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Protoc. 2013 Aug;8(8):1494-512</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23845962</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Bioinformatics. 2009 Aug 15;25(16):2078-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19505943</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Methods. 2013 Jun;10(6):563-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23644548</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 1991 Apr 25;19 Suppl:2247-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">2041811</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Biol Evol. 2017 Dec 1;34(12):3267-3278</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">29029342</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Plants. 2019 Jan;5(1):18-25</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">30559417</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>DNA Res. 2018 Aug 1;25(4):409-419</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">29800113</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>BMC Bioinformatics. 2004 May 14;5:59</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15144565</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS One. 2012;7(5):e36146</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22567134</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>République populaire de Chine</li>
</country>
</list>
<tree>
<country name="République populaire de Chine">
<noRegion>
<name sortKey="Wu, Hainan" sort="Wu, Hainan" uniqKey="Wu H" first="Hainan" last="Wu">Hainan Wu</name>
</noRegion>
<name sortKey="Chen, Yuhua" sort="Chen, Yuhua" uniqKey="Chen Y" first="Yuhua" last="Chen">Yuhua Chen</name>
<name sortKey="Gao, Hua" sort="Gao, Hua" uniqKey="Gao H" first="Hua" last="Gao">Hua Gao</name>
<name sortKey="Tong, Chunfa" sort="Tong, Chunfa" uniqKey="Tong C" first="Chunfa" last="Tong">Chunfa Tong</name>
<name sortKey="Yang, Wenguo" sort="Yang, Wenguo" uniqKey="Yang W" first="Wenguo" last="Yang">Wenguo Yang</name>
<name sortKey="Yao, Dan" sort="Yao, Dan" uniqKey="Yao D" first="Dan" last="Yao">Dan Yao</name>
<name sortKey="Zhao, Wei" sort="Zhao, Wei" uniqKey="Zhao W" first="Wei" last="Zhao">Wei Zhao</name>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/PoplarV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000612 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 000612 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    PoplarV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:31806765
   |texte=   De Novo Genome Assembly of Populus simonii Further Supports That Populus simonii and Populus trichocarpa Belong to Different Sections.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:31806765" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a PoplarV1 

Wicri

This area was generated with Dilib version V0.6.37.
Data generation: Wed Nov 18 12:07:19 2020. Site generation: Wed Nov 18 12:16:31 2020