Serveur d'exploration sur le peuplier

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Divergence of 3' ends as a driver of short interspersed nuclear element (SINE) evolution in the Salicaceae.

Identifieur interne : 000471 ( Main/Exploration ); précédent : 000470; suivant : 000472

Divergence of 3' ends as a driver of short interspersed nuclear element (SINE) evolution in the Salicaceae.

Auteurs : Anja Kögler [Allemagne] ; Kathrin M. Seibt [Allemagne] ; Tony Heitkam [Allemagne] ; Kristin Morgenstern [Allemagne] ; Birgit Reiche [Allemagne] ; Marie Brückner [Allemagne] ; Heino Wolf [Allemagne] ; Doris Krabel [Allemagne] ; Thomas Schmidt [Allemagne]

Source :

RBID : pubmed:32056333

Abstract

Short interspersed nuclear elements (SINEs) are small, non-autonomous and heterogeneous retrotransposons that are widespread in plants. To explore the amplification dynamics and evolutionary history of SINE populations in representative deciduous tree species, we analyzed the genomes of the six following Salicaceae species: Populus deltoides, Populus euphratica, Populus tremula, Populus tremuloides, Populus trichocarpa, and Salix purpurea. We identified 11 Salicaceae SINE families (SaliS-I to SaliS-XI), comprising 27 077 full-length copies. Most of these families harbor segmental similarities, providing evidence for SINE emergence by reshuffling or heterodimerization. We observed two SINE groups, differing in phylogenetic distribution pattern, similarity and 3' end structure. These groups probably emerged during the 'salicoid duplication' (~65 million years ago) in the Salix-Populus progenitor and during the separation of the genus Salix (45-65 million years ago), respectively. In contrast to conserved 5' start motifs across species and SINE families, the 3' ends are highly variable in sequence and length. This extraordinary 3'-end variability results from mutations in the poly(A) tail, which were fixed by subsequent amplificational bursts. We show that the dissemination of newly evolved 3' ends is accomplished by a displacement of older motifs, leading to various 3'-end subpopulations within the SaliS families.

DOI: 10.1111/tpj.14721
PubMed: 32056333


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Divergence of 3' ends as a driver of short interspersed nuclear element (SINE) evolution in the Salicaceae.</title>
<author>
<name sortKey="Kogler, Anja" sort="Kogler, Anja" uniqKey="Kogler A" first="Anja" last="Kögler">Anja Kögler</name>
<affiliation wicri:level="4">
<nlm:affiliation>Faculty of Biology, Institute of Botany, Technische Universität Dresden, 01062, Dresden, Germany.</nlm:affiliation>
<country xml:lang="fr">Allemagne</country>
<wicri:regionArea>Faculty of Biology, Institute of Botany, Technische Universität Dresden, 01062, Dresden</wicri:regionArea>
<wicri:noRegion>01062, Dresden</wicri:noRegion>
<orgName type="university">Université technique de Dresde</orgName>
<placeName>
<settlement type="city">Dresde</settlement>
<region type="land" nuts="1">Saxe (Land)</region>
<region type="district" nuts="2">District de Dresde</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Seibt, Kathrin M" sort="Seibt, Kathrin M" uniqKey="Seibt K" first="Kathrin M" last="Seibt">Kathrin M. Seibt</name>
<affiliation wicri:level="4">
<nlm:affiliation>Faculty of Biology, Institute of Botany, Technische Universität Dresden, 01062, Dresden, Germany.</nlm:affiliation>
<country xml:lang="fr">Allemagne</country>
<wicri:regionArea>Faculty of Biology, Institute of Botany, Technische Universität Dresden, 01062, Dresden</wicri:regionArea>
<wicri:noRegion>01062, Dresden</wicri:noRegion>
<orgName type="university">Université technique de Dresde</orgName>
<placeName>
<settlement type="city">Dresde</settlement>
<region type="land" nuts="1">Saxe (Land)</region>
<region type="district" nuts="2">District de Dresde</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Heitkam, Tony" sort="Heitkam, Tony" uniqKey="Heitkam T" first="Tony" last="Heitkam">Tony Heitkam</name>
<affiliation wicri:level="4">
<nlm:affiliation>Faculty of Biology, Institute of Botany, Technische Universität Dresden, 01062, Dresden, Germany.</nlm:affiliation>
<country xml:lang="fr">Allemagne</country>
<wicri:regionArea>Faculty of Biology, Institute of Botany, Technische Universität Dresden, 01062, Dresden</wicri:regionArea>
<wicri:noRegion>01062, Dresden</wicri:noRegion>
<orgName type="university">Université technique de Dresde</orgName>
<placeName>
<settlement type="city">Dresde</settlement>
<region type="land" nuts="1">Saxe (Land)</region>
<region type="district" nuts="2">District de Dresde</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Morgenstern, Kristin" sort="Morgenstern, Kristin" uniqKey="Morgenstern K" first="Kristin" last="Morgenstern">Kristin Morgenstern</name>
<affiliation wicri:level="4">
<nlm:affiliation>Department of Forest Sciences, Institute of Forest Botany and Forest Zoology, Technische Universität Dresden, 01735, Tharandt, Germany.</nlm:affiliation>
<country xml:lang="fr">Allemagne</country>
<wicri:regionArea>Department of Forest Sciences, Institute of Forest Botany and Forest Zoology, Technische Universität Dresden, 01735, Tharandt</wicri:regionArea>
<wicri:noRegion>01735, Tharandt</wicri:noRegion>
<orgName type="university">Université technique de Dresde</orgName>
<placeName>
<settlement type="city">Dresde</settlement>
<region type="land" nuts="1">Saxe (Land)</region>
<region type="district" nuts="2">District de Dresde</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Reiche, Birgit" sort="Reiche, Birgit" uniqKey="Reiche B" first="Birgit" last="Reiche">Birgit Reiche</name>
<affiliation wicri:level="4">
<nlm:affiliation>Department of Forest Sciences, Institute of Forest Botany and Forest Zoology, Technische Universität Dresden, 01735, Tharandt, Germany.</nlm:affiliation>
<country xml:lang="fr">Allemagne</country>
<wicri:regionArea>Department of Forest Sciences, Institute of Forest Botany and Forest Zoology, Technische Universität Dresden, 01735, Tharandt</wicri:regionArea>
<wicri:noRegion>01735, Tharandt</wicri:noRegion>
<orgName type="university">Université technique de Dresde</orgName>
<placeName>
<settlement type="city">Dresde</settlement>
<region type="land" nuts="1">Saxe (Land)</region>
<region type="district" nuts="2">District de Dresde</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Bruckner, Marie" sort="Bruckner, Marie" uniqKey="Bruckner M" first="Marie" last="Brückner">Marie Brückner</name>
<affiliation wicri:level="1">
<nlm:affiliation>Staatsbetrieb Sachsenforst, 01796, Pirna, Germany.</nlm:affiliation>
<country xml:lang="fr">Allemagne</country>
<wicri:regionArea>Staatsbetrieb Sachsenforst, 01796, Pirna</wicri:regionArea>
<wicri:noRegion>01796, Pirna</wicri:noRegion>
<wicri:noRegion>01796, Pirna</wicri:noRegion>
<wicri:noRegion>Pirna</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Wolf, Heino" sort="Wolf, Heino" uniqKey="Wolf H" first="Heino" last="Wolf">Heino Wolf</name>
<affiliation wicri:level="1">
<nlm:affiliation>Staatsbetrieb Sachsenforst, 01796, Pirna, Germany.</nlm:affiliation>
<country xml:lang="fr">Allemagne</country>
<wicri:regionArea>Staatsbetrieb Sachsenforst, 01796, Pirna</wicri:regionArea>
<wicri:noRegion>01796, Pirna</wicri:noRegion>
<wicri:noRegion>01796, Pirna</wicri:noRegion>
<wicri:noRegion>Pirna</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Krabel, Doris" sort="Krabel, Doris" uniqKey="Krabel D" first="Doris" last="Krabel">Doris Krabel</name>
<affiliation wicri:level="4">
<nlm:affiliation>Department of Forest Sciences, Institute of Forest Botany and Forest Zoology, Technische Universität Dresden, 01735, Tharandt, Germany.</nlm:affiliation>
<country xml:lang="fr">Allemagne</country>
<wicri:regionArea>Department of Forest Sciences, Institute of Forest Botany and Forest Zoology, Technische Universität Dresden, 01735, Tharandt</wicri:regionArea>
<wicri:noRegion>01735, Tharandt</wicri:noRegion>
<orgName type="university">Université technique de Dresde</orgName>
<placeName>
<settlement type="city">Dresde</settlement>
<region type="land" nuts="1">Saxe (Land)</region>
<region type="district" nuts="2">District de Dresde</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Schmidt, Thomas" sort="Schmidt, Thomas" uniqKey="Schmidt T" first="Thomas" last="Schmidt">Thomas Schmidt</name>
<affiliation wicri:level="4">
<nlm:affiliation>Faculty of Biology, Institute of Botany, Technische Universität Dresden, 01062, Dresden, Germany.</nlm:affiliation>
<country xml:lang="fr">Allemagne</country>
<wicri:regionArea>Faculty of Biology, Institute of Botany, Technische Universität Dresden, 01062, Dresden</wicri:regionArea>
<wicri:noRegion>01062, Dresden</wicri:noRegion>
<orgName type="university">Université technique de Dresde</orgName>
<placeName>
<settlement type="city">Dresde</settlement>
<region type="land" nuts="1">Saxe (Land)</region>
<region type="district" nuts="2">District de Dresde</region>
</placeName>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2020">2020</date>
<idno type="RBID">pubmed:32056333</idno>
<idno type="pmid">32056333</idno>
<idno type="doi">10.1111/tpj.14721</idno>
<idno type="wicri:Area/Main/Corpus">000460</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">000460</idno>
<idno type="wicri:Area/Main/Curation">000460</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">000460</idno>
<idno type="wicri:Area/Main/Exploration">000460</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Divergence of 3' ends as a driver of short interspersed nuclear element (SINE) evolution in the Salicaceae.</title>
<author>
<name sortKey="Kogler, Anja" sort="Kogler, Anja" uniqKey="Kogler A" first="Anja" last="Kögler">Anja Kögler</name>
<affiliation wicri:level="4">
<nlm:affiliation>Faculty of Biology, Institute of Botany, Technische Universität Dresden, 01062, Dresden, Germany.</nlm:affiliation>
<country xml:lang="fr">Allemagne</country>
<wicri:regionArea>Faculty of Biology, Institute of Botany, Technische Universität Dresden, 01062, Dresden</wicri:regionArea>
<wicri:noRegion>01062, Dresden</wicri:noRegion>
<orgName type="university">Université technique de Dresde</orgName>
<placeName>
<settlement type="city">Dresde</settlement>
<region type="land" nuts="1">Saxe (Land)</region>
<region type="district" nuts="2">District de Dresde</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Seibt, Kathrin M" sort="Seibt, Kathrin M" uniqKey="Seibt K" first="Kathrin M" last="Seibt">Kathrin M. Seibt</name>
<affiliation wicri:level="4">
<nlm:affiliation>Faculty of Biology, Institute of Botany, Technische Universität Dresden, 01062, Dresden, Germany.</nlm:affiliation>
<country xml:lang="fr">Allemagne</country>
<wicri:regionArea>Faculty of Biology, Institute of Botany, Technische Universität Dresden, 01062, Dresden</wicri:regionArea>
<wicri:noRegion>01062, Dresden</wicri:noRegion>
<orgName type="university">Université technique de Dresde</orgName>
<placeName>
<settlement type="city">Dresde</settlement>
<region type="land" nuts="1">Saxe (Land)</region>
<region type="district" nuts="2">District de Dresde</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Heitkam, Tony" sort="Heitkam, Tony" uniqKey="Heitkam T" first="Tony" last="Heitkam">Tony Heitkam</name>
<affiliation wicri:level="4">
<nlm:affiliation>Faculty of Biology, Institute of Botany, Technische Universität Dresden, 01062, Dresden, Germany.</nlm:affiliation>
<country xml:lang="fr">Allemagne</country>
<wicri:regionArea>Faculty of Biology, Institute of Botany, Technische Universität Dresden, 01062, Dresden</wicri:regionArea>
<wicri:noRegion>01062, Dresden</wicri:noRegion>
<orgName type="university">Université technique de Dresde</orgName>
<placeName>
<settlement type="city">Dresde</settlement>
<region type="land" nuts="1">Saxe (Land)</region>
<region type="district" nuts="2">District de Dresde</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Morgenstern, Kristin" sort="Morgenstern, Kristin" uniqKey="Morgenstern K" first="Kristin" last="Morgenstern">Kristin Morgenstern</name>
<affiliation wicri:level="4">
<nlm:affiliation>Department of Forest Sciences, Institute of Forest Botany and Forest Zoology, Technische Universität Dresden, 01735, Tharandt, Germany.</nlm:affiliation>
<country xml:lang="fr">Allemagne</country>
<wicri:regionArea>Department of Forest Sciences, Institute of Forest Botany and Forest Zoology, Technische Universität Dresden, 01735, Tharandt</wicri:regionArea>
<wicri:noRegion>01735, Tharandt</wicri:noRegion>
<orgName type="university">Université technique de Dresde</orgName>
<placeName>
<settlement type="city">Dresde</settlement>
<region type="land" nuts="1">Saxe (Land)</region>
<region type="district" nuts="2">District de Dresde</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Reiche, Birgit" sort="Reiche, Birgit" uniqKey="Reiche B" first="Birgit" last="Reiche">Birgit Reiche</name>
<affiliation wicri:level="4">
<nlm:affiliation>Department of Forest Sciences, Institute of Forest Botany and Forest Zoology, Technische Universität Dresden, 01735, Tharandt, Germany.</nlm:affiliation>
<country xml:lang="fr">Allemagne</country>
<wicri:regionArea>Department of Forest Sciences, Institute of Forest Botany and Forest Zoology, Technische Universität Dresden, 01735, Tharandt</wicri:regionArea>
<wicri:noRegion>01735, Tharandt</wicri:noRegion>
<orgName type="university">Université technique de Dresde</orgName>
<placeName>
<settlement type="city">Dresde</settlement>
<region type="land" nuts="1">Saxe (Land)</region>
<region type="district" nuts="2">District de Dresde</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Bruckner, Marie" sort="Bruckner, Marie" uniqKey="Bruckner M" first="Marie" last="Brückner">Marie Brückner</name>
<affiliation wicri:level="1">
<nlm:affiliation>Staatsbetrieb Sachsenforst, 01796, Pirna, Germany.</nlm:affiliation>
<country xml:lang="fr">Allemagne</country>
<wicri:regionArea>Staatsbetrieb Sachsenforst, 01796, Pirna</wicri:regionArea>
<wicri:noRegion>01796, Pirna</wicri:noRegion>
<wicri:noRegion>01796, Pirna</wicri:noRegion>
<wicri:noRegion>Pirna</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Wolf, Heino" sort="Wolf, Heino" uniqKey="Wolf H" first="Heino" last="Wolf">Heino Wolf</name>
<affiliation wicri:level="1">
<nlm:affiliation>Staatsbetrieb Sachsenforst, 01796, Pirna, Germany.</nlm:affiliation>
<country xml:lang="fr">Allemagne</country>
<wicri:regionArea>Staatsbetrieb Sachsenforst, 01796, Pirna</wicri:regionArea>
<wicri:noRegion>01796, Pirna</wicri:noRegion>
<wicri:noRegion>01796, Pirna</wicri:noRegion>
<wicri:noRegion>Pirna</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Krabel, Doris" sort="Krabel, Doris" uniqKey="Krabel D" first="Doris" last="Krabel">Doris Krabel</name>
<affiliation wicri:level="4">
<nlm:affiliation>Department of Forest Sciences, Institute of Forest Botany and Forest Zoology, Technische Universität Dresden, 01735, Tharandt, Germany.</nlm:affiliation>
<country xml:lang="fr">Allemagne</country>
<wicri:regionArea>Department of Forest Sciences, Institute of Forest Botany and Forest Zoology, Technische Universität Dresden, 01735, Tharandt</wicri:regionArea>
<wicri:noRegion>01735, Tharandt</wicri:noRegion>
<orgName type="university">Université technique de Dresde</orgName>
<placeName>
<settlement type="city">Dresde</settlement>
<region type="land" nuts="1">Saxe (Land)</region>
<region type="district" nuts="2">District de Dresde</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Schmidt, Thomas" sort="Schmidt, Thomas" uniqKey="Schmidt T" first="Thomas" last="Schmidt">Thomas Schmidt</name>
<affiliation wicri:level="4">
<nlm:affiliation>Faculty of Biology, Institute of Botany, Technische Universität Dresden, 01062, Dresden, Germany.</nlm:affiliation>
<country xml:lang="fr">Allemagne</country>
<wicri:regionArea>Faculty of Biology, Institute of Botany, Technische Universität Dresden, 01062, Dresden</wicri:regionArea>
<wicri:noRegion>01062, Dresden</wicri:noRegion>
<orgName type="university">Université technique de Dresde</orgName>
<placeName>
<settlement type="city">Dresde</settlement>
<region type="land" nuts="1">Saxe (Land)</region>
<region type="district" nuts="2">District de Dresde</region>
</placeName>
</affiliation>
</author>
</analytic>
<series>
<title level="j">The Plant journal : for cell and molecular biology</title>
<idno type="eISSN">1365-313X</idno>
<imprint>
<date when="2020" type="published">2020</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass></textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Short interspersed nuclear elements (SINEs) are small, non-autonomous and heterogeneous retrotransposons that are widespread in plants. To explore the amplification dynamics and evolutionary history of SINE populations in representative deciduous tree species, we analyzed the genomes of the six following Salicaceae species: Populus deltoides, Populus euphratica, Populus tremula, Populus tremuloides, Populus trichocarpa, and Salix purpurea. We identified 11 Salicaceae SINE families (SaliS-I to SaliS-XI), comprising 27 077 full-length copies. Most of these families harbor segmental similarities, providing evidence for SINE emergence by reshuffling or heterodimerization. We observed two SINE groups, differing in phylogenetic distribution pattern, similarity and 3' end structure. These groups probably emerged during the 'salicoid duplication' (~65 million years ago) in the Salix-Populus progenitor and during the separation of the genus Salix (45-65 million years ago), respectively. In contrast to conserved 5' start motifs across species and SINE families, the 3' ends are highly variable in sequence and length. This extraordinary 3'-end variability results from mutations in the poly(A) tail, which were fixed by subsequent amplificational bursts. We show that the dissemination of newly evolved 3' ends is accomplished by a displacement of older motifs, leading to various 3'-end subpopulations within the SaliS families.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="In-Process" Owner="NLM">
<PMID Version="1">32056333</PMID>
<DateRevised>
<Year>2020</Year>
<Month>08</Month>
<Day>17</Day>
</DateRevised>
<Article PubModel="Print-Electronic">
<Journal>
<ISSN IssnType="Electronic">1365-313X</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>103</Volume>
<Issue>1</Issue>
<PubDate>
<Year>2020</Year>
<Month>07</Month>
</PubDate>
</JournalIssue>
<Title>The Plant journal : for cell and molecular biology</Title>
<ISOAbbreviation>Plant J</ISOAbbreviation>
</Journal>
<ArticleTitle>Divergence of 3' ends as a driver of short interspersed nuclear element (SINE) evolution in the Salicaceae.</ArticleTitle>
<Pagination>
<MedlinePgn>443-458</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1111/tpj.14721</ELocationID>
<Abstract>
<AbstractText>Short interspersed nuclear elements (SINEs) are small, non-autonomous and heterogeneous retrotransposons that are widespread in plants. To explore the amplification dynamics and evolutionary history of SINE populations in representative deciduous tree species, we analyzed the genomes of the six following Salicaceae species: Populus deltoides, Populus euphratica, Populus tremula, Populus tremuloides, Populus trichocarpa, and Salix purpurea. We identified 11 Salicaceae SINE families (SaliS-I to SaliS-XI), comprising 27 077 full-length copies. Most of these families harbor segmental similarities, providing evidence for SINE emergence by reshuffling or heterodimerization. We observed two SINE groups, differing in phylogenetic distribution pattern, similarity and 3' end structure. These groups probably emerged during the 'salicoid duplication' (~65 million years ago) in the Salix-Populus progenitor and during the separation of the genus Salix (45-65 million years ago), respectively. In contrast to conserved 5' start motifs across species and SINE families, the 3' ends are highly variable in sequence and length. This extraordinary 3'-end variability results from mutations in the poly(A) tail, which were fixed by subsequent amplificational bursts. We show that the dissemination of newly evolved 3' ends is accomplished by a displacement of older motifs, leading to various 3'-end subpopulations within the SaliS families.</AbstractText>
<CopyrightInformation>© 2020 The Authors. The Plant Journal published by Society for Experimental Biology and John Wiley & Sons Ltd.</CopyrightInformation>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Kögler</LastName>
<ForeName>Anja</ForeName>
<Initials>A</Initials>
<Identifier Source="ORCID">0000-0003-4270-4762</Identifier>
<AffiliationInfo>
<Affiliation>Faculty of Biology, Institute of Botany, Technische Universität Dresden, 01062, Dresden, Germany.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Seibt</LastName>
<ForeName>Kathrin M</ForeName>
<Initials>KM</Initials>
<Identifier Source="ORCID">0000-0002-5435-2381</Identifier>
<AffiliationInfo>
<Affiliation>Faculty of Biology, Institute of Botany, Technische Universität Dresden, 01062, Dresden, Germany.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Heitkam</LastName>
<ForeName>Tony</ForeName>
<Initials>T</Initials>
<Identifier Source="ORCID">0000-0003-0168-8428</Identifier>
<AffiliationInfo>
<Affiliation>Faculty of Biology, Institute of Botany, Technische Universität Dresden, 01062, Dresden, Germany.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Morgenstern</LastName>
<ForeName>Kristin</ForeName>
<Initials>K</Initials>
<AffiliationInfo>
<Affiliation>Department of Forest Sciences, Institute of Forest Botany and Forest Zoology, Technische Universität Dresden, 01735, Tharandt, Germany.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Reiche</LastName>
<ForeName>Birgit</ForeName>
<Initials>B</Initials>
<AffiliationInfo>
<Affiliation>Department of Forest Sciences, Institute of Forest Botany and Forest Zoology, Technische Universität Dresden, 01735, Tharandt, Germany.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Brückner</LastName>
<ForeName>Marie</ForeName>
<Initials>M</Initials>
<AffiliationInfo>
<Affiliation>Staatsbetrieb Sachsenforst, 01796, Pirna, Germany.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Wolf</LastName>
<ForeName>Heino</ForeName>
<Initials>H</Initials>
<AffiliationInfo>
<Affiliation>Staatsbetrieb Sachsenforst, 01796, Pirna, Germany.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Krabel</LastName>
<ForeName>Doris</ForeName>
<Initials>D</Initials>
<AffiliationInfo>
<Affiliation>Department of Forest Sciences, Institute of Forest Botany and Forest Zoology, Technische Universität Dresden, 01735, Tharandt, Germany.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Schmidt</LastName>
<ForeName>Thomas</ForeName>
<Initials>T</Initials>
<Identifier Source="ORCID">0000-0001-7259-415X</Identifier>
<AffiliationInfo>
<Affiliation>Faculty of Biology, Institute of Botany, Technische Universität Dresden, 01062, Dresden, Germany.</Affiliation>
</AffiliationInfo>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D013485">Research Support, Non-U.S. Gov't</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2020</Year>
<Month>03</Month>
<Day>21</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>England</Country>
<MedlineTA>Plant J</MedlineTA>
<NlmUniqueID>9207397</NlmUniqueID>
<ISSNLinking>0960-7412</ISSNLinking>
</MedlineJournalInfo>
<CitationSubset>IM</CitationSubset>
<KeywordList Owner="NOTNLM">
<Keyword MajorTopicYN="Y">Salicaceae</Keyword>
<Keyword MajorTopicYN="Y">non-LTR retrotransposon</Keyword>
<Keyword MajorTopicYN="Y">poplar</Keyword>
<Keyword MajorTopicYN="Y">short interspersed nuclear elements (SINEs)</Keyword>
</KeywordList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2019</Year>
<Month>07</Month>
<Day>18</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="revised">
<Year>2020</Year>
<Month>01</Month>
<Day>13</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2020</Year>
<Month>01</Month>
<Day>29</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2020</Year>
<Month>2</Month>
<Day>15</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2020</Year>
<Month>2</Month>
<Day>15</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2020</Year>
<Month>2</Month>
<Day>15</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">32056333</ArticleId>
<ArticleId IdType="doi">10.1111/tpj.14721</ArticleId>
</ArticleIdList>
<ReferenceList>
<Title>References</Title>
<Reference>
<Citation>Argus, G.W. (2010) Salix. In Flora of North America North of Mexico. Vol. 7: Magnoliophyta: Salicaceae to Brassicaceae (Flora of North America Editorial Committee, ed). Oxford University Press, New York, pp. 23-162.</Citation>
</Reference>
<Reference>
<Citation>Bao, W., Kojima, K.K. and Kohany, O. (2015) Repbase Update, a database of repetitive elements in eukaryotic genomes. Mob. DNA, 6, 11.</Citation>
</Reference>
<Reference>
<Citation>Baucom, R.S., Estill, J.C., Chaparro, C., Upshaw, N., Jogi, A., Deragon, J.M., Westerman, R.P., SanMiguel, P.J. and Bennetzen, J.L. (2009) Exceptional diversity, non-random distribution, and rapid evolution of retroelements in the B73 maize genome. PLoS Genet. 5, e1000732.</Citation>
</Reference>
<Reference>
<Citation>Ben-David, S., Yaakov, B. and Kashkush, K. (2013) Genome-wide analysis of short interspersed nuclear elements SINEs revealed high sequence conservation, gene association and retrotranspositional activity in wheat. Plant J. 76, 201-210.</Citation>
</Reference>
<Reference>
<Citation>Blackburn, K.B. and Harrison, J.W. (1924) A preliminary account of the chromosomes and chromosome behavior in the Salicaceae. Ann. Bot. 38, 361-378.</Citation>
</Reference>
<Reference>
<Citation>Boeke, J. (1997) LINEs and Alus - the poly A connection. Nat. Genet. 16, 6-7.</Citation>
</Reference>
<Reference>
<Citation>Borodulina, O.R., Golubchikova, J.S., Ustyantsev, I.G. and Kramerov, D.A. (2016) Polyadenylation of RNA transcribed from mammalian SINEs by RNA polymerase III: complex requirements for nucleotide sequences. Biochim. Biophys. Acta, 1859, 355-365.</Citation>
</Reference>
<Reference>
<Citation>Boucher, L.D., Manchester, S.R. and Judd, W.S. (2003) An extinct genus of Salicaceae based on twigs with attached flowers, fruits, and foliage from the Eocene Green River Formation of Utah and Colorado, USA. Am. J. Bot. 90, 1389-1399.</Citation>
</Reference>
<Reference>
<Citation>Britten, R.J., Baron, W.F., Stout, D.B. and Davidson, E.H. (1988) Sources and evolution of human Alu repeated sequences. Proc. Natl Acad. Sci. USA, 85, 4770-4774.</Citation>
</Reference>
<Reference>
<Citation>Buzdin, A.A. (2004) Retroelements and formation of chimeric retrogenes. Cell. Mol. Life Sci. 61, 2046-2059.</Citation>
</Reference>
<Reference>
<Citation>Churakov, G., Smit, A.F.A., Brosius, J. and Schmitz, J. (2005) A novel abundant family of retroposed elements (DAS-SINEs) in the nine-banded armadillo (Dasypus novemcinctus). Mol. Biol. Evol. 22, 886-893.</Citation>
</Reference>
<Reference>
<Citation>Cohen, J. (1992) A power primer. Psychological Bulletin, 112(1), 155-159. https://doi.org/10.1037/0033-2909.112.1.155</Citation>
</Reference>
<Reference>
<Citation>Collinson, M.E. (1992) The early fossil history of Salicaceae: a brief review. Proc. R. Soc. Edin. Biol. Sci. 98, 155-167.</Citation>
</Reference>
<Reference>
<Citation>Cordaux, R., Hedges, D.J. and Batzer, M.A. (2004) Retrotransposition of Alu elements: how many sources? Trends Genet. 20, 464-467.</Citation>
</Reference>
<Reference>
<Citation>Dai, X., Hu, Q., Cai, Q. et al. (2014) The willow genome and divergent evolution from poplar after the common genome duplication. Cell Res. 24, 1274-1277.</Citation>
</Reference>
<Reference>
<Citation>Deininger, P.L. and Batzer, M.A. (1995) SINE master genes and population biology. In The Impact of Short, Interspersed Elements (SINEs) On The Host Genome (Maraia, R., ed). Georgetown, Texas: R. G. Landes, pp. 43-60.</Citation>
</Reference>
<Reference>
<Citation>Deininger, P.L. and Slagel, V.K. (1988) Recently amplified Alu family members share a common parental Alu sequence. Mol. Cell. Biol. 8, 4566-4569.</Citation>
</Reference>
<Reference>
<Citation>Deininger, P.L., Batzer, M.A., Hutchison, C.A. and Edgell, M.H. (1992) Master genes in mammalian repetitive DNA amplification. Trends Genet. 8, 307-311.</Citation>
</Reference>
<Reference>
<Citation>Deininger, P., Lander, E., Linton, L. et al. (2011) Alu elements: know the SINEs. Genome Biol. 12, 236.</Citation>
</Reference>
<Reference>
<Citation>Deragon, J.-M. and Zhang, X. (2006) Short interspersed elements (SINEs) in plants: Origin, classification, and use as phylogenetic markers. Syst. Biol. 55, 949-956.</Citation>
</Reference>
<Reference>
<Citation>Devos, K.M., Brown, J.K.M. and Bennetzen, J.L. (2002) Genome size reduction through illegitimate recombination counteracts genome expansion in Arabidopsis. Genome Res. 12, 1075-1079.</Citation>
</Reference>
<Reference>
<Citation>Dewannieux, M. and Heidmann, T. (2005a) LINEs, SINEs and processed pseudogenes: Parasitic strategies for genome modeling. Cytogenet. Genome Res. 110, 35-48.</Citation>
</Reference>
<Reference>
<Citation>Dewannieux, Marie and Heidmann, T. (2005b) Role of poly(A) tail length in Alu retrotransposition. Genomics, 86, 378-381.</Citation>
</Reference>
<Reference>
<Citation>Dewannieux, M., Esnault, C. and Heidmann, T. (2003) LINE-mediated retrotransposition of marked Alu sequences. Nat. Genet. 35, 41-48.</Citation>
</Reference>
<Reference>
<Citation>Dickmann, D.I. and Kuzovkina, J. (2014) Poplars and willows of the world, with emphasis on silvicuturally important species. In Poplars and Willows (Isebrands, J.G. and Richardson, J., eds). Rome, Italy: FAO.</Citation>
</Reference>
<Reference>
<Citation>Du, J., Tian, Z., Bowen, N.J., Schmutz, J., Shoemaker, R.C. and Ma, J. (2010) Bifurcation and enhancement of autonomous-nonautonomous retrotransposon partnership through LTR swapping in soybean. Plant Cell, 22, 48-61.</Citation>
</Reference>
<Reference>
<Citation>Eckenwalder, J.E. (1996) Systematics and evolution of Populus. In Biology of Populus and its Implications for Management and Conservation. (Stettler, R.F., Bradshaw, H.D. Jr, Heilman, P.E. and Hinckley, T.M., eds). Ottawa, ON, Canada: NRC Research Press, pp. 7-32.</Citation>
</Reference>
<Reference>
<Citation>Edgar, R.C. (2004) MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res. 32, 1792-1797.</Citation>
</Reference>
<Reference>
<Citation>Edgar, R.C. (2010) Search and clustering orders of magnitude faster than BLAST. Bioinformatics, 26, 2460-2461.</Citation>
</Reference>
<Reference>
<Citation>Fawcett, J.A. and Innan, H. (2016) High similarity between distantly related species of a plant SINE family is consistent with a scenario of vertical transmission without horizontal transfers. Mol. Biol. Evol. 33, 2593-2604.</Citation>
</Reference>
<Reference>
<Citation>Feschotte, C., Fourrier, N., Desmons, I., Mouches, C. and Mouchès, C. (2001) Birth of a retroposon: the twin SINE family from the vector mosquito Culex pipiens may have originated from a dimeric tRNA precursor. Mol. Biol. Evol. 18, 74-84.</Citation>
</Reference>
<Reference>
<Citation>Feschotte, C., Jiang, N. and Wessler, S.R. (2002) Plant transposable elements: where genetics meets genomics. Nat. Rev. Genet. 3, 329-341.</Citation>
</Reference>
<Reference>
<Citation>Gao, C., Xiao, M., Ren, X., Hayward, A., Yin, J., Wu, L., Fu, D. and Li, J. (2012) Characterization and functional annotation of nested transposable elements in eukaryotic genomes. Genomics, 100, 222-230.</Citation>
</Reference>
<Reference>
<Citation>Hagan, C.R., Sheffield, R.F. and Rudin, C.M. (2003) Human Alu element retrotransposition induced by genotoxic stress. Nat. Genet. 35, 219-220.</Citation>
</Reference>
<Reference>
<Citation>Heslop-Harrison, J. (1991) The molecular cytogenetics of plants. J. Cell Sci. 100, 15-22.</Citation>
</Reference>
<Reference>
<Citation>Hou, J., Ye, N., Dong, Z., Lu, M., Li, L. and Yin, T. (2016) Major chromosomal rearrangements distinguish willow and poplar after the ancestral “salicoid” genome duplication. Genome Biol. Evol. 8, 1868-1875.</Citation>
</Reference>
<Reference>
<Citation>Hu, W.-S. and Hughes, S.H. (2012) HIV-1 reverse transcription. Cold Spring Harb. Perspect. Med. 2, a006882.</Citation>
</Reference>
<Reference>
<Citation>Johnson, L.J. and Brookfield, J.F.Y. (2006) A test of the master gene hypothesis for interspersed repetitive DNA sequences. Mol. Biol. Evol. 23, 235-239.</Citation>
</Reference>
<Reference>
<Citation>Jordan, V.E., Walker, J.A., Beckstrom, T.O. et al. (2018) A computational reconstruction of Papio phylogeny using Alu insertion polymorphisms. Mob. DNA, 9, 13.</Citation>
</Reference>
<Reference>
<Citation>Jühling, F., Mörl, M., Hartmann, R.K., Sprinzl, M., Stadler, P.F. and Pütz, J. (2009) tRNAdb 2009: compilation of tRNA sequences and tRNA genes. Nucleic Acids Res. 37, D159-D162.</Citation>
</Reference>
<Reference>
<Citation>Jurka, J. (2010) SINE elements from black cottonwood. Repbase Rep. 10, 238.</Citation>
</Reference>
<Reference>
<Citation>Jurka, J., Kohany, O., Pavlicek, A., Kapitonov, V.V. and Jurka, M.V. (2005) Clustering, duplication and chromosomal distribution of mouse SINE retrotransposons. Cytogenet. Genome Res. 110, 117-123.</Citation>
</Reference>
<Reference>
<Citation>Kearse, M., Moir, R., Wilson, A. et al. (2012) Geneious Basic: an integrated and extendable desktop software platform for the organization and analysis of sequence data. Bioinformatics, 28, 1647-1649.</Citation>
</Reference>
<Reference>
<Citation>Keidar, D., Doron, C. and Kashkush, K. (2018) Genome-wide analysis of a recently active retrotransposon, Au SINE, in wheat: content, distribution within subgenomes and chromosomes, and gene associations. Plant Cell Rep. 37, 193-208.</Citation>
</Reference>
<Reference>
<Citation>Kögler, A., Schmidt, T. and Wenke, T. (2017) Evolutionary modes of emergence of short interspersed nuclear element (SINE) families in grasses. Plant J. 92, 676-695.</Citation>
</Reference>
<Reference>
<Citation>Kramerov, D.A. and Vassetzky, N.S. (2005) Short retroposons in eukaryotic genomes. Int. Rev. Cytol. 247, 165-221.</Citation>
</Reference>
<Reference>
<Citation>Lauron-Moreau, A., Pitre, F.E., Argus, G.W., Labrecque, M. and Brouillet, L. (2015) Phylogenetic relationships of American willows (Salix L., Salicaceae). PLoS ONE, 10, e0138963.</Citation>
</Reference>
<Reference>
<Citation>Lenoir, A., Pélissier, T., Bousquet-Antonelli, C. and Deragon, J.M. (2005) Comparative evolution history of SINEs in Arabidopsis thaliana and Brassica oleracea: evidence for a high rate of SINE loss. Cytogenet. Genome Res. 110, 441-447.</Citation>
</Reference>
<Reference>
<Citation>Levy, A., Schwartz, S. and Ast, G. (2009) Large-scale discovery of insertion hotspots and preferential integration sites of human transposed elements. Nucleic Acids Res. 38, 1515-1530.</Citation>
</Reference>
<Reference>
<Citation>Liu, X., Wang, Z., Wang, D. and Zhang, J. (2016) Phylogeny of Populus-Salix (Salicaceae) and their relative genera using molecular datasets. Biochem. Syst. Ecol. 68, 210-215.</Citation>
</Reference>
<Reference>
<Citation>Luan, D.D., Korman, M.H., Jakubczak, J.L. and Eickbush, T.H. (1993) Reverse transcription of R2Bm RNA is primed by a nick at the chromosomal target site: a mechanism for non-LTR retrotransposition. Cell, 72, 595-605.</Citation>
</Reference>
<Reference>
<Citation>Ma, J., SanMiguel, P., Lai, J., Messing, J. and Bennetzen, J.L. (2005) DNA rearrangement in orthologous orp regions of the maize, rice and sorghum genomes. Genetics, 170, 1209-1220.</Citation>
</Reference>
<Reference>
<Citation>Magallón, S., Hilu, K.H.W. and Quandt, D. (2013) Land plant evolutionary timeline: gene effects are secondary to fossil constraints in relaxed clock estimation of age and substitution rates. Am. J. Bot. 100, 556-573.</Citation>
</Reference>
<Reference>
<Citation>Manchester, S.R., Judd, W.S. and Handley, B. (2006) Foliage and fruits of early poplars (Salicaceae: Populus) from the Eocene of Utah, Colorado, and Wyoming. Int. J. Plant Sci. 167, 897-908.</Citation>
</Reference>
<Reference>
<Citation>Marco, A. and Marín, I. (2008) How Athila retrotransposons survive in the Arabidopsis genome. BMC Genom., 9, 219.</Citation>
</Reference>
<Reference>
<Citation>Matera, A.G., Hellmann, U., Hintz, M.F. and Schmid, C.W. (1990) Recently transposed Alu repeats result from multiple source genes. Nucleic Acids Res. 18, 6019-6023.</Citation>
</Reference>
<Reference>
<Citation>Naville, M., Henriet, S., Warren, I., Sumic, S., Reeve, M., Volff, J.-N. and Chourrout, D. (2019) Massive changes of genome size driven by expansions of non-autonomous transposable elements. Curr. Biol. 29, 1161-1168.</Citation>
</Reference>
<Reference>
<Citation>Nishihara, H., Terai, Y. and Okada, N. (2002) Characterization of novel Alu- and tRNA-related SINEs from the tree shrew and evolutionary implications of their origins. Mol. Biol. Evol. 19, 1964-1972.</Citation>
</Reference>
<Reference>
<Citation>Odom, G.L., Robichaux, J.L. and Deininger, P.L. (2004) Predicting mammalian SINE subfamily activity from A-tail length. Mol. Biol. Evol. 21, 2140-2148.</Citation>
</Reference>
<Reference>
<Citation>Ohshima, K. and Okada, N. (2005) SINEs and LINEs: symbionts of eukaryotic genomes with a common tail. Cytogenet. Genome Res. 110, 475-490.</Citation>
</Reference>
<Reference>
<Citation>Okada, N. and Hamada, M. (1997) The 3′ ends of tRNA-derived SINEs originated from the 3’ ends of LINEs: a new example from the bovine genome. J. Mol. Evol. 44, 52-56.</Citation>
</Reference>
<Reference>
<Citation>Okada, N., Hamada, M., Ogiwara, I. and Ohshima, K. (1997) SINEs and LINEs share common 3’ sequences: a review. Gene, 205, 229-243.</Citation>
</Reference>
<Reference>
<Citation>Oliver, K.R., McComb, J.A. and Greene, W.K. (2013) Transposable elements: powerful contributors to angiosperm evolution and diversity. Genome Biol. Evol. 5, 1886-1901.</Citation>
</Reference>
<Reference>
<Citation>Ostertag, E.M., Kazazian, H.H. Jr (2001) Twin priming: a proposed mechanism for the creation of inversions in L1 retrotransposition. Genome Res. 11, 2059-2065.</Citation>
</Reference>
<Reference>
<Citation>Paesold, S., Borchardt, D., Schmidt, T. and Dechyeva, D. (2012) A sugar beet (Beta vulgaris L.) reference FISH karyotype for chromosome and chromosome-arm identification, integration of genetic linkage groups and analysis of major repeat family distribution. Plant J. 72, 600-611.</Citation>
</Reference>
<Reference>
<Citation>Price, A.L., Eskin, E., Pevzner, P.A., Price, A.L., Eskin, E. and Pevzner, P.A. (2004) Whole-genome analysis of Alu repeat elements reveals complex evolutionary history. Genome Res. 14, 2245-2252.</Citation>
</Reference>
<Reference>
<Citation>R Core Team. (2017) R: a language and environment for statistical computing. Vienna, Australia: R Foundation for Statistical Computing. Available at: https://www.R-project.org/.</Citation>
</Reference>
<Reference>
<Citation>Ragauskas, A.J., Williams, C.K., Davison, B.H. et al. (2006) The path forward for biofuels. Science, 311, 484-489.</Citation>
</Reference>
<Reference>
<Citation>Ray, D.A., Xing, J., Salem, A.-H. and Batzer, M.A. (2006) SINEs of a nearly perfect character. Syst. Biol. 55, 928-935.</Citation>
</Reference>
<Reference>
<Citation>Roy-Engel, A.M. (2012) A tale of an A-tail: the lifeline of a SINE. Mob. Genet. Elements, 2, 282-286.</Citation>
</Reference>
<Reference>
<Citation>Roy-Engel, A.M., Salem, A.H., Oyeniran, O.O., Deininger, L., Hedges, D.J., Kilroy, G.E., Batzer, M.A. and Deininger, P.L. (2002) Active Alu element “A-tails”: size does matter. Genome Res. 12, 1333-1344.</Citation>
</Reference>
<Reference>
<Citation>SanMiguel, P., Tikhonov, A., Jin, Y.-K. et al. (1996) Nested retrotransposons in the intergenic regions of the maize Genome. Science, 274, 765-768.</Citation>
</Reference>
<Reference>
<Citation>Sannigrahi, P., Ragauskas, A.J. and Tuskan, G.A. (2010) Poplar as a feedstock for biofuels: a review of compositional characteristics. Biofuel. Bioprod. Biorefin. 4, 209-226.</Citation>
</Reference>
<Reference>
<Citation>Schwichtenberg, K., Wenke, T., Zakrzewski, F., Seibt, K.M., Minoche, A., Dohm, J.C., Weisshaar, B., Himmelbauer, H. and Schmidt, T. (2016) Diversification, evolution and methylation of short interspersed nuclear element families in sugar beet and related Amaranthaceae species. Plant J. 85, 229-244.</Citation>
</Reference>
<Reference>
<Citation>Seibt, K.M., Wenke, T., Muders, K., Truberg, B. and Schmidt, T. (2016) Short interspersed nuclear elements (SINEs) are abundant in Solanaceae and have a family-specific impact on gene structure and genome organization. Plant J. 86, 268-285.</Citation>
</Reference>
<Reference>
<Citation>Seibt, K.M., Schmidt, T. and Heitkam, T. (2019) The conserved 3’ Angio-domain defines a superfamily of short interspersed nuclear elements (SINEs) in higher plants. Plant J. 101(3), 681-699.</Citation>
</Reference>
<Reference>
<Citation>Senerchia, N., Felber, F. and Parisod, C. (2014) Contrasting evolutionary trajectories of multiple retrotransposons following independent allopolyploidy in wild wheats. New Phytol. 202, 975-985.</Citation>
</Reference>
<Reference>
<Citation>Smyshlyaev, G., Voigt, F., Blinov, A., Barabas, O. and Novikova, O. (2013) Acquisition of an Archaea-like ribonuclease H domain by plant L1 retrotransposons supports modular evolution. Proc. Natl Acad. Sci. USA, 110, 20140-20145.</Citation>
</Reference>
<Reference>
<Citation>Suh, A., Bachg, S., Donnellan, S., Joseph, L., Brosius, J., Kriegs, J.O. and Schmitz, J. (2017) De-novo emergence of SINE retroposons during the early evolution of passerine birds. Mob. DNA, 8, 21.</Citation>
</Reference>
<Reference>
<Citation>Sundell, D., Mannapperuma, C., Netotea, S., Delhomme, N., Lin, Y.C., Sjödin, A., Van de Peer, Y., Jansson, S., Hvidsten, T.R. and Street, N.R. (2015) The plant genome iintegrative explorer resource: PlantGenIE.org. New Phytol. 208, 1149-1156.</Citation>
</Reference>
<Reference>
<Citation>Tamura, K., Peterson, D., Peterson, N., Stecher, G., Nei, M. and Kumar, S. (2011) MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol. Biol. Evol. 28, 2731-2739.</Citation>
</Reference>
<Reference>
<Citation>Tsuchimoto, S., Hirao, Y., Ohtsubo, E. and Ohtsubo, H. (2008) New SINE families from rice, OsSN, with poly(A) at the 3’ ends. Genes Genet. Syst. 83, 227-236.</Citation>
</Reference>
<Reference>
<Citation>Tuskan, G.A., DiFazio, S. and Jansson, S. (2006) The genome of black cottonwood, Populus trichocarpa (Torr. & Gray). Science, 313, 1596-1604.</Citation>
</Reference>
<Reference>
<Citation>Ullu, E. and Tschudi, C. (1984) Alu sequences are processed 7SL RNA genes. Nature, 312, 171-172.</Citation>
</Reference>
<Reference>
<Citation>Verbylaite, R., Beišys, P., Rimas, V. and Kuusiene, S. (2010) Comparison of ten DNA extraction protocols from wood of European aspen (Populus tremula L.). Balt. For. 16, 35-42.</Citation>
</Reference>
<Reference>
<Citation>Vassetzky, N.S. and Kramerov, D.A. (2013). SINEBase: a database and tool for SINE analysis. Nucleic Acids Res. 41 (Database issue), D83-D89. https://doi.org/10.1093/nar/gks1263</Citation>
</Reference>
<Reference>
<Citation>Vicient, C.M. and Casacuberta, J.M. (2017) Impact of transposable elements on polyploid plant genomes. Ann. Bot. 120, 195-207.</Citation>
</Reference>
<Reference>
<Citation>Wagstaff, B.J., Hedges, D.J., Derbes, R.S., Campos Sanchez, R., Chiaromonte, F., Makova, K.D. and Roy-Engel, A.M. (2012) Rescuing Alu: recovery of new inserts shows LINE-1 preserves Alu activity through A-Tail expansion. PLoS Genet. 8, e1002842.</Citation>
</Reference>
<Reference>
<Citation>Walters-Conte, K.B., Johnson, D.L.E., Johnson, W.E., O’Brien, S.J. and Pecon-Slattery, J. (2014) The dynamic proliferation of CanSINEs mirrors the complex evolution of feliforms. BMC Evol. Biol. 14, 137.</Citation>
</Reference>
<Reference>
<Citation>Wang, Z., Du, S., Dayanandan, S., Wang, D., Zeng, Y. and Zhang, J. (2014) Phylogeny reconstruction and hybrid analysis of populus (Salicaceae) based on nucleotide sequences of multiple single-copy nuclear genes and plastid fragments. PLoS ONE, 9, e103645.</Citation>
</Reference>
<Reference>
<Citation>Weber, B. and Schmidt, T. (2009) Nested Ty3-gypsy retrotransposons of a single Beta procumbens centromere contain a putative chromodomain. Chromosome Res. 17, 379-396.</Citation>
</Reference>
<Reference>
<Citation>Wendel, J.F., Jackson, S.A., Meyers, B.C. and Wing, R.A. (2016) Evolution of plant genome architecture. Genome Biol. 17, 1-14.</Citation>
</Reference>
<Reference>
<Citation>Wenke, T., Döbel, T., Sörensen, T.R., Junghans, H., Weisshaar, B. and Schmidt, T. (2011) Targeted identification of short interspersed nuclear element families shows their widespread existence and extreme heterogeneity in plant genomes. Plant Cell, 23, 3117-3128.</Citation>
</Reference>
<Reference>
<Citation>Wickham, H. (2016) ggplot2: elegant graphics for data analysis. 2nd edn. New York: Springer.</Citation>
</Reference>
<Reference>
<Citation>Wollrab, C., Heitkam, T., Holtgräwe, D., Weisshaar, B., Minoche, A.E., Dohm, J.C., Himmelbauer, H. and Schmidt, T. (2012) Evolutionary reshuffling in the Errantivirus lineage Elbe within the Beta vulgaris genome. Plant J. 72, 636-651.</Citation>
</Reference>
<Reference>
<Citation>Wu, J., Gu, Y.Q., Hu, Y., You, F.M., Dandekar, A.M., Leslie, C.A., Aradhya, M., Dvorak, J. and Luo, M.C. (2012) Characterizing the walnut genome through analyses of BAC end sequences. Plant Mol. Biol. 78, 95-107.</Citation>
</Reference>
<Reference>
<Citation>Yadav, V.P., Mandal, P.K., Bhattacharya, A. and Bhattacharya, S. (2012) Recombinant SINEs are formed at high frequency during induced retrotransposition in vivo. Nat. Commun. 3, 854.</Citation>
</Reference>
<Reference>
<Citation>Yagi, E., Akita, T. and Kawahara, T. (2011) A novel Au SINE sequence found in a gymnosperm. Genes Genet. Syst. 86, 19-25.</Citation>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>Allemagne</li>
</country>
<region>
<li>District de Dresde</li>
<li>Saxe (Land)</li>
</region>
<settlement>
<li>Dresde</li>
</settlement>
<orgName>
<li>Université technique de Dresde</li>
</orgName>
</list>
<tree>
<country name="Allemagne">
<region name="Saxe (Land)">
<name sortKey="Kogler, Anja" sort="Kogler, Anja" uniqKey="Kogler A" first="Anja" last="Kögler">Anja Kögler</name>
</region>
<name sortKey="Bruckner, Marie" sort="Bruckner, Marie" uniqKey="Bruckner M" first="Marie" last="Brückner">Marie Brückner</name>
<name sortKey="Heitkam, Tony" sort="Heitkam, Tony" uniqKey="Heitkam T" first="Tony" last="Heitkam">Tony Heitkam</name>
<name sortKey="Krabel, Doris" sort="Krabel, Doris" uniqKey="Krabel D" first="Doris" last="Krabel">Doris Krabel</name>
<name sortKey="Morgenstern, Kristin" sort="Morgenstern, Kristin" uniqKey="Morgenstern K" first="Kristin" last="Morgenstern">Kristin Morgenstern</name>
<name sortKey="Reiche, Birgit" sort="Reiche, Birgit" uniqKey="Reiche B" first="Birgit" last="Reiche">Birgit Reiche</name>
<name sortKey="Schmidt, Thomas" sort="Schmidt, Thomas" uniqKey="Schmidt T" first="Thomas" last="Schmidt">Thomas Schmidt</name>
<name sortKey="Seibt, Kathrin M" sort="Seibt, Kathrin M" uniqKey="Seibt K" first="Kathrin M" last="Seibt">Kathrin M. Seibt</name>
<name sortKey="Wolf, Heino" sort="Wolf, Heino" uniqKey="Wolf H" first="Heino" last="Wolf">Heino Wolf</name>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/PoplarV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000471 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 000471 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    PoplarV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:32056333
   |texte=   Divergence of 3' ends as a driver of short interspersed nuclear element (SINE) evolution in the Salicaceae.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:32056333" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a PoplarV1 

Wicri

This area was generated with Dilib version V0.6.37.
Data generation: Wed Nov 18 12:07:19 2020. Site generation: Wed Nov 18 12:16:31 2020