Serveur d'exploration sur le peuplier

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Most dominant roles of insect gut bacteria: digestion, detoxification, or essential nutrient provision?

Identifieur interne : 000256 ( Main/Exploration ); précédent : 000255; suivant : 000257

Most dominant roles of insect gut bacteria: digestion, detoxification, or essential nutrient provision?

Auteurs : Tian-Zhong Jing [République populaire de Chine] ; Feng-Hui Qi [République populaire de Chine] ; Zhi-Ying Wang [République populaire de Chine]

Source :

RBID : pubmed:32178739

Abstract

BACKGROUND

The insect gut microbiota has been shown to contribute to the host's digestion, detoxification, development, pathogen resistance, and physiology. However, there is poor information about the ranking of these roles. Most of these results were obtained with cultivable bacteria, whereas the bacterial physiology may be different between free-living and midgut-colonizing bacteria. In this study, we provided both proteomic and genomic evidence on the ranking of the roles of gut bacteria by investigating the anal droplets from a weevil, Cryptorhynchus lapathi.

RESULTS

The gut lumen and the anal droplets showed qualitatively and quantitatively different subsets of bacterial communities. The results of 16S rRNA sequencing showed that the gut lumen is dominated by Proteobacteria and Bacteroidetes, whereas the anal droplets are dominated by Proteobacteria. From the anal droplets, enzymes involved in 31 basic roles that belong to 7 super roles were identified by Q-TOF MS. The cooperation between the weevil and its gut bacteria was determined by reconstructing community pathway maps, which are defined in this study. A score was used to rank the gut bacterial roles. The results from the proteomic data indicate that the most dominant role of gut bacteria is amino acid biosynthesis, followed by protein digestion, energy metabolism, vitamin biosynthesis, lipid digestion, plant secondary metabolite (PSM) degradation, and carbohydrate digestion, while the order from the genomic data is amino acid biosynthesis, vitamin biosynthesis, lipid digestion, energy metabolism, protein digestion, PSM degradation, and carbohydrate digestion. The PCA results showed that the gut bacteria form functional groups from the point of view of either the basic role or super role, and the MFA results showed that there are functional variations among gut bacteria. In addition, the variations between the proteomic and genomic data, analyzed with the HMFA method from the point of view of either the bacterial community or individual bacterial species, are presented.

CONCLUSION

The most dominant role of gut bacteria is essential nutrient provisioning, followed by digestion and detoxification. The weevil plays a pioneering role in diet digestion and mainly digests macromolecules into smaller molecules which are then mainly digested by gut bacteria.


DOI: 10.1186/s40168-020-00823-y
PubMed: 32178739
PubMed Central: PMC7077154


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Most dominant roles of insect gut bacteria: digestion, detoxification, or essential nutrient provision?</title>
<author>
<name sortKey="Jing, Tian Zhong" sort="Jing, Tian Zhong" uniqKey="Jing T" first="Tian-Zhong" last="Jing">Tian-Zhong Jing</name>
<affiliation wicri:level="1">
<nlm:affiliation>School of Forestry, Northeast Forestry University, Harbin, 150040, China. jingtianzhong@yahoo.com.</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>School of Forestry, Northeast Forestry University, Harbin, 150040</wicri:regionArea>
<wicri:noRegion>150040</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Qi, Feng Hui" sort="Qi, Feng Hui" uniqKey="Qi F" first="Feng-Hui" last="Qi">Feng-Hui Qi</name>
<affiliation wicri:level="1">
<nlm:affiliation>School of Life Sciences, Northeast Forestry University, Harbin, 150040, China.</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>School of Life Sciences, Northeast Forestry University, Harbin, 150040</wicri:regionArea>
<wicri:noRegion>150040</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Wang, Zhi Ying" sort="Wang, Zhi Ying" uniqKey="Wang Z" first="Zhi-Ying" last="Wang">Zhi-Ying Wang</name>
<affiliation wicri:level="1">
<nlm:affiliation>School of Forestry, Northeast Forestry University, Harbin, 150040, China.</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>School of Forestry, Northeast Forestry University, Harbin, 150040</wicri:regionArea>
<wicri:noRegion>150040</wicri:noRegion>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2020">2020</date>
<idno type="RBID">pubmed:32178739</idno>
<idno type="pmid">32178739</idno>
<idno type="doi">10.1186/s40168-020-00823-y</idno>
<idno type="pmc">PMC7077154</idno>
<idno type="wicri:Area/Main/Corpus">000392</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">000392</idno>
<idno type="wicri:Area/Main/Curation">000392</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">000392</idno>
<idno type="wicri:Area/Main/Exploration">000392</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Most dominant roles of insect gut bacteria: digestion, detoxification, or essential nutrient provision?</title>
<author>
<name sortKey="Jing, Tian Zhong" sort="Jing, Tian Zhong" uniqKey="Jing T" first="Tian-Zhong" last="Jing">Tian-Zhong Jing</name>
<affiliation wicri:level="1">
<nlm:affiliation>School of Forestry, Northeast Forestry University, Harbin, 150040, China. jingtianzhong@yahoo.com.</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>School of Forestry, Northeast Forestry University, Harbin, 150040</wicri:regionArea>
<wicri:noRegion>150040</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Qi, Feng Hui" sort="Qi, Feng Hui" uniqKey="Qi F" first="Feng-Hui" last="Qi">Feng-Hui Qi</name>
<affiliation wicri:level="1">
<nlm:affiliation>School of Life Sciences, Northeast Forestry University, Harbin, 150040, China.</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>School of Life Sciences, Northeast Forestry University, Harbin, 150040</wicri:regionArea>
<wicri:noRegion>150040</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Wang, Zhi Ying" sort="Wang, Zhi Ying" uniqKey="Wang Z" first="Zhi-Ying" last="Wang">Zhi-Ying Wang</name>
<affiliation wicri:level="1">
<nlm:affiliation>School of Forestry, Northeast Forestry University, Harbin, 150040, China.</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>School of Forestry, Northeast Forestry University, Harbin, 150040</wicri:regionArea>
<wicri:noRegion>150040</wicri:noRegion>
</affiliation>
</author>
</analytic>
<series>
<title level="j">Microbiome</title>
<idno type="eISSN">2049-2618</idno>
<imprint>
<date when="2020" type="published">2020</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass></textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">
<p>
<b>BACKGROUND</b>
</p>
<p>The insect gut microbiota has been shown to contribute to the host's digestion, detoxification, development, pathogen resistance, and physiology. However, there is poor information about the ranking of these roles. Most of these results were obtained with cultivable bacteria, whereas the bacterial physiology may be different between free-living and midgut-colonizing bacteria. In this study, we provided both proteomic and genomic evidence on the ranking of the roles of gut bacteria by investigating the anal droplets from a weevil, Cryptorhynchus lapathi.</p>
</div>
<div type="abstract" xml:lang="en">
<p>
<b>RESULTS</b>
</p>
<p>The gut lumen and the anal droplets showed qualitatively and quantitatively different subsets of bacterial communities. The results of 16S rRNA sequencing showed that the gut lumen is dominated by Proteobacteria and Bacteroidetes, whereas the anal droplets are dominated by Proteobacteria. From the anal droplets, enzymes involved in 31 basic roles that belong to 7 super roles were identified by Q-TOF MS. The cooperation between the weevil and its gut bacteria was determined by reconstructing community pathway maps, which are defined in this study. A score was used to rank the gut bacterial roles. The results from the proteomic data indicate that the most dominant role of gut bacteria is amino acid biosynthesis, followed by protein digestion, energy metabolism, vitamin biosynthesis, lipid digestion, plant secondary metabolite (PSM) degradation, and carbohydrate digestion, while the order from the genomic data is amino acid biosynthesis, vitamin biosynthesis, lipid digestion, energy metabolism, protein digestion, PSM degradation, and carbohydrate digestion. The PCA results showed that the gut bacteria form functional groups from the point of view of either the basic role or super role, and the MFA results showed that there are functional variations among gut bacteria. In addition, the variations between the proteomic and genomic data, analyzed with the HMFA method from the point of view of either the bacterial community or individual bacterial species, are presented.</p>
</div>
<div type="abstract" xml:lang="en">
<p>
<b>CONCLUSION</b>
</p>
<p>The most dominant role of gut bacteria is essential nutrient provisioning, followed by digestion and detoxification. The weevil plays a pioneering role in diet digestion and mainly digests macromolecules into smaller molecules which are then mainly digested by gut bacteria.</p>
</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="In-Process" Owner="NLM">
<PMID Version="1">32178739</PMID>
<DateRevised>
<Year>2020</Year>
<Month>04</Month>
<Day>20</Day>
</DateRevised>
<Article PubModel="Electronic">
<Journal>
<ISSN IssnType="Electronic">2049-2618</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>8</Volume>
<Issue>1</Issue>
<PubDate>
<Year>2020</Year>
<Month>03</Month>
<Day>16</Day>
</PubDate>
</JournalIssue>
<Title>Microbiome</Title>
<ISOAbbreviation>Microbiome</ISOAbbreviation>
</Journal>
<ArticleTitle>Most dominant roles of insect gut bacteria: digestion, detoxification, or essential nutrient provision?</ArticleTitle>
<Pagination>
<MedlinePgn>38</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1186/s40168-020-00823-y</ELocationID>
<Abstract>
<AbstractText Label="BACKGROUND">The insect gut microbiota has been shown to contribute to the host's digestion, detoxification, development, pathogen resistance, and physiology. However, there is poor information about the ranking of these roles. Most of these results were obtained with cultivable bacteria, whereas the bacterial physiology may be different between free-living and midgut-colonizing bacteria. In this study, we provided both proteomic and genomic evidence on the ranking of the roles of gut bacteria by investigating the anal droplets from a weevil, Cryptorhynchus lapathi.</AbstractText>
<AbstractText Label="RESULTS">The gut lumen and the anal droplets showed qualitatively and quantitatively different subsets of bacterial communities. The results of 16S rRNA sequencing showed that the gut lumen is dominated by Proteobacteria and Bacteroidetes, whereas the anal droplets are dominated by Proteobacteria. From the anal droplets, enzymes involved in 31 basic roles that belong to 7 super roles were identified by Q-TOF MS. The cooperation between the weevil and its gut bacteria was determined by reconstructing community pathway maps, which are defined in this study. A score was used to rank the gut bacterial roles. The results from the proteomic data indicate that the most dominant role of gut bacteria is amino acid biosynthesis, followed by protein digestion, energy metabolism, vitamin biosynthesis, lipid digestion, plant secondary metabolite (PSM) degradation, and carbohydrate digestion, while the order from the genomic data is amino acid biosynthesis, vitamin biosynthesis, lipid digestion, energy metabolism, protein digestion, PSM degradation, and carbohydrate digestion. The PCA results showed that the gut bacteria form functional groups from the point of view of either the basic role or super role, and the MFA results showed that there are functional variations among gut bacteria. In addition, the variations between the proteomic and genomic data, analyzed with the HMFA method from the point of view of either the bacterial community or individual bacterial species, are presented.</AbstractText>
<AbstractText Label="CONCLUSION">The most dominant role of gut bacteria is essential nutrient provisioning, followed by digestion and detoxification. The weevil plays a pioneering role in diet digestion and mainly digests macromolecules into smaller molecules which are then mainly digested by gut bacteria.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Jing</LastName>
<ForeName>Tian-Zhong</ForeName>
<Initials>TZ</Initials>
<AffiliationInfo>
<Affiliation>School of Forestry, Northeast Forestry University, Harbin, 150040, China. jingtianzhong@yahoo.com.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Qi</LastName>
<ForeName>Feng-Hui</ForeName>
<Initials>FH</Initials>
<AffiliationInfo>
<Affiliation>School of Life Sciences, Northeast Forestry University, Harbin, 150040, China.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Wang</LastName>
<ForeName>Zhi-Ying</ForeName>
<Initials>ZY</Initials>
<AffiliationInfo>
<Affiliation>School of Forestry, Northeast Forestry University, Harbin, 150040, China.</Affiliation>
</AffiliationInfo>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D013485">Research Support, Non-U.S. Gov't</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2020</Year>
<Month>03</Month>
<Day>16</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>England</Country>
<MedlineTA>Microbiome</MedlineTA>
<NlmUniqueID>101615147</NlmUniqueID>
<ISSNLinking>2049-2618</ISSNLinking>
</MedlineJournalInfo>
<CitationSubset>IM</CitationSubset>
<KeywordList Owner="NOTNLM">
<Keyword MajorTopicYN="Y">Anal secretion</Keyword>
<Keyword MajorTopicYN="Y">Community pathway maps</Keyword>
<Keyword MajorTopicYN="Y">Intestine bacterial community</Keyword>
<Keyword MajorTopicYN="Y">Multiple factor analysis</Keyword>
<Keyword MajorTopicYN="Y">Poplar-and-willow borer</Keyword>
</KeywordList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2019</Year>
<Month>07</Month>
<Day>02</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2020</Year>
<Month>03</Month>
<Day>05</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2020</Year>
<Month>3</Month>
<Day>18</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2020</Year>
<Month>3</Month>
<Day>18</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2020</Year>
<Month>3</Month>
<Day>18</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>epublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">32178739</ArticleId>
<ArticleId IdType="doi">10.1186/s40168-020-00823-y</ArticleId>
<ArticleId IdType="pii">10.1186/s40168-020-00823-y</ArticleId>
<ArticleId IdType="pmc">PMC7077154</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>Nat Biotechnol. 2011 May 15;29(7):644-52</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21572440</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Oecologia. 1988 Mar;75(2):204-206</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28310835</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proteomics. 2015 Oct;15(20):3424-38</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25914197</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Biol Sci. 2014 Dec 7;281(1796):20141838</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25339726</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biotechnol Biofuels. 2018 Jun 5;11:154</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">29991962</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS One. 2018 Jul 10;13(7):e0200512</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">29990378</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Rev Microbiol. 2014 Mar;12(3):168-80</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24487819</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Microbiol Mol Biol Rev. 2004 Dec;68(4):745-70</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15590782</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biotechnol. 2016 Oct 20;236:110-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27544286</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Ecol. 2018 Jul;27(13):2834-2845</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">29802796</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Environ Entomol. 2010 Apr;39(2):406-14</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20388269</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Front Genet. 2015 Apr 20;6:148</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25941533</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Insect Physiol. 2009 Mar;55(3):185-91</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19061893</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Front Microbiol. 2018 Jul 31;9:1717</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">30108570</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Trends Ecol Evol. 2016 Jul;31(7):539-549</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27039196</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Microbiol Biotechnol. 2019 Jun 28;29(6):923-932</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">31154747</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Int J Food Microbiol. 2009 Jul 31;133(1-2):1-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19467724</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Microbiome. 2018 Aug 2;6(1):134</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">30071904</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>BMC Genomics. 2018 Oct 30;19(1):784</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">30376807</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Microb Ecol. 2012 Jul;64(1):268-78</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22234511</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Exp Biol. 2014 Jun 1;217(Pt 11):1894-901</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24577449</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Insect Physiol. 2006 Jun;52(6):593-601</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16600286</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>ISME J. 2019 Jan;13(1):104-117</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">30116044</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>ISME J. 2019 Jun;13(6):1469-1483</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">30742016</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Sci Rep. 2015 Nov 23;5:16823</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26592948</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS One. 2019 Dec 2;14(12):e0225711</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">31790470</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Bacteriol. 1954 Feb;67(2):182-90</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">13129211</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Annu Rev Microbiol. 2014;68:279-96</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25002092</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochemistry. 2017 Nov 7;56(44):5849-5865</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28977745</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Bioorg Chem. 2015 Jun;60:102-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25984987</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Front Genet. 2014 Feb 25;5:27</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24611070</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Insect Biochem Mol Biol. 2014 Jul;50:58-67</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24727019</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biotechnol Biofuels. 2014 Oct 14;7(1):150</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25342973</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 2013 Jan;41(Database issue):D590-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23193283</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Microbiology. 2014 Aug;160(Pt 8):1571-1584</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24939187</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS One. 2017 May 5;12(5):e0176573</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28475624</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Front Chem. 2017 Jan 26;5:4</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28184370</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Annu Rev Entomol. 2015 Jan 7;60:17-34</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25341109</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Front Microbiol. 2017 Apr 26;8:663</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28491055</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genome Res. 2009 Sep;19(9):1639-45</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19541911</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>ISME J. 2014 Jan;8(1):6-18</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23985746</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS One. 2013 Apr 12;8(4):e61126</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23593407</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>ISME J. 2011 Jan;5(1):161-4</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20613792</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Ecol. 2017 Aug;26(15):4099-4110</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28543918</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2007 Nov 22;450(7169):560-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18033299</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Sci Rep. 2017 Oct 27;7(1):14242</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">29079773</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Appl Environ Microbiol. 2014 Apr;80(7):2261-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24487532</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Folia Microbiol (Praha). 2017 Jan;62(1):1-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27544667</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Appl Environ Microbiol. 2014 Jan;80(2):788-96</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24242251</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Biol Evol. 2013 Dec;30(12):2725-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24132122</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Chem Ecol. 2004 Apr;30(4):719-29</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15260219</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Appl Environ Microbiol. 2018 Apr 16;84(9):</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">29475860</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Chemosphere. 2019 Nov;234:187-195</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">31212205</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Environ Entomol. 2016 Feb;45(1):66-73</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26396228</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS One. 2013 Sep 25;8(9):e74656</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24086359</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Antonie Van Leeuwenhoek. 2011 Nov;100(4):589-605</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21720857</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Annu Rev Entomol. 1998;43:595-618</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15012399</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Annu Rev Entomol. 2010;55:609-32</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19754245</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Insect Mol Biol. 2018 Oct;27(5):603-619</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">29663550</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Appl Environ Microbiol. 2019 Jan 9;85(2):</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">30389767</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Environ Entomol. 2013 Oct;42(5):874-81</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24331600</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PeerJ. 2016 Oct 18;4:e2584</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27781170</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Appl Environ Microbiol. 2014 Sep;80(17):5254-64</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24928884</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Environ Sci Pollut Res Int. 2019 Nov;26(33):34067-34072</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">30264343</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS One. 2016 Oct 3;11(10):e0163099</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27695034</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Insect Sci. 2010;10:107</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20874394</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Commun. 2017 May 09;8:15186</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28485370</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochim Biophys Acta. 2011 Nov;1814(11):1585-96</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21767669</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Bioinformatics. 2004 Jun 12;20(9):1466-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14976030</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Br J Pharmacol. 2018 Dec;175(24):4404-4414</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">29116650</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Phytochemistry. 2011 Sep;72(13):1531-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21529857</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Microbiome. 2018 May 17;6(1):90</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">29773078</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Environ Entomol. 2011 Jun;40(3):669-78</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22251646</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell. 2017 Dec 14;171(7):1520-1531.e13</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">29153832</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>ISME J. 2018 Mar;12(3):909-920</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">29343832</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Biotechnol. 2013 Sep;31(9):814-21</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23975157</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Chemosphere. 2018 Dec;212:262-271</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">30145418</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Opin Biotechnol. 2013 Apr;24(2):160-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22940212</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Microb Biotechnol. 2014 Jan;7(1):5-25</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23617600</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Int J Mol Sci. 2018 Aug 30;19(9):</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">30200218</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Sci Rep. 2016 Jul 08;6:29505</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27389097</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Inorg Chem. 2013 Feb;18(2):155-63</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23223968</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>mBio. 2018 Mar 6;9(2):</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">29511074</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2009 Nov 17;106(46):19521-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19880743</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Arch Insect Biochem Physiol. 2017 Oct;96(2):</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28762531</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Methods. 2010 May;7(5):335-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20383131</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>FEMS Microbiol Rev. 2013 Sep;37(5):699-735</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23692388</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell. 2013 Jan 17;152(1-2):39-50</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23332745</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Int J Biol Sci. 2016 Jan 01;12(2):156-71</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26884714</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Microb Ecol. 2013 Jul;66(1):200-10</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23525792</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Parasit Vectors. 2016 Jun 30;9(1):375</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27363842</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Microbiome. 2017 Feb 1;5(1):13</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28143582</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Front Microbiol. 2018 Jan 23;9:25</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">29410659</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2012 May 29;109(22):8618-22</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22529384</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Syst Synth Biol. 2014 Mar;8(1):59-72</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24592292</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>BMC Microbiol. 2014 May 30;14:136</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24884866</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Chem Ecol. 2013 Jul;39(7):952-61</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23793897</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>N Engl J Med. 2016 Dec 15;375(24):2369-2379</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27974040</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>République populaire de Chine</li>
</country>
</list>
<tree>
<country name="République populaire de Chine">
<noRegion>
<name sortKey="Jing, Tian Zhong" sort="Jing, Tian Zhong" uniqKey="Jing T" first="Tian-Zhong" last="Jing">Tian-Zhong Jing</name>
</noRegion>
<name sortKey="Qi, Feng Hui" sort="Qi, Feng Hui" uniqKey="Qi F" first="Feng-Hui" last="Qi">Feng-Hui Qi</name>
<name sortKey="Wang, Zhi Ying" sort="Wang, Zhi Ying" uniqKey="Wang Z" first="Zhi-Ying" last="Wang">Zhi-Ying Wang</name>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/PoplarV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000256 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 000256 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    PoplarV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:32178739
   |texte=   Most dominant roles of insect gut bacteria: digestion, detoxification, or essential nutrient provision?
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:32178739" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a PoplarV1 

Wicri

This area was generated with Dilib version V0.6.37.
Data generation: Wed Nov 18 12:07:19 2020. Site generation: Wed Nov 18 12:16:31 2020