Serveur d'exploration sur le peuplier

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Soil characteristics constrain the response of microbial communities and associated hydrocarbon degradation genes during phytoremediation.

Identifieur interne : 000114 ( Main/Exploration ); précédent : 000113; suivant : 000115

Soil characteristics constrain the response of microbial communities and associated hydrocarbon degradation genes during phytoremediation.

Auteurs : Sara Correa-García [Canada] ; Karelle Rheault [Canada] ; Julien Tremblay [Canada] ; Armand Séguin [Canada] ; Etienne Yergeau [Canada]

Source :

RBID : pubmed:33097512

Abstract

Rhizodegradation is a promising cleanup technology where microorganisms degrade soil contaminants in the rhizosphere. A symbiotic relationship is expected to occur between plant roots and soil microorganisms in contaminated soils that enhance natural microbial degradation in soils. However, little is known about how this initial microbiota influences the rhizodegradation outcome in a context of different soil microbiotas. Recent studies have hinted that soil initial diversity has a determining effect on the outcome of contaminant degradation. To test this, we planted (P) or not (NP) balsam poplars (Populus balsamifera) in two soils of contrasting diversity (agricultural and forest) that were contaminated or not with 50 mg kg-1 of phenanthrene (PHE). The DNA from the rhizosphere of the P and the bulk soil of the NP pots was extracted and the bacterial genes encoding for the 16S rRNA, the PAH ring-hydroxylating dioxygenase alpha subunits (PAH-RHDα) of gram-positive and gram-negative bacteria, and the fungal ITS region were sequenced to characterize the microbial communities. The abundance of the PAH-RHDα genes were quantified by real-time quantitative PCR. Plant presence had a significant effect on PHE degradation only in the forest soil, whereas both NP and P agricultural soils degraded the same amount of PHE. Fungal communities were mainly affected by plant presence, whereas bacterial communities were principally affected by the soil type, and upon contamination the dominant PAH degrading community was similarly constrained by soil type. Our results highlight the crucial importance of soil microbial and physicochemical characteristics in the outcome of rhizoremediation.IMPORTANCE Polycyclic aromatic hydrocarbon (PAH) are a group of organic contaminants that pose a risk to ecosystems' health. Phytoremediation is a promising biotechnology with the potential to restore PAH contaminated soils. However, some limitations prevent it from becoming the remediation technology of reference, despite being environmentally friendlier than mainstream physicochemical alternatives. Recent reports suggest that the original soil microbial diversity is the key to harness the potential of phytoremediation. Therefore, this study focused on determining the effect of two different soil types in the fate of phenanthrene under balsam poplar remediation. Poplar increased the degradation of phenanthrene in forest, but not in agricultural soil. The fungi were affected by poplars, whereas bacteria and PAH degraders were constrained by soil type, leading to different degradation patterns between soils. These results highlight the importance of performing preliminary microbiological studies of contaminated soils to determine whether plant presence could improve remediation rates or not.

DOI: 10.1128/AEM.02170-20
PubMed: 33097512


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Soil characteristics constrain the response of microbial communities and associated hydrocarbon degradation genes during phytoremediation.</title>
<author>
<name sortKey="Correa Garcia, Sara" sort="Correa Garcia, Sara" uniqKey="Correa Garcia S" first="Sara" last="Correa-García">Sara Correa-García</name>
<affiliation wicri:level="1">
<nlm:affiliation>Centre Armand Frappier Santé Biotechnologie, Institut national de la recherche scientifique, Université du Québec, Laval, QC, Canada.</nlm:affiliation>
<country xml:lang="fr">Canada</country>
<wicri:regionArea>Centre Armand Frappier Santé Biotechnologie, Institut national de la recherche scientifique, Université du Québec, Laval, QC</wicri:regionArea>
<wicri:noRegion>QC</wicri:noRegion>
</affiliation>
<affiliation wicri:level="1">
<nlm:affiliation>Laurentian Forest Center, Natural Resources Canada, Québec City, QC, Canada.</nlm:affiliation>
<country xml:lang="fr">Canada</country>
<wicri:regionArea>Laurentian Forest Center, Natural Resources Canada, Québec City, QC</wicri:regionArea>
<wicri:noRegion>QC</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Rheault, Karelle" sort="Rheault, Karelle" uniqKey="Rheault K" first="Karelle" last="Rheault">Karelle Rheault</name>
<affiliation wicri:level="1">
<nlm:affiliation>Laurentian Forest Center, Natural Resources Canada, Québec City, QC, Canada.</nlm:affiliation>
<country xml:lang="fr">Canada</country>
<wicri:regionArea>Laurentian Forest Center, Natural Resources Canada, Québec City, QC</wicri:regionArea>
<wicri:noRegion>QC</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Tremblay, Julien" sort="Tremblay, Julien" uniqKey="Tremblay J" first="Julien" last="Tremblay">Julien Tremblay</name>
<affiliation wicri:level="1">
<nlm:affiliation>Energy, Mining and Environment, National Research Council Canada, Montréal, QC, Canada.</nlm:affiliation>
<country xml:lang="fr">Canada</country>
<wicri:regionArea>Energy, Mining and Environment, National Research Council Canada, Montréal, QC</wicri:regionArea>
<wicri:noRegion>QC</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Seguin, Armand" sort="Seguin, Armand" uniqKey="Seguin A" first="Armand" last="Séguin">Armand Séguin</name>
<affiliation wicri:level="1">
<nlm:affiliation>Laurentian Forest Center, Natural Resources Canada, Québec City, QC, Canada.</nlm:affiliation>
<country xml:lang="fr">Canada</country>
<wicri:regionArea>Laurentian Forest Center, Natural Resources Canada, Québec City, QC</wicri:regionArea>
<wicri:noRegion>QC</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Yergeau, Etienne" sort="Yergeau, Etienne" uniqKey="Yergeau E" first="Etienne" last="Yergeau">Etienne Yergeau</name>
<affiliation wicri:level="1">
<nlm:affiliation>Centre Armand Frappier Santé Biotechnologie, Institut national de la recherche scientifique, Université du Québec, Laval, QC, Canada etienne.yergeau@iaf.inrs.ca.</nlm:affiliation>
<country wicri:rule="url">Canada</country>
<wicri:regionArea>Centre Armand Frappier Santé Biotechnologie, Institut national de la recherche scientifique, Université du Québec, Laval, QC</wicri:regionArea>
<wicri:noRegion>QC</wicri:noRegion>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2020">2020</date>
<idno type="RBID">pubmed:33097512</idno>
<idno type="pmid">33097512</idno>
<idno type="doi">10.1128/AEM.02170-20</idno>
<idno type="wicri:Area/Main/Corpus">000042</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">000042</idno>
<idno type="wicri:Area/Main/Curation">000042</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">000042</idno>
<idno type="wicri:Area/Main/Exploration">000042</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Soil characteristics constrain the response of microbial communities and associated hydrocarbon degradation genes during phytoremediation.</title>
<author>
<name sortKey="Correa Garcia, Sara" sort="Correa Garcia, Sara" uniqKey="Correa Garcia S" first="Sara" last="Correa-García">Sara Correa-García</name>
<affiliation wicri:level="1">
<nlm:affiliation>Centre Armand Frappier Santé Biotechnologie, Institut national de la recherche scientifique, Université du Québec, Laval, QC, Canada.</nlm:affiliation>
<country xml:lang="fr">Canada</country>
<wicri:regionArea>Centre Armand Frappier Santé Biotechnologie, Institut national de la recherche scientifique, Université du Québec, Laval, QC</wicri:regionArea>
<wicri:noRegion>QC</wicri:noRegion>
</affiliation>
<affiliation wicri:level="1">
<nlm:affiliation>Laurentian Forest Center, Natural Resources Canada, Québec City, QC, Canada.</nlm:affiliation>
<country xml:lang="fr">Canada</country>
<wicri:regionArea>Laurentian Forest Center, Natural Resources Canada, Québec City, QC</wicri:regionArea>
<wicri:noRegion>QC</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Rheault, Karelle" sort="Rheault, Karelle" uniqKey="Rheault K" first="Karelle" last="Rheault">Karelle Rheault</name>
<affiliation wicri:level="1">
<nlm:affiliation>Laurentian Forest Center, Natural Resources Canada, Québec City, QC, Canada.</nlm:affiliation>
<country xml:lang="fr">Canada</country>
<wicri:regionArea>Laurentian Forest Center, Natural Resources Canada, Québec City, QC</wicri:regionArea>
<wicri:noRegion>QC</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Tremblay, Julien" sort="Tremblay, Julien" uniqKey="Tremblay J" first="Julien" last="Tremblay">Julien Tremblay</name>
<affiliation wicri:level="1">
<nlm:affiliation>Energy, Mining and Environment, National Research Council Canada, Montréal, QC, Canada.</nlm:affiliation>
<country xml:lang="fr">Canada</country>
<wicri:regionArea>Energy, Mining and Environment, National Research Council Canada, Montréal, QC</wicri:regionArea>
<wicri:noRegion>QC</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Seguin, Armand" sort="Seguin, Armand" uniqKey="Seguin A" first="Armand" last="Séguin">Armand Séguin</name>
<affiliation wicri:level="1">
<nlm:affiliation>Laurentian Forest Center, Natural Resources Canada, Québec City, QC, Canada.</nlm:affiliation>
<country xml:lang="fr">Canada</country>
<wicri:regionArea>Laurentian Forest Center, Natural Resources Canada, Québec City, QC</wicri:regionArea>
<wicri:noRegion>QC</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Yergeau, Etienne" sort="Yergeau, Etienne" uniqKey="Yergeau E" first="Etienne" last="Yergeau">Etienne Yergeau</name>
<affiliation wicri:level="1">
<nlm:affiliation>Centre Armand Frappier Santé Biotechnologie, Institut national de la recherche scientifique, Université du Québec, Laval, QC, Canada etienne.yergeau@iaf.inrs.ca.</nlm:affiliation>
<country wicri:rule="url">Canada</country>
<wicri:regionArea>Centre Armand Frappier Santé Biotechnologie, Institut national de la recherche scientifique, Université du Québec, Laval, QC</wicri:regionArea>
<wicri:noRegion>QC</wicri:noRegion>
</affiliation>
</author>
</analytic>
<series>
<title level="j">Applied and environmental microbiology</title>
<idno type="eISSN">1098-5336</idno>
<imprint>
<date when="2020" type="published">2020</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass></textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Rhizodegradation is a promising cleanup technology where microorganisms degrade soil contaminants in the rhizosphere. A symbiotic relationship is expected to occur between plant roots and soil microorganisms in contaminated soils that enhance natural microbial degradation in soils. However, little is known about how this initial microbiota influences the rhizodegradation outcome in a context of different soil microbiotas. Recent studies have hinted that soil initial diversity has a determining effect on the outcome of contaminant degradation. To test this, we planted (P) or not (NP) balsam poplars (
<i>Populus balsamifera</i>
) in two soils of contrasting diversity (agricultural and forest) that were contaminated or not with 50 mg kg
<sup>-1</sup>
of phenanthrene (PHE). The DNA from the rhizosphere of the P and the bulk soil of the NP pots was extracted and the bacterial genes encoding for the 16S rRNA, the PAH ring-hydroxylating dioxygenase alpha subunits (PAH-RHDα) of gram-positive and gram-negative bacteria, and the fungal ITS region were sequenced to characterize the microbial communities. The abundance of the PAH-RHDα genes were quantified by real-time quantitative PCR. Plant presence had a significant effect on PHE degradation only in the forest soil, whereas both NP and P agricultural soils degraded the same amount of PHE. Fungal communities were mainly affected by plant presence, whereas bacterial communities were principally affected by the soil type, and upon contamination the dominant PAH degrading community was similarly constrained by soil type. Our results highlight the crucial importance of soil microbial and physicochemical characteristics in the outcome of rhizoremediation.
<b>IMPORTANCE</b>
Polycyclic aromatic hydrocarbon (PAH) are a group of organic contaminants that pose a risk to ecosystems' health. Phytoremediation is a promising biotechnology with the potential to restore PAH contaminated soils. However, some limitations prevent it from becoming the remediation technology of reference, despite being environmentally friendlier than mainstream physicochemical alternatives. Recent reports suggest that the original soil microbial diversity is the key to harness the potential of phytoremediation. Therefore, this study focused on determining the effect of two different soil types in the fate of phenanthrene under balsam poplar remediation. Poplar increased the degradation of phenanthrene in forest, but not in agricultural soil. The fungi were affected by poplars, whereas bacteria and PAH degraders were constrained by soil type, leading to different degradation patterns between soils. These results highlight the importance of performing preliminary microbiological studies of contaminated soils to determine whether plant presence could improve remediation rates or not.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="Publisher" Owner="NLM">
<PMID Version="1">33097512</PMID>
<DateRevised>
<Year>2020</Year>
<Month>10</Month>
<Day>24</Day>
</DateRevised>
<Article PubModel="Print-Electronic">
<Journal>
<ISSN IssnType="Electronic">1098-5336</ISSN>
<JournalIssue CitedMedium="Internet">
<PubDate>
<Year>2020</Year>
<Month>Oct</Month>
<Day>23</Day>
</PubDate>
</JournalIssue>
<Title>Applied and environmental microbiology</Title>
<ISOAbbreviation>Appl Environ Microbiol</ISOAbbreviation>
</Journal>
<ArticleTitle>Soil characteristics constrain the response of microbial communities and associated hydrocarbon degradation genes during phytoremediation.</ArticleTitle>
<ELocationID EIdType="pii" ValidYN="Y">AEM.02170-20</ELocationID>
<ELocationID EIdType="doi" ValidYN="Y">10.1128/AEM.02170-20</ELocationID>
<Abstract>
<AbstractText>Rhizodegradation is a promising cleanup technology where microorganisms degrade soil contaminants in the rhizosphere. A symbiotic relationship is expected to occur between plant roots and soil microorganisms in contaminated soils that enhance natural microbial degradation in soils. However, little is known about how this initial microbiota influences the rhizodegradation outcome in a context of different soil microbiotas. Recent studies have hinted that soil initial diversity has a determining effect on the outcome of contaminant degradation. To test this, we planted (P) or not (NP) balsam poplars (
<i>Populus balsamifera</i>
) in two soils of contrasting diversity (agricultural and forest) that were contaminated or not with 50 mg kg
<sup>-1</sup>
of phenanthrene (PHE). The DNA from the rhizosphere of the P and the bulk soil of the NP pots was extracted and the bacterial genes encoding for the 16S rRNA, the PAH ring-hydroxylating dioxygenase alpha subunits (PAH-RHDα) of gram-positive and gram-negative bacteria, and the fungal ITS region were sequenced to characterize the microbial communities. The abundance of the PAH-RHDα genes were quantified by real-time quantitative PCR. Plant presence had a significant effect on PHE degradation only in the forest soil, whereas both NP and P agricultural soils degraded the same amount of PHE. Fungal communities were mainly affected by plant presence, whereas bacterial communities were principally affected by the soil type, and upon contamination the dominant PAH degrading community was similarly constrained by soil type. Our results highlight the crucial importance of soil microbial and physicochemical characteristics in the outcome of rhizoremediation.
<b>IMPORTANCE</b>
Polycyclic aromatic hydrocarbon (PAH) are a group of organic contaminants that pose a risk to ecosystems' health. Phytoremediation is a promising biotechnology with the potential to restore PAH contaminated soils. However, some limitations prevent it from becoming the remediation technology of reference, despite being environmentally friendlier than mainstream physicochemical alternatives. Recent reports suggest that the original soil microbial diversity is the key to harness the potential of phytoremediation. Therefore, this study focused on determining the effect of two different soil types in the fate of phenanthrene under balsam poplar remediation. Poplar increased the degradation of phenanthrene in forest, but not in agricultural soil. The fungi were affected by poplars, whereas bacteria and PAH degraders were constrained by soil type, leading to different degradation patterns between soils. These results highlight the importance of performing preliminary microbiological studies of contaminated soils to determine whether plant presence could improve remediation rates or not.</AbstractText>
<CopyrightInformation>Copyright © 2020 American Society for Microbiology.</CopyrightInformation>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Correa-García</LastName>
<ForeName>Sara</ForeName>
<Initials>S</Initials>
<AffiliationInfo>
<Affiliation>Centre Armand Frappier Santé Biotechnologie, Institut national de la recherche scientifique, Université du Québec, Laval, QC, Canada.</Affiliation>
</AffiliationInfo>
<AffiliationInfo>
<Affiliation>Laurentian Forest Center, Natural Resources Canada, Québec City, QC, Canada.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Rheault</LastName>
<ForeName>Karelle</ForeName>
<Initials>K</Initials>
<AffiliationInfo>
<Affiliation>Laurentian Forest Center, Natural Resources Canada, Québec City, QC, Canada.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Tremblay</LastName>
<ForeName>Julien</ForeName>
<Initials>J</Initials>
<AffiliationInfo>
<Affiliation>Energy, Mining and Environment, National Research Council Canada, Montréal, QC, Canada.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Séguin</LastName>
<ForeName>Armand</ForeName>
<Initials>A</Initials>
<AffiliationInfo>
<Affiliation>Laurentian Forest Center, Natural Resources Canada, Québec City, QC, Canada.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Yergeau</LastName>
<ForeName>Etienne</ForeName>
<Initials>E</Initials>
<AffiliationInfo>
<Affiliation>Centre Armand Frappier Santé Biotechnologie, Institut national de la recherche scientifique, Université du Québec, Laval, QC, Canada etienne.yergeau@iaf.inrs.ca.</Affiliation>
</AffiliationInfo>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2020</Year>
<Month>10</Month>
<Day>23</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>United States</Country>
<MedlineTA>Appl Environ Microbiol</MedlineTA>
<NlmUniqueID>7605801</NlmUniqueID>
<ISSNLinking>0099-2240</ISSNLinking>
</MedlineJournalInfo>
<CitationSubset>IM</CitationSubset>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="entrez">
<Year>2020</Year>
<Month>10</Month>
<Day>24</Day>
<Hour>5</Hour>
<Minute>28</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2020</Year>
<Month>10</Month>
<Day>25</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2020</Year>
<Month>10</Month>
<Day>25</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>aheadofprint</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">33097512</ArticleId>
<ArticleId IdType="pii">AEM.02170-20</ArticleId>
<ArticleId IdType="doi">10.1128/AEM.02170-20</ArticleId>
</ArticleIdList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>Canada</li>
</country>
</list>
<tree>
<country name="Canada">
<noRegion>
<name sortKey="Correa Garcia, Sara" sort="Correa Garcia, Sara" uniqKey="Correa Garcia S" first="Sara" last="Correa-García">Sara Correa-García</name>
</noRegion>
<name sortKey="Correa Garcia, Sara" sort="Correa Garcia, Sara" uniqKey="Correa Garcia S" first="Sara" last="Correa-García">Sara Correa-García</name>
<name sortKey="Rheault, Karelle" sort="Rheault, Karelle" uniqKey="Rheault K" first="Karelle" last="Rheault">Karelle Rheault</name>
<name sortKey="Seguin, Armand" sort="Seguin, Armand" uniqKey="Seguin A" first="Armand" last="Séguin">Armand Séguin</name>
<name sortKey="Tremblay, Julien" sort="Tremblay, Julien" uniqKey="Tremblay J" first="Julien" last="Tremblay">Julien Tremblay</name>
<name sortKey="Yergeau, Etienne" sort="Yergeau, Etienne" uniqKey="Yergeau E" first="Etienne" last="Yergeau">Etienne Yergeau</name>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/PoplarV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000114 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 000114 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    PoplarV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:33097512
   |texte=   Soil characteristics constrain the response of microbial communities and associated hydrocarbon degradation genes during phytoremediation.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:33097512" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a PoplarV1 

Wicri

This area was generated with Dilib version V0.6.37.
Data generation: Wed Nov 18 12:07:19 2020. Site generation: Wed Nov 18 12:16:31 2020