Serveur d'exploration sur le peuplier

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Genotype and environment determine allocation to and costs of resistance in quaking aspen.

Identifieur interne : 003E67 ( Main/Curation ); précédent : 003E66; suivant : 003E68

Genotype and environment determine allocation to and costs of resistance in quaking aspen.

Auteurs : Tod L. Osier [États-Unis] ; Richard L. Lindroth

Source :

RBID : pubmed:16468055

Descripteurs français

English descriptors

Abstract

Although genetic variability and resource availability both influence plant chemical composition, little is known about how these factors interact to modulate costs of resistance, expressed as negative correlations between growth and defense. We evaluated genotype x environment effects on foliar chemistry and growth of quaking aspen (Populus tremuloides) by growing multiple aspen genotypes under variable conditions of light and soil nutrient availability in a common garden. Foliage was analyzed for levels of nitrogen, phenolic glycosides and condensed tannins. Bioassays of leaf quality were conducted with fourth-stadium gypsy moth (Lymantria dispar) larvae. Results revealed strong effects of plant genotype, light availability and nutrient availability; the importance of each factor depended upon compound type. For example, tannin concentrations differed little among genotypes and across nutrient regimes under low light conditions, but markedly so under high light conditions. Phenolic glycoside concentrations, in contrast, were largely determined by genotype. Variation in phenolic glycoside concentrations among genotypes was the most important factor affecting gypsy moth performance. Gypsy moth biomass and development time were negatively and positively correlated, respectively, with phenolic glycoside levels. Allocation to phenolic glycosides appeared to be costly in terms of growth, but only under resource-limiting conditions. Context-dependent trade-offs help to explain why costs of allocation to resistance are often difficult to demonstrate.

DOI: 10.1007/s00442-006-0373-8
PubMed: 16468055

Links toward previous steps (curation, corpus...)


Links to Exploration step

pubmed:16468055

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Genotype and environment determine allocation to and costs of resistance in quaking aspen.</title>
<author>
<name sortKey="Osier, Tod L" sort="Osier, Tod L" uniqKey="Osier T" first="Tod L" last="Osier">Tod L. Osier</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Entomology, University of Wisconsin-Madison, 1630 Linden Drive, Madison, WI 53706, USA. tosier@mail.fairfield.edu</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Entomology, University of Wisconsin-Madison, 1630 Linden Drive, Madison, WI 53706</wicri:regionArea>
</affiliation>
</author>
<author>
<name sortKey="Lindroth, Richard L" sort="Lindroth, Richard L" uniqKey="Lindroth R" first="Richard L" last="Lindroth">Richard L. Lindroth</name>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2006">2006</date>
<idno type="RBID">pubmed:16468055</idno>
<idno type="pmid">16468055</idno>
<idno type="doi">10.1007/s00442-006-0373-8</idno>
<idno type="wicri:Area/Main/Corpus">003E67</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">003E67</idno>
<idno type="wicri:Area/Main/Curation">003E67</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">003E67</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Genotype and environment determine allocation to and costs of resistance in quaking aspen.</title>
<author>
<name sortKey="Osier, Tod L" sort="Osier, Tod L" uniqKey="Osier T" first="Tod L" last="Osier">Tod L. Osier</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Entomology, University of Wisconsin-Madison, 1630 Linden Drive, Madison, WI 53706, USA. tosier@mail.fairfield.edu</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Entomology, University of Wisconsin-Madison, 1630 Linden Drive, Madison, WI 53706</wicri:regionArea>
</affiliation>
</author>
<author>
<name sortKey="Lindroth, Richard L" sort="Lindroth, Richard L" uniqKey="Lindroth R" first="Richard L" last="Lindroth">Richard L. Lindroth</name>
</author>
</analytic>
<series>
<title level="j">Oecologia</title>
<idno type="ISSN">0029-8549</idno>
<imprint>
<date when="2006" type="published">2006</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Animals (MeSH)</term>
<term>Fertilizers (MeSH)</term>
<term>Larva (physiology)</term>
<term>Light (MeSH)</term>
<term>Moths (physiology)</term>
<term>Plant Leaves (chemistry)</term>
<term>Populus (chemistry)</term>
<term>Populus (parasitology)</term>
<term>Populus (physiology)</term>
</keywords>
<keywords scheme="KwdFr" xml:lang="fr">
<term>Animaux (MeSH)</term>
<term>Engrais (MeSH)</term>
<term>Feuilles de plante (composition chimique)</term>
<term>Larve (physiologie)</term>
<term>Lumière (MeSH)</term>
<term>Papillons de nuit (physiologie)</term>
<term>Populus (composition chimique)</term>
<term>Populus (parasitologie)</term>
<term>Populus (physiologie)</term>
</keywords>
<keywords scheme="MESH" type="chemical" xml:lang="en">
<term>Fertilizers</term>
</keywords>
<keywords scheme="MESH" qualifier="chemistry" xml:lang="en">
<term>Plant Leaves</term>
<term>Populus</term>
</keywords>
<keywords scheme="MESH" qualifier="composition chimique" xml:lang="fr">
<term>Feuilles de plante</term>
<term>Populus</term>
</keywords>
<keywords scheme="MESH" qualifier="parasitologie" xml:lang="fr">
<term>Populus</term>
</keywords>
<keywords scheme="MESH" qualifier="parasitology" xml:lang="en">
<term>Populus</term>
</keywords>
<keywords scheme="MESH" qualifier="physiologie" xml:lang="fr">
<term>Larve</term>
<term>Papillons de nuit</term>
<term>Populus</term>
</keywords>
<keywords scheme="MESH" qualifier="physiology" xml:lang="en">
<term>Larva</term>
<term>Moths</term>
<term>Populus</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Animals</term>
<term>Light</term>
</keywords>
<keywords scheme="MESH" xml:lang="fr">
<term>Animaux</term>
<term>Engrais</term>
<term>Lumière</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Although genetic variability and resource availability both influence plant chemical composition, little is known about how these factors interact to modulate costs of resistance, expressed as negative correlations between growth and defense. We evaluated genotype x environment effects on foliar chemistry and growth of quaking aspen (Populus tremuloides) by growing multiple aspen genotypes under variable conditions of light and soil nutrient availability in a common garden. Foliage was analyzed for levels of nitrogen, phenolic glycosides and condensed tannins. Bioassays of leaf quality were conducted with fourth-stadium gypsy moth (Lymantria dispar) larvae. Results revealed strong effects of plant genotype, light availability and nutrient availability; the importance of each factor depended upon compound type. For example, tannin concentrations differed little among genotypes and across nutrient regimes under low light conditions, but markedly so under high light conditions. Phenolic glycoside concentrations, in contrast, were largely determined by genotype. Variation in phenolic glycoside concentrations among genotypes was the most important factor affecting gypsy moth performance. Gypsy moth biomass and development time were negatively and positively correlated, respectively, with phenolic glycoside levels. Allocation to phenolic glycosides appeared to be costly in terms of growth, but only under resource-limiting conditions. Context-dependent trade-offs help to explain why costs of allocation to resistance are often difficult to demonstrate.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">16468055</PMID>
<DateCompleted>
<Year>2006</Year>
<Month>07</Month>
<Day>27</Day>
</DateCompleted>
<DateRevised>
<Year>2018</Year>
<Month>11</Month>
<Day>13</Day>
</DateRevised>
<Article PubModel="Print-Electronic">
<Journal>
<ISSN IssnType="Print">0029-8549</ISSN>
<JournalIssue CitedMedium="Print">
<Volume>148</Volume>
<Issue>2</Issue>
<PubDate>
<Year>2006</Year>
<Month>Jun</Month>
</PubDate>
</JournalIssue>
<Title>Oecologia</Title>
<ISOAbbreviation>Oecologia</ISOAbbreviation>
</Journal>
<ArticleTitle>Genotype and environment determine allocation to and costs of resistance in quaking aspen.</ArticleTitle>
<Pagination>
<MedlinePgn>293-303</MedlinePgn>
</Pagination>
<Abstract>
<AbstractText>Although genetic variability and resource availability both influence plant chemical composition, little is known about how these factors interact to modulate costs of resistance, expressed as negative correlations between growth and defense. We evaluated genotype x environment effects on foliar chemistry and growth of quaking aspen (Populus tremuloides) by growing multiple aspen genotypes under variable conditions of light and soil nutrient availability in a common garden. Foliage was analyzed for levels of nitrogen, phenolic glycosides and condensed tannins. Bioassays of leaf quality were conducted with fourth-stadium gypsy moth (Lymantria dispar) larvae. Results revealed strong effects of plant genotype, light availability and nutrient availability; the importance of each factor depended upon compound type. For example, tannin concentrations differed little among genotypes and across nutrient regimes under low light conditions, but markedly so under high light conditions. Phenolic glycoside concentrations, in contrast, were largely determined by genotype. Variation in phenolic glycoside concentrations among genotypes was the most important factor affecting gypsy moth performance. Gypsy moth biomass and development time were negatively and positively correlated, respectively, with phenolic glycoside levels. Allocation to phenolic glycosides appeared to be costly in terms of growth, but only under resource-limiting conditions. Context-dependent trade-offs help to explain why costs of allocation to resistance are often difficult to demonstrate.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Osier</LastName>
<ForeName>Tod L</ForeName>
<Initials>TL</Initials>
<AffiliationInfo>
<Affiliation>Department of Entomology, University of Wisconsin-Madison, 1630 Linden Drive, Madison, WI 53706, USA. tosier@mail.fairfield.edu</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Lindroth</LastName>
<ForeName>Richard L</ForeName>
<Initials>RL</Initials>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D013485">Research Support, Non-U.S. Gov't</PublicationType>
<PublicationType UI="D013486">Research Support, U.S. Gov't, Non-P.H.S.</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2006</Year>
<Month>02</Month>
<Day>09</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>Germany</Country>
<MedlineTA>Oecologia</MedlineTA>
<NlmUniqueID>0150372</NlmUniqueID>
<ISSNLinking>0029-8549</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D005308">Fertilizers</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D000818" MajorTopicYN="N">Animals</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D005308" MajorTopicYN="N">Fertilizers</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D007814" MajorTopicYN="N">Larva</DescriptorName>
<QualifierName UI="Q000502" MajorTopicYN="Y">physiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D008027" MajorTopicYN="N">Light</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D009036" MajorTopicYN="N">Moths</DescriptorName>
<QualifierName UI="Q000502" MajorTopicYN="Y">physiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D018515" MajorTopicYN="N">Plant Leaves</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="N">chemistry</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D032107" MajorTopicYN="N">Populus</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="N">chemistry</QualifierName>
<QualifierName UI="Q000469" MajorTopicYN="N">parasitology</QualifierName>
<QualifierName UI="Q000502" MajorTopicYN="Y">physiology</QualifierName>
</MeshHeading>
</MeshHeadingList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2005</Year>
<Month>03</Month>
<Day>09</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2006</Year>
<Month>01</Month>
<Day>18</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2006</Year>
<Month>2</Month>
<Day>10</Day>
<Hour>9</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2006</Year>
<Month>7</Month>
<Day>28</Day>
<Hour>9</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2006</Year>
<Month>2</Month>
<Day>10</Day>
<Hour>9</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">16468055</ArticleId>
<ArticleId IdType="doi">10.1007/s00442-006-0373-8</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>Oecologia. 2004 Mar;139(1):55-65</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14740291</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Oecologia. 1988 Nov;77(3):302-306</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28311941</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Evolution. 1986 Nov;40(6):1215-1228</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28563494</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Evolution. 1994 Oct;48(5):1550-1563</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28568412</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Oecologia. 1997 Jun;111(1):99-108</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28307511</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Oecologia. 2002 Nov;133(3):364-371</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28466214</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Oecologia. 2001 Feb;126(3):371-379</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28547451</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Oecologia. 1994 May;97(4):541-546</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28313745</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Chem Ecol. 2001 Jul;27(7):1289-313</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11504029</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Oecologia. 1998 Aug;116(1-2):170-176</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28308522</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Q Rev Biol. 2003 Mar;78(1):23-55</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12661508</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Oecologia. 1995 Jul;103(1):79-88</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28306948</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Oecologia. 1999 Aug;120(2):295-303</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28308092</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Oecologia. 1996 Feb;105(3):388-396</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28307112</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Agric Food Chem. 1980 Sep-Oct;28(5):947-52</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">7462522</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Oecologia. 1999 May;119(3):389-399</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28307762</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Oecologia. 1995 Apr;101(4):467-471</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28306961</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/PoplarV1/Data/Main/Curation
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 003E67 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Curation/biblio.hfd -nk 003E67 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    PoplarV1
   |flux=    Main
   |étape=   Curation
   |type=    RBID
   |clé=     pubmed:16468055
   |texte=   Genotype and environment determine allocation to and costs of resistance in quaking aspen.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Curation/RBID.i   -Sk "pubmed:16468055" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Curation/biblio.hfd   \
       | NlmPubMed2Wicri -a PoplarV1 

Wicri

This area was generated with Dilib version V0.6.37.
Data generation: Wed Nov 18 12:07:19 2020. Site generation: Wed Nov 18 12:16:31 2020