Serveur d'exploration sur le peuplier

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Hybrid zones as a tool for identifying adaptive genetic variation in outbreeding forest trees: lessons from wild annual sunflowers (Helianthus spp.).

Identifieur interne : 003828 ( Main/Curation ); précédent : 003827; suivant : 003829

Hybrid zones as a tool for identifying adaptive genetic variation in outbreeding forest trees: lessons from wild annual sunflowers (Helianthus spp.).

Auteurs : Christian Lexer [États-Unis] ; Berthold Heinze ; Ricardo Alia ; Loren H. Rieseberg

Source :

RBID : pubmed:18677413

Abstract

The identification and study of adaptively important genes in forest trees represents a formidable challenge because of their long generation spans. In annual or perennial herbs, formal genetic studies can be employed to identify the quantitative trait loci (QTLs) and/or candidate genes that underlie important traits, and the segregating populations can be transplanted into natural populations to measure the strength and direction of selection. However, the application of these methods to forest trees is difficult, because the creation of appropriate genetic material is extremely time-consuming in long-lived, woody plants, and lifetime fitness estimates are difficult or impossible to obtain. Although QTL mapping should in principle be feasible in wild intraspecific populations (as an alternative to artificial crosses), this approach is less likely to be successful in trees because LD (linkage disequilibrium) will decay quickly in large outbreeding plant populations. Within the present paper, we discuss a modified approach based on natural hybrid zones. We describe the use of wild annual sunflowers (Helianthus spp.) as a model for exploring the hybrid zone approach. Transplanted experimental hybrids allowed us to assess the adaptive value of individual chromosomal blocks in nature, and data on natural Helianthus hybrids suggest that similar approaches are possible in natural hybrid zones. Our results allowed us to test the role of hybridization in the origin of ecological divergence in wild sunflowers. In addition, they have practical implications for identifying adaptively important genes or QTLs in trees. This is exemplified by three temperate forest taxa, Populus (poplars, aspens, cottonwoods), Fraxinus (ash), and Quercus (oak). All three are diploid and important genomic tools are under development. Moreover, all three offer extensive hybrid zones whose likely age can be inferred from fossil data. Age data enables estimates of the size and frequency of chromosomal blocks in hybrids, thereby providing guidance in designing marker-based experiments. We predict that natural hybrid zones will be valuable tools for identifying the QTLs and/or candidate genes responsible for adaptive traits in forest trees.

DOI: 10.1016/j.foreco.2004.05.004
PubMed: 18677413
PubMed Central: PMC2493040

Links toward previous steps (curation, corpus...)


Links to Exploration step

pubmed:18677413

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Hybrid zones as a tool for identifying adaptive genetic variation in outbreeding forest trees: lessons from wild annual sunflowers (Helianthus spp.).</title>
<author>
<name sortKey="Lexer, Christian" sort="Lexer, Christian" uniqKey="Lexer C" first="Christian" last="Lexer">Christian Lexer</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Biology, Indiana University, Jordan Hall 142, 1001 East Third Street, Bloomington, IN 47405, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Biology, Indiana University, Jordan Hall 142, 1001 East Third Street, Bloomington, IN 47405</wicri:regionArea>
</affiliation>
</author>
<author>
<name sortKey="Heinze, Berthold" sort="Heinze, Berthold" uniqKey="Heinze B" first="Berthold" last="Heinze">Berthold Heinze</name>
</author>
<author>
<name sortKey="Alia, Ricardo" sort="Alia, Ricardo" uniqKey="Alia R" first="Ricardo" last="Alia">Ricardo Alia</name>
</author>
<author>
<name sortKey="Rieseberg, Loren H" sort="Rieseberg, Loren H" uniqKey="Rieseberg L" first="Loren H" last="Rieseberg">Loren H. Rieseberg</name>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2004">2004</date>
<idno type="RBID">pubmed:18677413</idno>
<idno type="pmid">18677413</idno>
<idno type="doi">10.1016/j.foreco.2004.05.004</idno>
<idno type="pmc">PMC2493040</idno>
<idno type="wicri:Area/Main/Corpus">003828</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">003828</idno>
<idno type="wicri:Area/Main/Curation">003828</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">003828</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Hybrid zones as a tool for identifying adaptive genetic variation in outbreeding forest trees: lessons from wild annual sunflowers (Helianthus spp.).</title>
<author>
<name sortKey="Lexer, Christian" sort="Lexer, Christian" uniqKey="Lexer C" first="Christian" last="Lexer">Christian Lexer</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Biology, Indiana University, Jordan Hall 142, 1001 East Third Street, Bloomington, IN 47405, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Biology, Indiana University, Jordan Hall 142, 1001 East Third Street, Bloomington, IN 47405</wicri:regionArea>
</affiliation>
</author>
<author>
<name sortKey="Heinze, Berthold" sort="Heinze, Berthold" uniqKey="Heinze B" first="Berthold" last="Heinze">Berthold Heinze</name>
</author>
<author>
<name sortKey="Alia, Ricardo" sort="Alia, Ricardo" uniqKey="Alia R" first="Ricardo" last="Alia">Ricardo Alia</name>
</author>
<author>
<name sortKey="Rieseberg, Loren H" sort="Rieseberg, Loren H" uniqKey="Rieseberg L" first="Loren H" last="Rieseberg">Loren H. Rieseberg</name>
</author>
</analytic>
<series>
<title level="j">Forest ecology and management</title>
<idno type="ISSN">0378-1127</idno>
<imprint>
<date when="2004" type="published">2004</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass></textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">The identification and study of adaptively important genes in forest trees represents a formidable challenge because of their long generation spans. In annual or perennial herbs, formal genetic studies can be employed to identify the quantitative trait loci (QTLs) and/or candidate genes that underlie important traits, and the segregating populations can be transplanted into natural populations to measure the strength and direction of selection. However, the application of these methods to forest trees is difficult, because the creation of appropriate genetic material is extremely time-consuming in long-lived, woody plants, and lifetime fitness estimates are difficult or impossible to obtain. Although QTL mapping should in principle be feasible in wild intraspecific populations (as an alternative to artificial crosses), this approach is less likely to be successful in trees because LD (linkage disequilibrium) will decay quickly in large outbreeding plant populations. Within the present paper, we discuss a modified approach based on natural hybrid zones. We describe the use of wild annual sunflowers (Helianthus spp.) as a model for exploring the hybrid zone approach. Transplanted experimental hybrids allowed us to assess the adaptive value of individual chromosomal blocks in nature, and data on natural Helianthus hybrids suggest that similar approaches are possible in natural hybrid zones. Our results allowed us to test the role of hybridization in the origin of ecological divergence in wild sunflowers. In addition, they have practical implications for identifying adaptively important genes or QTLs in trees. This is exemplified by three temperate forest taxa, Populus (poplars, aspens, cottonwoods), Fraxinus (ash), and Quercus (oak). All three are diploid and important genomic tools are under development. Moreover, all three offer extensive hybrid zones whose likely age can be inferred from fossil data. Age data enables estimates of the size and frequency of chromosomal blocks in hybrids, thereby providing guidance in designing marker-based experiments. We predict that natural hybrid zones will be valuable tools for identifying the QTLs and/or candidate genes responsible for adaptive traits in forest trees.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="PubMed-not-MEDLINE" Owner="NLM">
<PMID Version="1">18677413</PMID>
<DateRevised>
<Year>2020</Year>
<Month>09</Month>
<Day>30</Day>
</DateRevised>
<Article PubModel="Print">
<Journal>
<ISSN IssnType="Print">0378-1127</ISSN>
<JournalIssue CitedMedium="Print">
<Volume>197</Volume>
<Issue>1-3</Issue>
<PubDate>
<Year>2004</Year>
<Month>Aug</Month>
</PubDate>
</JournalIssue>
<Title>Forest ecology and management</Title>
<ISOAbbreviation>For Ecol Manage</ISOAbbreviation>
</Journal>
<ArticleTitle>Hybrid zones as a tool for identifying adaptive genetic variation in outbreeding forest trees: lessons from wild annual sunflowers (Helianthus spp.).</ArticleTitle>
<Pagination>
<MedlinePgn>49-64</MedlinePgn>
</Pagination>
<Abstract>
<AbstractText>The identification and study of adaptively important genes in forest trees represents a formidable challenge because of their long generation spans. In annual or perennial herbs, formal genetic studies can be employed to identify the quantitative trait loci (QTLs) and/or candidate genes that underlie important traits, and the segregating populations can be transplanted into natural populations to measure the strength and direction of selection. However, the application of these methods to forest trees is difficult, because the creation of appropriate genetic material is extremely time-consuming in long-lived, woody plants, and lifetime fitness estimates are difficult or impossible to obtain. Although QTL mapping should in principle be feasible in wild intraspecific populations (as an alternative to artificial crosses), this approach is less likely to be successful in trees because LD (linkage disequilibrium) will decay quickly in large outbreeding plant populations. Within the present paper, we discuss a modified approach based on natural hybrid zones. We describe the use of wild annual sunflowers (Helianthus spp.) as a model for exploring the hybrid zone approach. Transplanted experimental hybrids allowed us to assess the adaptive value of individual chromosomal blocks in nature, and data on natural Helianthus hybrids suggest that similar approaches are possible in natural hybrid zones. Our results allowed us to test the role of hybridization in the origin of ecological divergence in wild sunflowers. In addition, they have practical implications for identifying adaptively important genes or QTLs in trees. This is exemplified by three temperate forest taxa, Populus (poplars, aspens, cottonwoods), Fraxinus (ash), and Quercus (oak). All three are diploid and important genomic tools are under development. Moreover, all three offer extensive hybrid zones whose likely age can be inferred from fossil data. Age data enables estimates of the size and frequency of chromosomal blocks in hybrids, thereby providing guidance in designing marker-based experiments. We predict that natural hybrid zones will be valuable tools for identifying the QTLs and/or candidate genes responsible for adaptive traits in forest trees.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Lexer</LastName>
<ForeName>Christian</ForeName>
<Initials>C</Initials>
<AffiliationInfo>
<Affiliation>Department of Biology, Indiana University, Jordan Hall 142, 1001 East Third Street, Bloomington, IN 47405, USA.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Heinze</LastName>
<ForeName>Berthold</ForeName>
<Initials>B</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Alia</LastName>
<ForeName>Ricardo</ForeName>
<Initials>R</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Rieseberg</LastName>
<ForeName>Loren H</ForeName>
<Initials>LH</Initials>
</Author>
</AuthorList>
<Language>eng</Language>
<GrantList CompleteYN="Y">
<Grant>
<GrantID>R01 GM059065</GrantID>
<Acronym>GM</Acronym>
<Agency>NIGMS NIH HHS</Agency>
<Country>United States</Country>
</Grant>
<Grant>
<GrantID>R01 GM059065-04S1</GrantID>
<Acronym>GM</Acronym>
<Agency>NIGMS NIH HHS</Agency>
<Country>United States</Country>
</Grant>
</GrantList>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
</PublicationTypeList>
</Article>
<MedlineJournalInfo>
<Country>Netherlands</Country>
<MedlineTA>For Ecol Manage</MedlineTA>
<NlmUniqueID>101132357</NlmUniqueID>
<ISSNLinking>0378-1127</ISSNLinking>
</MedlineJournalInfo>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="pubmed">
<Year>2008</Year>
<Month>8</Month>
<Day>5</Day>
<Hour>9</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2008</Year>
<Month>8</Month>
<Day>5</Day>
<Hour>9</Hour>
<Minute>1</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2008</Year>
<Month>8</Month>
<Day>5</Day>
<Hour>9</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">18677413</ArticleId>
<ArticleId IdType="doi">10.1016/j.foreco.2004.05.004</ArticleId>
<ArticleId IdType="pmc">PMC2493040</ArticleId>
<ArticleId IdType="mid">NIHMS55385</ArticleId>
</ArticleIdList>
<pmc-dir>nihms</pmc-dir>
<ReferenceList>
<Reference>
<Citation>Genetics. 1999 Jun;152(2):713-27</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10353912</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genetics. 1999 Jul;152(3):1203-16</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10388834</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genetics. 1999 Aug;152(4):1753-66</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10430599</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Heredity (Edinb). 1999 Oct;83 ( Pt 4):363-72</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10583537</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genetics. 2000 Feb;154(2):837-45</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10655234</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Ecol. 2000 Aug;9(8):1171-3</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10964237</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genetics. 2000 Sep;156(1):457-67</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10978308</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 1997 Sep 2;94(18):9996-10001</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11038572</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genetics. 2000 Nov;156(3):1309-22</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11063704</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genetics. 2001 Feb;157(2):899-909</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11157006</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Ecol. 2001 Mar;10(3):551-68</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11298968</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Rev Genet. 2001 May;2(5):370-81</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11331903</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Evolution. 2001 Apr;55(4):684-91</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11392386</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Trends Ecol Evol. 2001 Jul 1;16(7):343-350</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11403866</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genetics. 2001 Jun;158(2):787-809</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11404342</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Evolution. 2001 Jul;55(7):1325-35</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11525457</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Ecol. 2001 Aug;10(8):2003-12</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11555243</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2001 Oct 5;294(5540):151-4</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11588260</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 1991 Mar 15;88(6):2540-4</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11607170</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genetics. 2002 Mar;160(3):1217-29</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11901135</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Ecol. 2002 Mar;11(3):613-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11918794</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genetics. 2002 Jul;161(3):1257-67</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12136028</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2002 Sep 17;99(19):12242-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12221290</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2002 Nov;14(11):2651-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12417692</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Theor Appl Genet. 2002 Dec;105(8):1124-1136</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12582890</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Ecol. 2003 May;12(5):1225-35</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12694286</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Heredity (Edinb). 2004 Jan;92(1):20-30</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14508500</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Evolution. 2003 Sep;57(9):1989-2000</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14575321</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Annu Rev Plant Physiol Plant Mol Biol. 2000 Jun;51:463-499</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15012199</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Am Nat. 2002 Mar;159 Suppl 3:S36-50</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18707368</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 1990 Nov 25;18(22):6531-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">1979162</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Am J Bot. 2002 Mar;89(3):472-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21665644</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Theor Appl Genet. 1996 Jul;93(1-2):215-21</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24162220</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Theor Appl Genet. 1992 Jul;84(3-4):291-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24203186</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genetics. 1989 Nov;123(3):557-65</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">2574697</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Evolution. 1983 Nov;37(6):1210-1226</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28556011</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Evolution. 1966 Sep;20(3):315-336</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28562982</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Evolution. 1990 Sep;44(6):1498-1511</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28564296</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Evolution. 1998 Jun;52(3):713-726</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28565247</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Evolution. 1990 Feb;44(1):38-53</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28568198</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Evolution. 1989 Mar;43(2):258-275</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28568555</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Evolution. 1997 Jun;51(3):747-755</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28568593</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Evolution. 1996 Apr;50(2):900-908</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28568948</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genetics. 1995 Jun;140(2):755-66</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">7498752</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 1995 Jul 3;92(14):6369-73</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">7603998</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genetics. 1994 Nov;138(3):963-71</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">7851788</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Am J Hum Genet. 1994 Oct;55(4):809-24</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">7942858</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genetics. 1994 Apr;136(4):1457-68</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8013918</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Hered. 1994 Jan-Feb;85(1):59-63</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8120361</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Annu Rev Genet. 1993;27:205-33</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8122902</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 1993 Dec 1;90(23):10972-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8248199</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Ecol. 1996 Jun;5(3):393-401</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8688959</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Biotechnol. 1997 Jul;15(7):625-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9219262</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Heredity (Edinb). 1998 May;80 ( Pt 5):584-93</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9650279</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/PoplarV1/Data/Main/Curation
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 003828 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Curation/biblio.hfd -nk 003828 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    PoplarV1
   |flux=    Main
   |étape=   Curation
   |type=    RBID
   |clé=     pubmed:18677413
   |texte=   Hybrid zones as a tool for identifying adaptive genetic variation in outbreeding forest trees: lessons from wild annual sunflowers (Helianthus spp.).
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Curation/RBID.i   -Sk "pubmed:18677413" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Curation/biblio.hfd   \
       | NlmPubMed2Wicri -a PoplarV1 

Wicri

This area was generated with Dilib version V0.6.37.
Data generation: Wed Nov 18 12:07:19 2020. Site generation: Wed Nov 18 12:16:31 2020