Serveur d'exploration sur le peuplier

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Molecular identification and characterization of a gene associated with the onset of tapping panel dryness (TPD) syndrome in rubber tree (Hevea brasiliensis Muell.) by mRNA differential display.

Identifieur interne : 003809 ( Main/Curation ); précédent : 003808; suivant : 003810

Molecular identification and characterization of a gene associated with the onset of tapping panel dryness (TPD) syndrome in rubber tree (Hevea brasiliensis Muell.) by mRNA differential display.

Auteurs : Perumal Venkatachalam [États-Unis] ; Arjunan Thulaseedharan ; Kashchandra Raghothama

Source :

RBID : pubmed:18726169

Descripteurs français

English descriptors

Abstract

In rubber tree (Hevea brasiliensis), tapping panel dryness (TPD) syndrome is considered as a complex physiological disorder which affects latex biosynthesis. To identify differentially expressed genes between healthy and TPD-affected trees, mRNA differential display reverse transcriptase polymerase chain reaction (DDRT-PCR) analysis was performed. We isolated 10 differentially expressed cDNA fragments of which one cDNA encoding a putative TOM20 like protein was identified. The cDNA (1,024 bp), corresponding to the HbTOM20 gene (H evea b rasiliensis Translocase of the Outer Mitochondrial Membrane), contained an open reading frame to code for 202 amino acid protein with a theoretical pI value of 9.5 and the calculated protein M (W) was 23.5 kDa. The predicted amino acid sequence contained conserved domains of TOM20 like proteins in the N-terminal. The protein HbTOM20 has 32% and 27% similarity to Populus TOM20 and Solanum TOM20, respectively. Both semi-quantitative RT-PCR and Northern blot results revealed that the HbTOM20 expression was significantly down-regulated in TPD-affected trees compared to healthy one. Accumulation of HbTOM20 mRNA transcripts was significantly higher in the bark tissues collected from healthy region than that of partially affected by TPD (partially dried) while barely detectable in completely TPD-affected area. Differential expression pattern was noticed in three rubber clones representing various degrees of TPD tolerance. These results suggest that down-regulation of HbTOM20 in TPD-affected trees may play an important role in alteration of mitochondrial metabolism resulting in impaired latex biosynthesis.

DOI: 10.1007/s12033-008-9095-y
PubMed: 18726169

Links toward previous steps (curation, corpus...)


Links to Exploration step

pubmed:18726169

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Molecular identification and characterization of a gene associated with the onset of tapping panel dryness (TPD) syndrome in rubber tree (Hevea brasiliensis Muell.) by mRNA differential display.</title>
<author>
<name sortKey="Venkatachalam, Perumal" sort="Venkatachalam, Perumal" uniqKey="Venkatachalam P" first="Perumal" last="Venkatachalam">Perumal Venkatachalam</name>
<affiliation wicri:level="1">
<nlm:affiliation>Plant Molecular Biology Lab, Department of Horticulture and Landscape Architecture, Purdue University, West Lafayette, IN 47907, USA. pvenkat67@yahoo.com</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Plant Molecular Biology Lab, Department of Horticulture and Landscape Architecture, Purdue University, West Lafayette, IN 47907</wicri:regionArea>
</affiliation>
</author>
<author>
<name sortKey="Thulaseedharan, Arjunan" sort="Thulaseedharan, Arjunan" uniqKey="Thulaseedharan A" first="Arjunan" last="Thulaseedharan">Arjunan Thulaseedharan</name>
</author>
<author>
<name sortKey="Raghothama, Kashchandra" sort="Raghothama, Kashchandra" uniqKey="Raghothama K" first="Kashchandra" last="Raghothama">Kashchandra Raghothama</name>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2009">2009</date>
<idno type="RBID">pubmed:18726169</idno>
<idno type="pmid">18726169</idno>
<idno type="doi">10.1007/s12033-008-9095-y</idno>
<idno type="wicri:Area/Main/Corpus">003809</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">003809</idno>
<idno type="wicri:Area/Main/Curation">003809</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">003809</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Molecular identification and characterization of a gene associated with the onset of tapping panel dryness (TPD) syndrome in rubber tree (Hevea brasiliensis Muell.) by mRNA differential display.</title>
<author>
<name sortKey="Venkatachalam, Perumal" sort="Venkatachalam, Perumal" uniqKey="Venkatachalam P" first="Perumal" last="Venkatachalam">Perumal Venkatachalam</name>
<affiliation wicri:level="1">
<nlm:affiliation>Plant Molecular Biology Lab, Department of Horticulture and Landscape Architecture, Purdue University, West Lafayette, IN 47907, USA. pvenkat67@yahoo.com</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Plant Molecular Biology Lab, Department of Horticulture and Landscape Architecture, Purdue University, West Lafayette, IN 47907</wicri:regionArea>
</affiliation>
</author>
<author>
<name sortKey="Thulaseedharan, Arjunan" sort="Thulaseedharan, Arjunan" uniqKey="Thulaseedharan A" first="Arjunan" last="Thulaseedharan">Arjunan Thulaseedharan</name>
</author>
<author>
<name sortKey="Raghothama, Kashchandra" sort="Raghothama, Kashchandra" uniqKey="Raghothama K" first="Kashchandra" last="Raghothama">Kashchandra Raghothama</name>
</author>
</analytic>
<series>
<title level="j">Molecular biotechnology</title>
<idno type="ISSN">1073-6085</idno>
<imprint>
<date when="2009" type="published">2009</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Base Sequence (MeSH)</term>
<term>Down-Regulation (MeSH)</term>
<term>Gene Expression Profiling (MeSH)</term>
<term>Gene Expression Regulation, Plant (MeSH)</term>
<term>Genes, Plant (MeSH)</term>
<term>Hevea (genetics)</term>
<term>Hevea (metabolism)</term>
<term>Latex (biosynthesis)</term>
<term>Membrane Transport Proteins (chemistry)</term>
<term>Membrane Transport Proteins (genetics)</term>
<term>Membrane Transport Proteins (metabolism)</term>
<term>Mitochondrial Proteins (chemistry)</term>
<term>Mitochondrial Proteins (genetics)</term>
<term>Mitochondrial Proteins (metabolism)</term>
<term>Molecular Sequence Data (MeSH)</term>
<term>Oxidative Stress (MeSH)</term>
<term>Plant Bark (genetics)</term>
<term>Plant Diseases (genetics)</term>
<term>Plant Proteins (chemistry)</term>
<term>Plant Proteins (genetics)</term>
<term>Plant Proteins (metabolism)</term>
<term>Reverse Transcriptase Polymerase Chain Reaction (MeSH)</term>
<term>Sequence Alignment (MeSH)</term>
</keywords>
<keywords scheme="KwdFr" xml:lang="fr">
<term>Alignement de séquences (MeSH)</term>
<term>Analyse de profil d'expression de gènes (MeSH)</term>
<term>Données de séquences moléculaires (MeSH)</term>
<term>Gènes de plante (MeSH)</term>
<term>Hevea (génétique)</term>
<term>Hevea (métabolisme)</term>
<term>Latex (biosynthèse)</term>
<term>Maladies des plantes (génétique)</term>
<term>Protéines de transport membranaire (composition chimique)</term>
<term>Protéines de transport membranaire (génétique)</term>
<term>Protéines de transport membranaire (métabolisme)</term>
<term>Protéines mitochondriales (composition chimique)</term>
<term>Protéines mitochondriales (génétique)</term>
<term>Protéines mitochondriales (métabolisme)</term>
<term>Protéines végétales (composition chimique)</term>
<term>Protéines végétales (génétique)</term>
<term>Protéines végétales (métabolisme)</term>
<term>RT-PCR (MeSH)</term>
<term>Régulation de l'expression des gènes végétaux (MeSH)</term>
<term>Régulation négative (MeSH)</term>
<term>Stress oxydatif (MeSH)</term>
<term>Séquence nucléotidique (MeSH)</term>
<term>Écorce (génétique)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="biosynthesis" xml:lang="en">
<term>Latex</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="chemistry" xml:lang="en">
<term>Membrane Transport Proteins</term>
<term>Mitochondrial Proteins</term>
<term>Plant Proteins</term>
</keywords>
<keywords scheme="MESH" qualifier="biosynthèse" xml:lang="fr">
<term>Latex</term>
</keywords>
<keywords scheme="MESH" qualifier="composition chimique" xml:lang="fr">
<term>Protéines de transport membranaire</term>
<term>Protéines mitochondriales</term>
<term>Protéines végétales</term>
</keywords>
<keywords scheme="MESH" qualifier="genetics" xml:lang="en">
<term>Hevea</term>
<term>Membrane Transport Proteins</term>
<term>Mitochondrial Proteins</term>
<term>Plant Bark</term>
<term>Plant Diseases</term>
<term>Plant Proteins</term>
</keywords>
<keywords scheme="MESH" qualifier="génétique" xml:lang="fr">
<term>Hevea</term>
<term>Maladies des plantes</term>
<term>Protéines de transport membranaire</term>
<term>Protéines mitochondriales</term>
<term>Protéines végétales</term>
<term>Écorce</term>
</keywords>
<keywords scheme="MESH" qualifier="metabolism" xml:lang="en">
<term>Hevea</term>
<term>Membrane Transport Proteins</term>
<term>Mitochondrial Proteins</term>
<term>Plant Proteins</term>
</keywords>
<keywords scheme="MESH" qualifier="métabolisme" xml:lang="fr">
<term>Hevea</term>
<term>Protéines de transport membranaire</term>
<term>Protéines mitochondriales</term>
<term>Protéines végétales</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Base Sequence</term>
<term>Down-Regulation</term>
<term>Gene Expression Profiling</term>
<term>Gene Expression Regulation, Plant</term>
<term>Genes, Plant</term>
<term>Molecular Sequence Data</term>
<term>Oxidative Stress</term>
<term>Reverse Transcriptase Polymerase Chain Reaction</term>
<term>Sequence Alignment</term>
</keywords>
<keywords scheme="MESH" xml:lang="fr">
<term>Alignement de séquences</term>
<term>Analyse de profil d'expression de gènes</term>
<term>Données de séquences moléculaires</term>
<term>Gènes de plante</term>
<term>RT-PCR</term>
<term>Régulation de l'expression des gènes végétaux</term>
<term>Régulation négative</term>
<term>Stress oxydatif</term>
<term>Séquence nucléotidique</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">In rubber tree (Hevea brasiliensis), tapping panel dryness (TPD) syndrome is considered as a complex physiological disorder which affects latex biosynthesis. To identify differentially expressed genes between healthy and TPD-affected trees, mRNA differential display reverse transcriptase polymerase chain reaction (DDRT-PCR) analysis was performed. We isolated 10 differentially expressed cDNA fragments of which one cDNA encoding a putative TOM20 like protein was identified. The cDNA (1,024 bp), corresponding to the HbTOM20 gene (H evea b rasiliensis Translocase of the Outer Mitochondrial Membrane), contained an open reading frame to code for 202 amino acid protein with a theoretical pI value of 9.5 and the calculated protein M (W) was 23.5 kDa. The predicted amino acid sequence contained conserved domains of TOM20 like proteins in the N-terminal. The protein HbTOM20 has 32% and 27% similarity to Populus TOM20 and Solanum TOM20, respectively. Both semi-quantitative RT-PCR and Northern blot results revealed that the HbTOM20 expression was significantly down-regulated in TPD-affected trees compared to healthy one. Accumulation of HbTOM20 mRNA transcripts was significantly higher in the bark tissues collected from healthy region than that of partially affected by TPD (partially dried) while barely detectable in completely TPD-affected area. Differential expression pattern was noticed in three rubber clones representing various degrees of TPD tolerance. These results suggest that down-regulation of HbTOM20 in TPD-affected trees may play an important role in alteration of mitochondrial metabolism resulting in impaired latex biosynthesis.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">18726169</PMID>
<DateCompleted>
<Year>2009</Year>
<Month>03</Month>
<Day>03</Day>
</DateCompleted>
<DateRevised>
<Year>2018</Year>
<Month>11</Month>
<Day>13</Day>
</DateRevised>
<Article PubModel="Print-Electronic">
<Journal>
<ISSN IssnType="Print">1073-6085</ISSN>
<JournalIssue CitedMedium="Print">
<Volume>41</Volume>
<Issue>1</Issue>
<PubDate>
<Year>2009</Year>
<Month>Jan</Month>
</PubDate>
</JournalIssue>
<Title>Molecular biotechnology</Title>
<ISOAbbreviation>Mol Biotechnol</ISOAbbreviation>
</Journal>
<ArticleTitle>Molecular identification and characterization of a gene associated with the onset of tapping panel dryness (TPD) syndrome in rubber tree (Hevea brasiliensis Muell.) by mRNA differential display.</ArticleTitle>
<Pagination>
<MedlinePgn>42-52</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1007/s12033-008-9095-y</ELocationID>
<Abstract>
<AbstractText>In rubber tree (Hevea brasiliensis), tapping panel dryness (TPD) syndrome is considered as a complex physiological disorder which affects latex biosynthesis. To identify differentially expressed genes between healthy and TPD-affected trees, mRNA differential display reverse transcriptase polymerase chain reaction (DDRT-PCR) analysis was performed. We isolated 10 differentially expressed cDNA fragments of which one cDNA encoding a putative TOM20 like protein was identified. The cDNA (1,024 bp), corresponding to the HbTOM20 gene (H evea b rasiliensis Translocase of the Outer Mitochondrial Membrane), contained an open reading frame to code for 202 amino acid protein with a theoretical pI value of 9.5 and the calculated protein M (W) was 23.5 kDa. The predicted amino acid sequence contained conserved domains of TOM20 like proteins in the N-terminal. The protein HbTOM20 has 32% and 27% similarity to Populus TOM20 and Solanum TOM20, respectively. Both semi-quantitative RT-PCR and Northern blot results revealed that the HbTOM20 expression was significantly down-regulated in TPD-affected trees compared to healthy one. Accumulation of HbTOM20 mRNA transcripts was significantly higher in the bark tissues collected from healthy region than that of partially affected by TPD (partially dried) while barely detectable in completely TPD-affected area. Differential expression pattern was noticed in three rubber clones representing various degrees of TPD tolerance. These results suggest that down-regulation of HbTOM20 in TPD-affected trees may play an important role in alteration of mitochondrial metabolism resulting in impaired latex biosynthesis.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Venkatachalam</LastName>
<ForeName>Perumal</ForeName>
<Initials>P</Initials>
<AffiliationInfo>
<Affiliation>Plant Molecular Biology Lab, Department of Horticulture and Landscape Architecture, Purdue University, West Lafayette, IN 47907, USA. pvenkat67@yahoo.com</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Thulaseedharan</LastName>
<ForeName>Arjunan</ForeName>
<Initials>A</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Raghothama</LastName>
<ForeName>Kashchandra</ForeName>
<Initials>K</Initials>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2008</Year>
<Month>08</Month>
<Day>23</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>United States</Country>
<MedlineTA>Mol Biotechnol</MedlineTA>
<NlmUniqueID>9423533</NlmUniqueID>
<ISSNLinking>1073-6085</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D007840">Latex</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D026901">Membrane Transport Proteins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D024101">Mitochondrial Proteins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D010940">Plant Proteins</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D001483" MajorTopicYN="N">Base Sequence</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D015536" MajorTopicYN="N">Down-Regulation</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D020869" MajorTopicYN="N">Gene Expression Profiling</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D018506" MajorTopicYN="N">Gene Expression Regulation, Plant</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D017343" MajorTopicYN="Y">Genes, Plant</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D028482" MajorTopicYN="N">Hevea</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="Y">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D007840" MajorTopicYN="N">Latex</DescriptorName>
<QualifierName UI="Q000096" MajorTopicYN="N">biosynthesis</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D026901" MajorTopicYN="N">Membrane Transport Proteins</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="N">chemistry</QualifierName>
<QualifierName UI="Q000235" MajorTopicYN="Y">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D024101" MajorTopicYN="N">Mitochondrial Proteins</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="N">chemistry</QualifierName>
<QualifierName UI="Q000235" MajorTopicYN="Y">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D008969" MajorTopicYN="N">Molecular Sequence Data</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D018384" MajorTopicYN="N">Oxidative Stress</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D024301" MajorTopicYN="N">Plant Bark</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D010935" MajorTopicYN="N">Plant Diseases</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="Y">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D010940" MajorTopicYN="N">Plant Proteins</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="N">chemistry</QualifierName>
<QualifierName UI="Q000235" MajorTopicYN="Y">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D020133" MajorTopicYN="N">Reverse Transcriptase Polymerase Chain Reaction</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D016415" MajorTopicYN="N">Sequence Alignment</DescriptorName>
</MeshHeading>
</MeshHeadingList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2008</Year>
<Month>04</Month>
<Day>03</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2008</Year>
<Month>07</Month>
<Day>30</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2008</Year>
<Month>8</Month>
<Day>30</Day>
<Hour>9</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2008</Year>
<Month>8</Month>
<Day>30</Day>
<Hour>9</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2009</Year>
<Month>3</Month>
<Day>4</Day>
<Hour>9</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">18726169</ArticleId>
<ArticleId IdType="doi">10.1007/s12033-008-9095-y</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>Plant J. 2002 Dec;32(6):891-904</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12492832</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Gene. 2005 Oct 10;359:111-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16125877</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Anal Biochem. 2005 Oct 1;345(1):102-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16139233</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Mol Biol. 1982 May 5;157(1):105-32</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">7108955</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Tree Physiol. 2000 Apr;20(8):503-510</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12651430</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Mol Biol. 2003 Jan;51(1):51-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12602890</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell Physiol. 2002 Nov;43(11):1323-33</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12461132</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Gene. 2004 May 12;332:29-34</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15145051</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 1992 Aug 14;257(5072):967-71</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">1354393</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2001 Feb;125(2):943-54</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11161051</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2004 Feb;134(2):777-89</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14730085</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Bioenerg Biomembr. 1997 Apr;29(2):185-93</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9239543</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant J. 1996 Jun;9(6):829-39</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8696363</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Planta. 2007 Jul;226(2):499-515</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17356851</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 1994 Nov 11;22(22):4673-80</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">7984417</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Sci. 2006 Sep;171(3):300-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22980199</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 1997 Sep 1;25(17):3389-402</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9254694</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/PoplarV1/Data/Main/Curation
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 003809 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Curation/biblio.hfd -nk 003809 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    PoplarV1
   |flux=    Main
   |étape=   Curation
   |type=    RBID
   |clé=     pubmed:18726169
   |texte=   Molecular identification and characterization of a gene associated with the onset of tapping panel dryness (TPD) syndrome in rubber tree (Hevea brasiliensis Muell.) by mRNA differential display.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Curation/RBID.i   -Sk "pubmed:18726169" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Curation/biblio.hfd   \
       | NlmPubMed2Wicri -a PoplarV1 

Wicri

This area was generated with Dilib version V0.6.37.
Data generation: Wed Nov 18 12:07:19 2020. Site generation: Wed Nov 18 12:16:31 2020