Serveur d'exploration sur le peuplier

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Molecular evolution of VEF-domain-containing PcG genes in plants.

Identifieur interne : 003423 ( Main/Curation ); précédent : 003422; suivant : 003424

Molecular evolution of VEF-domain-containing PcG genes in plants.

Auteurs : Ling-Jing Chen [États-Unis] ; Zhao-Yan Diao [États-Unis] ; Chelsea Specht [États-Unis] ; Z Renee Sung [États-Unis]

Source :

RBID : pubmed:19825653

Descripteurs français

English descriptors

Abstract

Arabidopsis VERNALIZATION2 (VRN2), EMBRYONIC FLOWER2 (EMF2), and FERTILIZATION-INDEPENDENT SEED2 (FIS2) are involved in vernalization-mediated flowering, vegetative development, and seed development, respectively. Together with Arabidopsis VEF-L36, they share a VEF domain that is conserved in plants and animals. To investigate the evolution of VEF-domain-containing genes (VEF genes), we analyzed sequences related to VEF genes across land plants. To date, 24 full-length sequences from 11 angiosperm families and 54 partial sequences from another nine families were identified. The majority of the full-length sequences identified share greatest sequence similarity with and possess the same major domain structure as Arabidopsis EMF2. EMF2-like sequences are not only widespread among angiosperms, but are also found in genomic sequences of gymnosperms, lycophyte, and moss. No FIS2- or VEF-L36-like sequences were recovered from plants other than Arabidopsis, including from rice and poplar for which whole genomes have been sequenced. Phylogenetic analysis of the full-length sequences showed a high degree of amino acid sequence conservation in EMF2 homologs of closely related taxa. VRN2 homologs are recovered as a clade nested within the larger EMF2 clade. FIS2 and VEF-L36 are recovered in the VRN2 clade. VRN2 clade may have evolved from an EMF2 duplication event that occurred in the rosids prior to the divergence of the eurosid I and eurosid II lineages. We propose that dynamic changes in genome evolution contribute to the generation of the family of VEF-domain-containing genes. Phylogenetic analysis of the VEF domain alone showed that VEF sequences continue to evolve following EMF2/VRN2 divergence in accordance with species relationship. Existence of EMF2-like sequences in animals and across land plants suggests that a prototype form of EMF2 was present prior to the divergence of the plant and animal lineages. A proposed sequence of events, based on domain organization and occurrence of intermediate sequences throughout angiosperms, could explain VRN2 evolution from an EMF2-like ancestral sequence, possibly following duplication of the ancestral EMF2. Available data further suggest that VEF-L36 and FIS2 were derived from a VRN2-like ancestral sequence. Thus, the presence of VEF-L36 and FIS2 in a genome may ultimately be dependent upon the presence of a VRN2-like sequence.

DOI: 10.1093/mp/ssp032
PubMed: 19825653

Links toward previous steps (curation, corpus...)


Links to Exploration step

pubmed:19825653

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Molecular evolution of VEF-domain-containing PcG genes in plants.</title>
<author>
<name sortKey="Chen, Ling Jing" sort="Chen, Ling Jing" uniqKey="Chen L" first="Ling-Jing" last="Chen">Ling-Jing Chen</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Plant and Microbial Biology, University of California, Berkeley, CA 94720-3102, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Plant and Microbial Biology, University of California, Berkeley, CA 94720-3102</wicri:regionArea>
</affiliation>
</author>
<author>
<name sortKey="Diao, Zhao Yan" sort="Diao, Zhao Yan" uniqKey="Diao Z" first="Zhao-Yan" last="Diao">Zhao-Yan Diao</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Plant and Microbial Biology, University of California, Berkeley, CA 94720-3102, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Plant and Microbial Biology, University of California, Berkeley, CA 94720-3102</wicri:regionArea>
</affiliation>
</author>
<author>
<name sortKey="Specht, Chelsea" sort="Specht, Chelsea" uniqKey="Specht C" first="Chelsea" last="Specht">Chelsea Specht</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Plant and Microbial Biology, University of California, Berkeley, CA 94720-3102, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Plant and Microbial Biology, University of California, Berkeley, CA 94720-3102</wicri:regionArea>
</affiliation>
</author>
<author>
<name sortKey="Sung, Z Renee" sort="Sung, Z Renee" uniqKey="Sung Z" first="Z Renee" last="Sung">Z Renee Sung</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Plant and Microbial Biology, University of California, Berkeley, CA 94720-3102, USA. Electronic address: zrsung@nature.berkeley.edu.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Plant and Microbial Biology, University of California, Berkeley, CA 94720-3102</wicri:regionArea>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2009">2009</date>
<idno type="RBID">pubmed:19825653</idno>
<idno type="pmid">19825653</idno>
<idno type="doi">10.1093/mp/ssp032</idno>
<idno type="wicri:Area/Main/Corpus">003423</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">003423</idno>
<idno type="wicri:Area/Main/Curation">003423</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">003423</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Molecular evolution of VEF-domain-containing PcG genes in plants.</title>
<author>
<name sortKey="Chen, Ling Jing" sort="Chen, Ling Jing" uniqKey="Chen L" first="Ling-Jing" last="Chen">Ling-Jing Chen</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Plant and Microbial Biology, University of California, Berkeley, CA 94720-3102, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Plant and Microbial Biology, University of California, Berkeley, CA 94720-3102</wicri:regionArea>
</affiliation>
</author>
<author>
<name sortKey="Diao, Zhao Yan" sort="Diao, Zhao Yan" uniqKey="Diao Z" first="Zhao-Yan" last="Diao">Zhao-Yan Diao</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Plant and Microbial Biology, University of California, Berkeley, CA 94720-3102, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Plant and Microbial Biology, University of California, Berkeley, CA 94720-3102</wicri:regionArea>
</affiliation>
</author>
<author>
<name sortKey="Specht, Chelsea" sort="Specht, Chelsea" uniqKey="Specht C" first="Chelsea" last="Specht">Chelsea Specht</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Plant and Microbial Biology, University of California, Berkeley, CA 94720-3102, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Plant and Microbial Biology, University of California, Berkeley, CA 94720-3102</wicri:regionArea>
</affiliation>
</author>
<author>
<name sortKey="Sung, Z Renee" sort="Sung, Z Renee" uniqKey="Sung Z" first="Z Renee" last="Sung">Z Renee Sung</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Plant and Microbial Biology, University of California, Berkeley, CA 94720-3102, USA. Electronic address: zrsung@nature.berkeley.edu.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Plant and Microbial Biology, University of California, Berkeley, CA 94720-3102</wicri:regionArea>
</affiliation>
</author>
</analytic>
<series>
<title level="j">Molecular plant</title>
<idno type="ISSN">1674-2052</idno>
<imprint>
<date when="2009" type="published">2009</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Amino Acid Sequence (MeSH)</term>
<term>Arabidopsis Proteins (chemistry)</term>
<term>Arabidopsis Proteins (classification)</term>
<term>Arabidopsis Proteins (genetics)</term>
<term>Carrier Proteins (chemistry)</term>
<term>Carrier Proteins (classification)</term>
<term>Carrier Proteins (genetics)</term>
<term>DNA-Binding Proteins (MeSH)</term>
<term>Evolution, Molecular (MeSH)</term>
<term>Models, Genetic (MeSH)</term>
<term>Molecular Sequence Data (MeSH)</term>
<term>Nuclear Proteins (chemistry)</term>
<term>Nuclear Proteins (classification)</term>
<term>Nuclear Proteins (genetics)</term>
<term>Phylogeny (MeSH)</term>
<term>Plant Proteins (chemistry)</term>
<term>Plant Proteins (classification)</term>
<term>Plant Proteins (genetics)</term>
<term>Protein Structure, Tertiary (MeSH)</term>
<term>Repressor Proteins (chemistry)</term>
<term>Repressor Proteins (classification)</term>
<term>Repressor Proteins (genetics)</term>
<term>Sequence Homology, Amino Acid (MeSH)</term>
<term>Transcription Factors (chemistry)</term>
<term>Transcription Factors (classification)</term>
<term>Transcription Factors (genetics)</term>
</keywords>
<keywords scheme="KwdFr" xml:lang="fr">
<term>Données de séquences moléculaires (MeSH)</term>
<term>Facteurs de transcription (classification)</term>
<term>Facteurs de transcription (composition chimique)</term>
<term>Facteurs de transcription (génétique)</term>
<term>Modèles génétiques (MeSH)</term>
<term>Phylogenèse (MeSH)</term>
<term>Protéines d'Arabidopsis (classification)</term>
<term>Protéines d'Arabidopsis (composition chimique)</term>
<term>Protéines d'Arabidopsis (génétique)</term>
<term>Protéines de liaison à l'ADN (MeSH)</term>
<term>Protéines de répression (classification)</term>
<term>Protéines de répression (composition chimique)</term>
<term>Protéines de répression (génétique)</term>
<term>Protéines de transport (classification)</term>
<term>Protéines de transport (composition chimique)</term>
<term>Protéines de transport (génétique)</term>
<term>Protéines nucléaires (classification)</term>
<term>Protéines nucléaires (composition chimique)</term>
<term>Protéines nucléaires (génétique)</term>
<term>Protéines végétales (classification)</term>
<term>Protéines végétales (composition chimique)</term>
<term>Protéines végétales (génétique)</term>
<term>Similitude de séquences d'acides aminés (MeSH)</term>
<term>Structure tertiaire des protéines (MeSH)</term>
<term>Séquence d'acides aminés (MeSH)</term>
<term>Évolution moléculaire (MeSH)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="chemistry" xml:lang="en">
<term>Arabidopsis Proteins</term>
<term>Carrier Proteins</term>
<term>Nuclear Proteins</term>
<term>Plant Proteins</term>
<term>Repressor Proteins</term>
<term>Transcription Factors</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="classification" xml:lang="en">
<term>Arabidopsis Proteins</term>
<term>Carrier Proteins</term>
<term>Nuclear Proteins</term>
<term>Plant Proteins</term>
<term>Repressor Proteins</term>
<term>Transcription Factors</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="genetics" xml:lang="en">
<term>Arabidopsis Proteins</term>
<term>Carrier Proteins</term>
<term>Nuclear Proteins</term>
<term>Plant Proteins</term>
<term>Repressor Proteins</term>
<term>Transcription Factors</term>
</keywords>
<keywords scheme="MESH" qualifier="classification" xml:lang="fr">
<term>Facteurs de transcription</term>
<term>Protéines d'Arabidopsis</term>
<term>Protéines de répression</term>
<term>Protéines de transport</term>
<term>Protéines nucléaires</term>
<term>Protéines végétales</term>
</keywords>
<keywords scheme="MESH" qualifier="composition chimique" xml:lang="fr">
<term>Facteurs de transcription</term>
<term>Protéines d'Arabidopsis</term>
<term>Protéines de répression</term>
<term>Protéines de transport</term>
<term>Protéines nucléaires</term>
<term>Protéines végétales</term>
</keywords>
<keywords scheme="MESH" qualifier="génétique" xml:lang="fr">
<term>Facteurs de transcription</term>
<term>Protéines d'Arabidopsis</term>
<term>Protéines de répression</term>
<term>Protéines de transport</term>
<term>Protéines nucléaires</term>
<term>Protéines végétales</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Amino Acid Sequence</term>
<term>DNA-Binding Proteins</term>
<term>Evolution, Molecular</term>
<term>Models, Genetic</term>
<term>Molecular Sequence Data</term>
<term>Phylogeny</term>
<term>Protein Structure, Tertiary</term>
<term>Sequence Homology, Amino Acid</term>
</keywords>
<keywords scheme="MESH" xml:lang="fr">
<term>Données de séquences moléculaires</term>
<term>Modèles génétiques</term>
<term>Phylogenèse</term>
<term>Protéines de liaison à l'ADN</term>
<term>Similitude de séquences d'acides aminés</term>
<term>Structure tertiaire des protéines</term>
<term>Séquence d'acides aminés</term>
<term>Évolution moléculaire</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Arabidopsis VERNALIZATION2 (VRN2), EMBRYONIC FLOWER2 (EMF2), and FERTILIZATION-INDEPENDENT SEED2 (FIS2) are involved in vernalization-mediated flowering, vegetative development, and seed development, respectively. Together with Arabidopsis VEF-L36, they share a VEF domain that is conserved in plants and animals. To investigate the evolution of VEF-domain-containing genes (VEF genes), we analyzed sequences related to VEF genes across land plants. To date, 24 full-length sequences from 11 angiosperm families and 54 partial sequences from another nine families were identified. The majority of the full-length sequences identified share greatest sequence similarity with and possess the same major domain structure as Arabidopsis EMF2. EMF2-like sequences are not only widespread among angiosperms, but are also found in genomic sequences of gymnosperms, lycophyte, and moss. No FIS2- or VEF-L36-like sequences were recovered from plants other than Arabidopsis, including from rice and poplar for which whole genomes have been sequenced. Phylogenetic analysis of the full-length sequences showed a high degree of amino acid sequence conservation in EMF2 homologs of closely related taxa. VRN2 homologs are recovered as a clade nested within the larger EMF2 clade. FIS2 and VEF-L36 are recovered in the VRN2 clade. VRN2 clade may have evolved from an EMF2 duplication event that occurred in the rosids prior to the divergence of the eurosid I and eurosid II lineages. We propose that dynamic changes in genome evolution contribute to the generation of the family of VEF-domain-containing genes. Phylogenetic analysis of the VEF domain alone showed that VEF sequences continue to evolve following EMF2/VRN2 divergence in accordance with species relationship. Existence of EMF2-like sequences in animals and across land plants suggests that a prototype form of EMF2 was present prior to the divergence of the plant and animal lineages. A proposed sequence of events, based on domain organization and occurrence of intermediate sequences throughout angiosperms, could explain VRN2 evolution from an EMF2-like ancestral sequence, possibly following duplication of the ancestral EMF2. Available data further suggest that VEF-L36 and FIS2 were derived from a VRN2-like ancestral sequence. Thus, the presence of VEF-L36 and FIS2 in a genome may ultimately be dependent upon the presence of a VRN2-like sequence.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">19825653</PMID>
<DateCompleted>
<Year>2010</Year>
<Month>02</Month>
<Day>04</Day>
</DateCompleted>
<DateRevised>
<Year>2019</Year>
<Month>12</Month>
<Day>10</Day>
</DateRevised>
<Article PubModel="Print-Electronic">
<Journal>
<ISSN IssnType="Print">1674-2052</ISSN>
<JournalIssue CitedMedium="Print">
<Volume>2</Volume>
<Issue>4</Issue>
<PubDate>
<Year>2009</Year>
<Month>Jul</Month>
</PubDate>
</JournalIssue>
<Title>Molecular plant</Title>
<ISOAbbreviation>Mol Plant</ISOAbbreviation>
</Journal>
<ArticleTitle>Molecular evolution of VEF-domain-containing PcG genes in plants.</ArticleTitle>
<Pagination>
<MedlinePgn>738-754</MedlinePgn>
</Pagination>
<ELocationID EIdType="pii" ValidYN="Y">S1674-2052(14)60756-5</ELocationID>
<ELocationID EIdType="doi" ValidYN="Y">10.1093/mp/ssp032</ELocationID>
<Abstract>
<AbstractText>Arabidopsis VERNALIZATION2 (VRN2), EMBRYONIC FLOWER2 (EMF2), and FERTILIZATION-INDEPENDENT SEED2 (FIS2) are involved in vernalization-mediated flowering, vegetative development, and seed development, respectively. Together with Arabidopsis VEF-L36, they share a VEF domain that is conserved in plants and animals. To investigate the evolution of VEF-domain-containing genes (VEF genes), we analyzed sequences related to VEF genes across land plants. To date, 24 full-length sequences from 11 angiosperm families and 54 partial sequences from another nine families were identified. The majority of the full-length sequences identified share greatest sequence similarity with and possess the same major domain structure as Arabidopsis EMF2. EMF2-like sequences are not only widespread among angiosperms, but are also found in genomic sequences of gymnosperms, lycophyte, and moss. No FIS2- or VEF-L36-like sequences were recovered from plants other than Arabidopsis, including from rice and poplar for which whole genomes have been sequenced. Phylogenetic analysis of the full-length sequences showed a high degree of amino acid sequence conservation in EMF2 homologs of closely related taxa. VRN2 homologs are recovered as a clade nested within the larger EMF2 clade. FIS2 and VEF-L36 are recovered in the VRN2 clade. VRN2 clade may have evolved from an EMF2 duplication event that occurred in the rosids prior to the divergence of the eurosid I and eurosid II lineages. We propose that dynamic changes in genome evolution contribute to the generation of the family of VEF-domain-containing genes. Phylogenetic analysis of the VEF domain alone showed that VEF sequences continue to evolve following EMF2/VRN2 divergence in accordance with species relationship. Existence of EMF2-like sequences in animals and across land plants suggests that a prototype form of EMF2 was present prior to the divergence of the plant and animal lineages. A proposed sequence of events, based on domain organization and occurrence of intermediate sequences throughout angiosperms, could explain VRN2 evolution from an EMF2-like ancestral sequence, possibly following duplication of the ancestral EMF2. Available data further suggest that VEF-L36 and FIS2 were derived from a VRN2-like ancestral sequence. Thus, the presence of VEF-L36 and FIS2 in a genome may ultimately be dependent upon the presence of a VRN2-like sequence.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Chen</LastName>
<ForeName>Ling-Jing</ForeName>
<Initials>LJ</Initials>
<AffiliationInfo>
<Affiliation>Department of Plant and Microbial Biology, University of California, Berkeley, CA 94720-3102, USA.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Diao</LastName>
<ForeName>Zhao-Yan</ForeName>
<Initials>ZY</Initials>
<AffiliationInfo>
<Affiliation>Department of Plant and Microbial Biology, University of California, Berkeley, CA 94720-3102, USA.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Specht</LastName>
<ForeName>Chelsea</ForeName>
<Initials>C</Initials>
<AffiliationInfo>
<Affiliation>Department of Plant and Microbial Biology, University of California, Berkeley, CA 94720-3102, USA.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Sung</LastName>
<ForeName>Z Renee</ForeName>
<Initials>ZR</Initials>
<AffiliationInfo>
<Affiliation>Department of Plant and Microbial Biology, University of California, Berkeley, CA 94720-3102, USA. Electronic address: zrsung@nature.berkeley.edu.</Affiliation>
</AffiliationInfo>
</Author>
</AuthorList>
<Language>eng</Language>
<DataBankList CompleteYN="Y">
<DataBank>
<DataBankName>GENBANK</DataBankName>
<AccessionNumberList>
<AccessionNumber>ABD85300</AccessionNumber>
<AccessionNumber>ABD85301</AccessionNumber>
<AccessionNumber>ABD98790</AccessionNumber>
<AccessionNumber>ABD98791</AccessionNumber>
<AccessionNumber>ABI99480</AccessionNumber>
<AccessionNumber>ABI99481</AccessionNumber>
</AccessionNumberList>
</DataBank>
</DataBankList>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D013486">Research Support, U.S. Gov't, Non-P.H.S.</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2009</Year>
<Month>06</Month>
<Day>19</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>England</Country>
<MedlineTA>Mol Plant</MedlineTA>
<NlmUniqueID>101465514</NlmUniqueID>
<ISSNLinking>1674-2052</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D029681">Arabidopsis Proteins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D002352">Carrier Proteins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D004268">DNA-Binding Proteins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="C494299">EMF2 protein, Arabidopsis</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="C117389">FIS2 protein, Arabidopsis</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D009687">Nuclear Proteins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D010940">Plant Proteins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D012097">Repressor Proteins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D014157">Transcription Factors</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="C442836">VRN2 protein, Arabidopsis</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<CommentsCorrectionsList>
<CommentsCorrections RefType="ErratumIn">
<RefSource>Mol Plant. 2009 Sep;2(5):1124-5</RefSource>
</CommentsCorrections>
</CommentsCorrectionsList>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D000595" MajorTopicYN="N">Amino Acid Sequence</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D029681" MajorTopicYN="N">Arabidopsis Proteins</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="N">chemistry</QualifierName>
<QualifierName UI="Q000145" MajorTopicYN="N">classification</QualifierName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D002352" MajorTopicYN="N">Carrier Proteins</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="N">chemistry</QualifierName>
<QualifierName UI="Q000145" MajorTopicYN="N">classification</QualifierName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D004268" MajorTopicYN="N">DNA-Binding Proteins</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D019143" MajorTopicYN="Y">Evolution, Molecular</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D008957" MajorTopicYN="N">Models, Genetic</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D008969" MajorTopicYN="N">Molecular Sequence Data</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D009687" MajorTopicYN="N">Nuclear Proteins</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="N">chemistry</QualifierName>
<QualifierName UI="Q000145" MajorTopicYN="N">classification</QualifierName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D010802" MajorTopicYN="N">Phylogeny</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D010940" MajorTopicYN="N">Plant Proteins</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="N">chemistry</QualifierName>
<QualifierName UI="Q000145" MajorTopicYN="N">classification</QualifierName>
<QualifierName UI="Q000235" MajorTopicYN="Y">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D017434" MajorTopicYN="N">Protein Structure, Tertiary</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D012097" MajorTopicYN="N">Repressor Proteins</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="N">chemistry</QualifierName>
<QualifierName UI="Q000145" MajorTopicYN="N">classification</QualifierName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D017386" MajorTopicYN="N">Sequence Homology, Amino Acid</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D014157" MajorTopicYN="N">Transcription Factors</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="N">chemistry</QualifierName>
<QualifierName UI="Q000145" MajorTopicYN="N">classification</QualifierName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
</MeshHeading>
</MeshHeadingList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="entrez">
<Year>2009</Year>
<Month>10</Month>
<Day>15</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2009</Year>
<Month>10</Month>
<Day>15</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2010</Year>
<Month>2</Month>
<Day>5</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">19825653</ArticleId>
<ArticleId IdType="pii">S1674-2052(14)60756-5</ArticleId>
<ArticleId IdType="doi">10.1093/mp/ssp032</ArticleId>
</ArticleIdList>
</PubmedData>
</pubmed>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/PoplarV1/Data/Main/Curation
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 003423 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Curation/biblio.hfd -nk 003423 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    PoplarV1
   |flux=    Main
   |étape=   Curation
   |type=    RBID
   |clé=     pubmed:19825653
   |texte=   Molecular evolution of VEF-domain-containing PcG genes in plants.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Curation/RBID.i   -Sk "pubmed:19825653" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Curation/biblio.hfd   \
       | NlmPubMed2Wicri -a PoplarV1 

Wicri

This area was generated with Dilib version V0.6.37.
Data generation: Wed Nov 18 12:07:19 2020. Site generation: Wed Nov 18 12:16:31 2020