Serveur d'exploration sur le peuplier

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Stepwise artificial evolution of a plant disease resistance gene.

Identifieur interne : 002378 ( Main/Curation ); précédent : 002377; suivant : 002379

Stepwise artificial evolution of a plant disease resistance gene.

Auteurs : C Jake Harris [Royaume-Uni] ; Erik J. Slootweg ; Aska Goverse ; David C. Baulcombe

Source :

RBID : pubmed:24324167

Descripteurs français

English descriptors

Abstract

Genes encoding plant nucleotide-binding leucine-rich repeat (NB-LRR) proteins confer dominant resistance to diverse pathogens. The wild-type potato NB-LRR protein Rx confers resistance against a single strain of potato virus X (PVX), whereas LRR mutants protect against both a second PVX strain and the distantly related poplar mosaic virus (PopMV). In one of the Rx mutants there was a cost to the broad-spectrum resistance because the response to PopMV was transformed from a mild disease on plants carrying wild-type Rx to a trailing necrosis that killed the plant. To explore the use of secondary mutagenesis to eliminate this cost of broad-spectrum resistance, we performed random mutagenesis of the N-terminal domains of this broad-recognition version of Rx and isolated four mutants with a stronger response against the PopMV coat protein due to enhanced activation sensitivity. These mutations are located close to the nucleotide-binding pocket, a highly conserved structure that likely controls the "switch" between active and inactive NB-LRR conformations. Stable transgenic plants expressing one of these versions of Rx are resistant to the strains of PVX and the PopMV that previously caused trailing necrosis. We conclude from this work that artificial evolution of NB-LRR disease resistance genes in crops can be enhanced by modification of both activation and recognition phases, to both accentuate the positive and eliminate the negative aspects of disease resistance.

DOI: 10.1073/pnas.1311134110
PubMed: 24324167
PubMed Central: PMC3876221

Links toward previous steps (curation, corpus...)


Links to Exploration step

pubmed:24324167

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Stepwise artificial evolution of a plant disease resistance gene.</title>
<author>
<name sortKey="Harris, C Jake" sort="Harris, C Jake" uniqKey="Harris C" first="C Jake" last="Harris">C Jake Harris</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Plant Sciences, University of Cambridge, Cambridge CB2 3EA, United Kingdom.</nlm:affiliation>
<country xml:lang="fr">Royaume-Uni</country>
<wicri:regionArea>Department of Plant Sciences, University of Cambridge, Cambridge CB2 3EA</wicri:regionArea>
</affiliation>
</author>
<author>
<name sortKey="Slootweg, Erik J" sort="Slootweg, Erik J" uniqKey="Slootweg E" first="Erik J" last="Slootweg">Erik J. Slootweg</name>
</author>
<author>
<name sortKey="Goverse, Aska" sort="Goverse, Aska" uniqKey="Goverse A" first="Aska" last="Goverse">Aska Goverse</name>
</author>
<author>
<name sortKey="Baulcombe, David C" sort="Baulcombe, David C" uniqKey="Baulcombe D" first="David C" last="Baulcombe">David C. Baulcombe</name>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2013">2013</date>
<idno type="RBID">pubmed:24324167</idno>
<idno type="pmid">24324167</idno>
<idno type="doi">10.1073/pnas.1311134110</idno>
<idno type="pmc">PMC3876221</idno>
<idno type="wicri:Area/Main/Corpus">002378</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">002378</idno>
<idno type="wicri:Area/Main/Curation">002378</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">002378</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Stepwise artificial evolution of a plant disease resistance gene.</title>
<author>
<name sortKey="Harris, C Jake" sort="Harris, C Jake" uniqKey="Harris C" first="C Jake" last="Harris">C Jake Harris</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Plant Sciences, University of Cambridge, Cambridge CB2 3EA, United Kingdom.</nlm:affiliation>
<country xml:lang="fr">Royaume-Uni</country>
<wicri:regionArea>Department of Plant Sciences, University of Cambridge, Cambridge CB2 3EA</wicri:regionArea>
</affiliation>
</author>
<author>
<name sortKey="Slootweg, Erik J" sort="Slootweg, Erik J" uniqKey="Slootweg E" first="Erik J" last="Slootweg">Erik J. Slootweg</name>
</author>
<author>
<name sortKey="Goverse, Aska" sort="Goverse, Aska" uniqKey="Goverse A" first="Aska" last="Goverse">Aska Goverse</name>
</author>
<author>
<name sortKey="Baulcombe, David C" sort="Baulcombe, David C" uniqKey="Baulcombe D" first="David C" last="Baulcombe">David C. Baulcombe</name>
</author>
</analytic>
<series>
<title level="j">Proceedings of the National Academy of Sciences of the United States of America</title>
<idno type="eISSN">1091-6490</idno>
<imprint>
<date when="2013" type="published">2013</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Agriculture (methods)</term>
<term>Agrobacterium tumefaciens (MeSH)</term>
<term>Amino Acid Substitution (genetics)</term>
<term>Blotting, Western (MeSH)</term>
<term>Capsid Proteins (genetics)</term>
<term>Carlavirus (genetics)</term>
<term>Genes, vpr (genetics)</term>
<term>Genetic Engineering (methods)</term>
<term>Immunity, Innate (genetics)</term>
<term>Plant Proteins (genetics)</term>
<term>Plant Proteins (immunology)</term>
<term>Plants, Genetically Modified (MeSH)</term>
<term>Proteins (genetics)</term>
<term>Proteins (immunology)</term>
<term>Reverse Transcriptase Polymerase Chain Reaction (MeSH)</term>
<term>Tobacco (genetics)</term>
<term>Tobacco (immunology)</term>
<term>Tobacco (virology)</term>
</keywords>
<keywords scheme="KwdFr" xml:lang="fr">
<term>Agriculture (méthodes)</term>
<term>Agrobacterium tumefaciens (MeSH)</term>
<term>Carlavirus (génétique)</term>
<term>Gènes vpr (génétique)</term>
<term>Génie génétique (méthodes)</term>
<term>Immunité innée (génétique)</term>
<term>Protéines (génétique)</term>
<term>Protéines (immunologie)</term>
<term>Protéines de capside (génétique)</term>
<term>Protéines végétales (génétique)</term>
<term>Protéines végétales (immunologie)</term>
<term>RT-PCR (MeSH)</term>
<term>Substitution d'acide aminé (génétique)</term>
<term>Tabac (génétique)</term>
<term>Tabac (immunologie)</term>
<term>Tabac (virologie)</term>
<term>Technique de Western (MeSH)</term>
<term>Végétaux génétiquement modifiés (MeSH)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="genetics" xml:lang="en">
<term>Capsid Proteins</term>
<term>Plant Proteins</term>
<term>Proteins</term>
</keywords>
<keywords scheme="MESH" qualifier="genetics" xml:lang="en">
<term>Amino Acid Substitution</term>
<term>Carlavirus</term>
<term>Genes, vpr</term>
<term>Immunity, Innate</term>
<term>Tobacco</term>
</keywords>
<keywords scheme="MESH" qualifier="génétique" xml:lang="fr">
<term>Carlavirus</term>
<term>Gènes vpr</term>
<term>Immunité innée</term>
<term>Protéines</term>
<term>Protéines de capside</term>
<term>Protéines végétales</term>
<term>Substitution d'acide aminé</term>
<term>Tabac</term>
</keywords>
<keywords scheme="MESH" qualifier="immunologie" xml:lang="fr">
<term>Protéines</term>
<term>Protéines végétales</term>
<term>Tabac</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="immunology" xml:lang="en">
<term>Plant Proteins</term>
<term>Proteins</term>
<term>Tobacco</term>
</keywords>
<keywords scheme="MESH" qualifier="methods" xml:lang="en">
<term>Agriculture</term>
<term>Genetic Engineering</term>
</keywords>
<keywords scheme="MESH" qualifier="méthodes" xml:lang="fr">
<term>Agriculture</term>
<term>Génie génétique</term>
</keywords>
<keywords scheme="MESH" qualifier="virologie" xml:lang="fr">
<term>Tabac</term>
</keywords>
<keywords scheme="MESH" qualifier="virology" xml:lang="en">
<term>Tobacco</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Agrobacterium tumefaciens</term>
<term>Blotting, Western</term>
<term>Plants, Genetically Modified</term>
<term>Reverse Transcriptase Polymerase Chain Reaction</term>
</keywords>
<keywords scheme="MESH" xml:lang="fr">
<term>Agrobacterium tumefaciens</term>
<term>RT-PCR</term>
<term>Technique de Western</term>
<term>Végétaux génétiquement modifiés</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Genes encoding plant nucleotide-binding leucine-rich repeat (NB-LRR) proteins confer dominant resistance to diverse pathogens. The wild-type potato NB-LRR protein Rx confers resistance against a single strain of potato virus X (PVX), whereas LRR mutants protect against both a second PVX strain and the distantly related poplar mosaic virus (PopMV). In one of the Rx mutants there was a cost to the broad-spectrum resistance because the response to PopMV was transformed from a mild disease on plants carrying wild-type Rx to a trailing necrosis that killed the plant. To explore the use of secondary mutagenesis to eliminate this cost of broad-spectrum resistance, we performed random mutagenesis of the N-terminal domains of this broad-recognition version of Rx and isolated four mutants with a stronger response against the PopMV coat protein due to enhanced activation sensitivity. These mutations are located close to the nucleotide-binding pocket, a highly conserved structure that likely controls the "switch" between active and inactive NB-LRR conformations. Stable transgenic plants expressing one of these versions of Rx are resistant to the strains of PVX and the PopMV that previously caused trailing necrosis. We conclude from this work that artificial evolution of NB-LRR disease resistance genes in crops can be enhanced by modification of both activation and recognition phases, to both accentuate the positive and eliminate the negative aspects of disease resistance. </div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">24324167</PMID>
<DateCompleted>
<Year>2014</Year>
<Month>02</Month>
<Day>27</Day>
</DateCompleted>
<DateRevised>
<Year>2018</Year>
<Month>11</Month>
<Day>13</Day>
</DateRevised>
<Article PubModel="Print-Electronic">
<Journal>
<ISSN IssnType="Electronic">1091-6490</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>110</Volume>
<Issue>52</Issue>
<PubDate>
<Year>2013</Year>
<Month>Dec</Month>
<Day>24</Day>
</PubDate>
</JournalIssue>
<Title>Proceedings of the National Academy of Sciences of the United States of America</Title>
<ISOAbbreviation>Proc Natl Acad Sci U S A</ISOAbbreviation>
</Journal>
<ArticleTitle>Stepwise artificial evolution of a plant disease resistance gene.</ArticleTitle>
<Pagination>
<MedlinePgn>21189-94</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1073/pnas.1311134110</ELocationID>
<Abstract>
<AbstractText>Genes encoding plant nucleotide-binding leucine-rich repeat (NB-LRR) proteins confer dominant resistance to diverse pathogens. The wild-type potato NB-LRR protein Rx confers resistance against a single strain of potato virus X (PVX), whereas LRR mutants protect against both a second PVX strain and the distantly related poplar mosaic virus (PopMV). In one of the Rx mutants there was a cost to the broad-spectrum resistance because the response to PopMV was transformed from a mild disease on plants carrying wild-type Rx to a trailing necrosis that killed the plant. To explore the use of secondary mutagenesis to eliminate this cost of broad-spectrum resistance, we performed random mutagenesis of the N-terminal domains of this broad-recognition version of Rx and isolated four mutants with a stronger response against the PopMV coat protein due to enhanced activation sensitivity. These mutations are located close to the nucleotide-binding pocket, a highly conserved structure that likely controls the "switch" between active and inactive NB-LRR conformations. Stable transgenic plants expressing one of these versions of Rx are resistant to the strains of PVX and the PopMV that previously caused trailing necrosis. We conclude from this work that artificial evolution of NB-LRR disease resistance genes in crops can be enhanced by modification of both activation and recognition phases, to both accentuate the positive and eliminate the negative aspects of disease resistance. </AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Harris</LastName>
<ForeName>C Jake</ForeName>
<Initials>CJ</Initials>
<AffiliationInfo>
<Affiliation>Department of Plant Sciences, University of Cambridge, Cambridge CB2 3EA, United Kingdom.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Slootweg</LastName>
<ForeName>Erik J</ForeName>
<Initials>EJ</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Goverse</LastName>
<ForeName>Aska</ForeName>
<Initials>A</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Baulcombe</LastName>
<ForeName>David C</ForeName>
<Initials>DC</Initials>
</Author>
</AuthorList>
<Language>eng</Language>
<GrantList CompleteYN="Y">
<Grant>
<Agency>Biotechnology and Biological Sciences Research Council</Agency>
<Country>United Kingdom</Country>
</Grant>
</GrantList>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D013485">Research Support, Non-U.S. Gov't</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2013</Year>
<Month>12</Month>
<Day>09</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>United States</Country>
<MedlineTA>Proc Natl Acad Sci U S A</MedlineTA>
<NlmUniqueID>7505876</NlmUniqueID>
<ISSNLinking>0027-8424</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D036022">Capsid Proteins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D010940">Plant Proteins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D011506">Proteins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="C107657">leucine-rich repeat proteins</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D000383" MajorTopicYN="N">Agriculture</DescriptorName>
<QualifierName UI="Q000379" MajorTopicYN="N">methods</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D016960" MajorTopicYN="N">Agrobacterium tumefaciens</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D019943" MajorTopicYN="N">Amino Acid Substitution</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D015153" MajorTopicYN="N">Blotting, Western</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D036022" MajorTopicYN="N">Capsid Proteins</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D017788" MajorTopicYN="N">Carlavirus</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D016334" MajorTopicYN="N">Genes, vpr</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D005818" MajorTopicYN="N">Genetic Engineering</DescriptorName>
<QualifierName UI="Q000379" MajorTopicYN="Y">methods</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D007113" MajorTopicYN="N">Immunity, Innate</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="Y">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D010940" MajorTopicYN="N">Plant Proteins</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="Y">genetics</QualifierName>
<QualifierName UI="Q000276" MajorTopicYN="N">immunology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D030821" MajorTopicYN="N">Plants, Genetically Modified</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D011506" MajorTopicYN="N">Proteins</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="Y">genetics</QualifierName>
<QualifierName UI="Q000276" MajorTopicYN="N">immunology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D020133" MajorTopicYN="N">Reverse Transcriptase Polymerase Chain Reaction</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D014026" MajorTopicYN="N">Tobacco</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000276" MajorTopicYN="Y">immunology</QualifierName>
<QualifierName UI="Q000821" MajorTopicYN="N">virology</QualifierName>
</MeshHeading>
</MeshHeadingList>
<KeywordList Owner="NOTNLM">
<Keyword MajorTopicYN="N">NLR</Keyword>
<Keyword MajorTopicYN="N">arms race</Keyword>
<Keyword MajorTopicYN="N">genetically modified</Keyword>
<Keyword MajorTopicYN="N">plant defense</Keyword>
<Keyword MajorTopicYN="N">plant immunity</Keyword>
</KeywordList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="entrez">
<Year>2013</Year>
<Month>12</Month>
<Day>11</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2013</Year>
<Month>12</Month>
<Day>11</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2014</Year>
<Month>2</Month>
<Day>28</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">24324167</ArticleId>
<ArticleId IdType="pii">1311134110</ArticleId>
<ArticleId IdType="doi">10.1073/pnas.1311134110</ArticleId>
<ArticleId IdType="pmc">PMC3876221</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>Curr Opin Plant Biol. 2009 Aug;12(4):427-36</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19394891</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Rev Genet. 2007 May;8(5):382-93</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17404584</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant J. 1999 Nov;20(3):317-32</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10571892</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Mol Biol. 2006 May;61(1-2):31-45</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16786290</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Trends Biochem Sci. 1999 Feb;24(2):47-53</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10098397</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Virology. 1993 Nov;197(1):293-302</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8212565</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2005 Sep;139(1):52-63</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16113212</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS Pathog. 2012;8(3):e1002595</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22438813</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2011 Sep 27;108(39):16463-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21911370</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Opin Plant Biol. 2006 Aug;9(4):383-90</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16713729</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2010 Jul;22(7):2444-58</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20601497</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 1999 May;11(5):781-92</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10330465</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2007 May;19(5):1682-94</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17526750</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2006 Apr;140(4):1233-45</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16489136</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant J. 2010 Nov;64(3):433-45</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20804457</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell Host Microbe. 2011 Mar 17;9(3):200-11</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21402359</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant J. 2002 Mar;29(5):569-79</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11874570</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Rev Mol Cell Biol. 2005 Jul;6(7):519-29</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16072036</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2001 Jun 22;292(5525):2281-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11423651</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2010 Jun 3;465(7298):632-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20520716</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Cells. 2011 Nov;32(5):421-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22057987</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2006 Nov 16;444(7117):323-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17108957</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2012 Apr;158(4):1819-32</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22331412</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2010 Dec;22(12):4195-215</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21177483</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2008 Aug;20(8):2009-17</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18723576</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2008 Mar;20(3):739-51</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18344282</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant J. 2007 Oct;52(1):82-93</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17655649</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2003 May 1;423(6935):74-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12721627</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2010 Dec;22(12):4176-94</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21169509</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Annu Rev Plant Biol. 2003;54:23-61</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14502984</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant J. 2002 Oct;32(2):195-204</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12383085</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Plant Pathol. 2007 Jan;8(1):103-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20507482</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS One. 2012;7(8):e42036</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22870280</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>EMBO J. 2002 Sep 2;21(17):4511-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12198153</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Plant Microbe Interact. 2011 Aug;24(8):897-906</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21539434</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2007 Feb 13;104(7):2531-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17277084</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Trends Plant Sci. 2009 Oct;14(10):521-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19720556</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Mol Biol. 2004 Oct 8;343(1):1-28</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15381417</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genetics. 2006 Feb;172(2):1229-42</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16322513</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2006 Dec 5;103(49):18828-33</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17021014</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS One. 2013;8(2):e55954</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23437080</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2013 Jul;162(3):1510-28</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23660837</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Plant Microbe Interact. 2010 Mar;23(3):283-93</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20121450</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2010 Jan 1;327(5961):92-4</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20044577</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 1985 Mar 8;227(4691):1229-31</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17757866</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2003 Mar;15(3):732-44</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12615945</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2006 Aug;18(8):2082-93</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16844906</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant J. 2012 Dec;72(6):894-907</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22805093</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Plant Microbe Interact. 2011 Aug;24(8):918-31</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21501087</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Mol Biol. 2000 Oct;44(3):321-34</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11199391</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant J. 2007 Apr;50(1):14-28</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17346268</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS Biol. 2007 Mar;5(3):e68</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17298188</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2002 Nov;14(11):2929-39</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12417711</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell Host Microbe. 2011 Mar 17;9(3):187-99</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21402358</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Opin Plant Biol. 2011 Aug;14(4):468-76</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21531167</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/PoplarV1/Data/Main/Curation
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 002378 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Curation/biblio.hfd -nk 002378 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    PoplarV1
   |flux=    Main
   |étape=   Curation
   |type=    RBID
   |clé=     pubmed:24324167
   |texte=   Stepwise artificial evolution of a plant disease resistance gene.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Curation/RBID.i   -Sk "pubmed:24324167" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Curation/biblio.hfd   \
       | NlmPubMed2Wicri -a PoplarV1 

Wicri

This area was generated with Dilib version V0.6.37.
Data generation: Wed Nov 18 12:07:19 2020. Site generation: Wed Nov 18 12:16:31 2020