Serveur d'exploration sur le peuplier

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Growth and physiological responses of isohydric and anisohydric poplars to drought.

Identifieur interne : 001D00 ( Main/Curation ); précédent : 001C99; suivant : 001D01

Growth and physiological responses of isohydric and anisohydric poplars to drought.

Auteurs : Ziv Attia [Israël] ; Jean-Christophe Domec [États-Unis] ; Ram Oren [Suède] ; Danielle A. Way [Canada] ; Menachem Moshelion [Israël]

Source :

RBID : pubmed:25954045

Descripteurs français

English descriptors

Abstract

Understanding how different plants prioritize carbon gain and drought vulnerability under a variable water supply is important for predicting which trees will maximize woody biomass production under different environmental conditions. Here, Populus balsamifera (BS, isohydric genotype), P. simonii (SI, previously uncharacterized stomatal behaviour), and their cross, P. balsamifera x simonii (BSxSI, anisohydric genotype) were studied to assess the physiological basis for biomass accumulation and water-use efficiency across a range of water availabilities. Under ample water, whole plant stomatal conductance (gs), transpiration (E), and growth rates were higher in anisohydric genotypes (SI and BSxSI) than in isohydric poplars (BS). Under drought, all genotypes regulated the leaf to stem water potential gradient via changes in gs, synchronizing leaf hydraulic conductance (Kleaf) and E: isohydric plants reduced Kleaf, gs, and E, whereas anisohydric genotypes maintained high Kleaf and E, which reduced both leaf and stem water potentials. Nevertheless, SI poplars reduced their plant hydraulic conductance (Kplant) during water stress and, unlike, BSxSI plants, recovered rapidly from drought. Low gs of the isohydric BS under drought reduced CO2 assimilation rates and biomass potential under moderate water stress. While anisohydric genotypes had the fastest growth under ample water and higher photosynthetic rates under increasing water stress, isohydric poplars had higher water-use efficiency. Overall, the results indicate three strategies for how closely related biomass species deal with water stress: survival-isohydric (BS), sensitive-anisohydric (BSxSI), and resilience-anisohydric (SI). Implications for woody biomass growth, water-use efficiency, and survival under variable environmental conditions are discussed.

DOI: 10.1093/jxb/erv195
PubMed: 25954045
PubMed Central: PMC4493787

Links toward previous steps (curation, corpus...)


Links to Exploration step

pubmed:25954045

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Growth and physiological responses of isohydric and anisohydric poplars to drought.</title>
<author>
<name sortKey="Attia, Ziv" sort="Attia, Ziv" uniqKey="Attia Z" first="Ziv" last="Attia">Ziv Attia</name>
<affiliation wicri:level="1">
<nlm:affiliation>Institute of Plant Sciences and Genetics in Agriculture, The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot 76100, Israel.</nlm:affiliation>
<country xml:lang="fr">Israël</country>
<wicri:regionArea>Institute of Plant Sciences and Genetics in Agriculture, The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot 76100</wicri:regionArea>
</affiliation>
</author>
<author>
<name sortKey="Domec, Jean Christophe" sort="Domec, Jean Christophe" uniqKey="Domec J" first="Jean-Christophe" last="Domec">Jean-Christophe Domec</name>
<affiliation wicri:level="1">
<nlm:affiliation>Bordeaux Sciences Agro UMR INRA-ISPA 1391, 33195, Gradignan, France Department of Forestry and Environmental Resources, North Carolina State University, Raleigh, NC 27695, USA Nicholas School of the Environment and Earth Sciences, Duke University, Durham, North Carolina 27708, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Bordeaux Sciences Agro UMR INRA-ISPA 1391, 33195, Gradignan, France Department of Forestry and Environmental Resources, North Carolina State University, Raleigh, NC 27695, USA Nicholas School of the Environment and Earth Sciences, Duke University, Durham, North Carolina 27708</wicri:regionArea>
</affiliation>
</author>
<author>
<name sortKey="Oren, Ram" sort="Oren, Ram" uniqKey="Oren R" first="Ram" last="Oren">Ram Oren</name>
<affiliation wicri:level="1">
<nlm:affiliation>Nicholas School of the Environment and Earth Sciences, Duke University, Durham, North Carolina 27708, USA Department of Forest Ecology & Management, Swedish University of Agricultural Sciences (SLU), SE-901 83, Umeå, Sweden.</nlm:affiliation>
<country xml:lang="fr">Suède</country>
<wicri:regionArea>Nicholas School of the Environment and Earth Sciences, Duke University, Durham, North Carolina 27708, USA Department of Forest Ecology & Management, Swedish University of Agricultural Sciences (SLU), SE-901 83, Umeå</wicri:regionArea>
</affiliation>
</author>
<author>
<name sortKey="Way, Danielle A" sort="Way, Danielle A" uniqKey="Way D" first="Danielle A" last="Way">Danielle A. Way</name>
<affiliation wicri:level="1">
<nlm:affiliation>Nicholas School of the Environment and Earth Sciences, Duke University, Durham, North Carolina 27708, USA Department of Biology, University of Western Ontario, London, ON, N6A 5B7, Canada dway4@uwo.ca.</nlm:affiliation>
<country wicri:rule="url">Canada</country>
<wicri:regionArea>Nicholas School of the Environment and Earth Sciences, Duke University, Durham, North Carolina 27708, USA Department of Biology, University of Western Ontario, London, ON, N6A 5B7</wicri:regionArea>
</affiliation>
</author>
<author>
<name sortKey="Moshelion, Menachem" sort="Moshelion, Menachem" uniqKey="Moshelion M" first="Menachem" last="Moshelion">Menachem Moshelion</name>
<affiliation wicri:level="1">
<nlm:affiliation>Institute of Plant Sciences and Genetics in Agriculture, The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot 76100, Israel.</nlm:affiliation>
<country xml:lang="fr">Israël</country>
<wicri:regionArea>Institute of Plant Sciences and Genetics in Agriculture, The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot 76100</wicri:regionArea>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2015">2015</date>
<idno type="RBID">pubmed:25954045</idno>
<idno type="pmid">25954045</idno>
<idno type="doi">10.1093/jxb/erv195</idno>
<idno type="pmc">PMC4493787</idno>
<idno type="wicri:Area/Main/Corpus">001D00</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">001D00</idno>
<idno type="wicri:Area/Main/Curation">001D00</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">001D00</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Growth and physiological responses of isohydric and anisohydric poplars to drought.</title>
<author>
<name sortKey="Attia, Ziv" sort="Attia, Ziv" uniqKey="Attia Z" first="Ziv" last="Attia">Ziv Attia</name>
<affiliation wicri:level="1">
<nlm:affiliation>Institute of Plant Sciences and Genetics in Agriculture, The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot 76100, Israel.</nlm:affiliation>
<country xml:lang="fr">Israël</country>
<wicri:regionArea>Institute of Plant Sciences and Genetics in Agriculture, The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot 76100</wicri:regionArea>
</affiliation>
</author>
<author>
<name sortKey="Domec, Jean Christophe" sort="Domec, Jean Christophe" uniqKey="Domec J" first="Jean-Christophe" last="Domec">Jean-Christophe Domec</name>
<affiliation wicri:level="1">
<nlm:affiliation>Bordeaux Sciences Agro UMR INRA-ISPA 1391, 33195, Gradignan, France Department of Forestry and Environmental Resources, North Carolina State University, Raleigh, NC 27695, USA Nicholas School of the Environment and Earth Sciences, Duke University, Durham, North Carolina 27708, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Bordeaux Sciences Agro UMR INRA-ISPA 1391, 33195, Gradignan, France Department of Forestry and Environmental Resources, North Carolina State University, Raleigh, NC 27695, USA Nicholas School of the Environment and Earth Sciences, Duke University, Durham, North Carolina 27708</wicri:regionArea>
</affiliation>
</author>
<author>
<name sortKey="Oren, Ram" sort="Oren, Ram" uniqKey="Oren R" first="Ram" last="Oren">Ram Oren</name>
<affiliation wicri:level="1">
<nlm:affiliation>Nicholas School of the Environment and Earth Sciences, Duke University, Durham, North Carolina 27708, USA Department of Forest Ecology & Management, Swedish University of Agricultural Sciences (SLU), SE-901 83, Umeå, Sweden.</nlm:affiliation>
<country xml:lang="fr">Suède</country>
<wicri:regionArea>Nicholas School of the Environment and Earth Sciences, Duke University, Durham, North Carolina 27708, USA Department of Forest Ecology & Management, Swedish University of Agricultural Sciences (SLU), SE-901 83, Umeå</wicri:regionArea>
</affiliation>
</author>
<author>
<name sortKey="Way, Danielle A" sort="Way, Danielle A" uniqKey="Way D" first="Danielle A" last="Way">Danielle A. Way</name>
<affiliation wicri:level="1">
<nlm:affiliation>Nicholas School of the Environment and Earth Sciences, Duke University, Durham, North Carolina 27708, USA Department of Biology, University of Western Ontario, London, ON, N6A 5B7, Canada dway4@uwo.ca.</nlm:affiliation>
<country wicri:rule="url">Canada</country>
<wicri:regionArea>Nicholas School of the Environment and Earth Sciences, Duke University, Durham, North Carolina 27708, USA Department of Biology, University of Western Ontario, London, ON, N6A 5B7</wicri:regionArea>
</affiliation>
</author>
<author>
<name sortKey="Moshelion, Menachem" sort="Moshelion, Menachem" uniqKey="Moshelion M" first="Menachem" last="Moshelion">Menachem Moshelion</name>
<affiliation wicri:level="1">
<nlm:affiliation>Institute of Plant Sciences and Genetics in Agriculture, The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot 76100, Israel.</nlm:affiliation>
<country xml:lang="fr">Israël</country>
<wicri:regionArea>Institute of Plant Sciences and Genetics in Agriculture, The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot 76100</wicri:regionArea>
</affiliation>
</author>
</analytic>
<series>
<title level="j">Journal of experimental botany</title>
<idno type="eISSN">1460-2431</idno>
<imprint>
<date when="2015" type="published">2015</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Droughts (MeSH)</term>
<term>Populus (growth & development)</term>
<term>Populus (physiology)</term>
</keywords>
<keywords scheme="KwdFr" xml:lang="fr">
<term>Populus (croissance et développement)</term>
<term>Populus (physiologie)</term>
<term>Sécheresses (MeSH)</term>
</keywords>
<keywords scheme="MESH" qualifier="croissance et développement" xml:lang="fr">
<term>Populus</term>
</keywords>
<keywords scheme="MESH" qualifier="growth & development" xml:lang="en">
<term>Populus</term>
</keywords>
<keywords scheme="MESH" qualifier="physiologie" xml:lang="fr">
<term>Populus</term>
</keywords>
<keywords scheme="MESH" qualifier="physiology" xml:lang="en">
<term>Populus</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Droughts</term>
</keywords>
<keywords scheme="MESH" xml:lang="fr">
<term>Sécheresses</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Understanding how different plants prioritize carbon gain and drought vulnerability under a variable water supply is important for predicting which trees will maximize woody biomass production under different environmental conditions. Here, Populus balsamifera (BS, isohydric genotype), P. simonii (SI, previously uncharacterized stomatal behaviour), and their cross, P. balsamifera x simonii (BSxSI, anisohydric genotype) were studied to assess the physiological basis for biomass accumulation and water-use efficiency across a range of water availabilities. Under ample water, whole plant stomatal conductance (gs), transpiration (E), and growth rates were higher in anisohydric genotypes (SI and BSxSI) than in isohydric poplars (BS). Under drought, all genotypes regulated the leaf to stem water potential gradient via changes in gs, synchronizing leaf hydraulic conductance (Kleaf) and E: isohydric plants reduced Kleaf, gs, and E, whereas anisohydric genotypes maintained high Kleaf and E, which reduced both leaf and stem water potentials. Nevertheless, SI poplars reduced their plant hydraulic conductance (Kplant) during water stress and, unlike, BSxSI plants, recovered rapidly from drought. Low gs of the isohydric BS under drought reduced CO2 assimilation rates and biomass potential under moderate water stress. While anisohydric genotypes had the fastest growth under ample water and higher photosynthetic rates under increasing water stress, isohydric poplars had higher water-use efficiency. Overall, the results indicate three strategies for how closely related biomass species deal with water stress: survival-isohydric (BS), sensitive-anisohydric (BSxSI), and resilience-anisohydric (SI). Implications for woody biomass growth, water-use efficiency, and survival under variable environmental conditions are discussed. </div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">25954045</PMID>
<DateCompleted>
<Year>2016</Year>
<Month>04</Month>
<Day>05</Day>
</DateCompleted>
<DateRevised>
<Year>2019</Year>
<Month>01</Month>
<Day>08</Day>
</DateRevised>
<Article PubModel="Print-Electronic">
<Journal>
<ISSN IssnType="Electronic">1460-2431</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>66</Volume>
<Issue>14</Issue>
<PubDate>
<Year>2015</Year>
<Month>Jul</Month>
</PubDate>
</JournalIssue>
<Title>Journal of experimental botany</Title>
<ISOAbbreviation>J Exp Bot</ISOAbbreviation>
</Journal>
<ArticleTitle>Growth and physiological responses of isohydric and anisohydric poplars to drought.</ArticleTitle>
<Pagination>
<MedlinePgn>4373-81</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1093/jxb/erv195</ELocationID>
<Abstract>
<AbstractText>Understanding how different plants prioritize carbon gain and drought vulnerability under a variable water supply is important for predicting which trees will maximize woody biomass production under different environmental conditions. Here, Populus balsamifera (BS, isohydric genotype), P. simonii (SI, previously uncharacterized stomatal behaviour), and their cross, P. balsamifera x simonii (BSxSI, anisohydric genotype) were studied to assess the physiological basis for biomass accumulation and water-use efficiency across a range of water availabilities. Under ample water, whole plant stomatal conductance (gs), transpiration (E), and growth rates were higher in anisohydric genotypes (SI and BSxSI) than in isohydric poplars (BS). Under drought, all genotypes regulated the leaf to stem water potential gradient via changes in gs, synchronizing leaf hydraulic conductance (Kleaf) and E: isohydric plants reduced Kleaf, gs, and E, whereas anisohydric genotypes maintained high Kleaf and E, which reduced both leaf and stem water potentials. Nevertheless, SI poplars reduced their plant hydraulic conductance (Kplant) during water stress and, unlike, BSxSI plants, recovered rapidly from drought. Low gs of the isohydric BS under drought reduced CO2 assimilation rates and biomass potential under moderate water stress. While anisohydric genotypes had the fastest growth under ample water and higher photosynthetic rates under increasing water stress, isohydric poplars had higher water-use efficiency. Overall, the results indicate three strategies for how closely related biomass species deal with water stress: survival-isohydric (BS), sensitive-anisohydric (BSxSI), and resilience-anisohydric (SI). Implications for woody biomass growth, water-use efficiency, and survival under variable environmental conditions are discussed. </AbstractText>
<CopyrightInformation>© The Author 2015. Published by Oxford University Press on behalf of the Society for Experimental Biology.</CopyrightInformation>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Attia</LastName>
<ForeName>Ziv</ForeName>
<Initials>Z</Initials>
<AffiliationInfo>
<Affiliation>Institute of Plant Sciences and Genetics in Agriculture, The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot 76100, Israel.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Domec</LastName>
<ForeName>Jean-Christophe</ForeName>
<Initials>JC</Initials>
<AffiliationInfo>
<Affiliation>Bordeaux Sciences Agro UMR INRA-ISPA 1391, 33195, Gradignan, France Department of Forestry and Environmental Resources, North Carolina State University, Raleigh, NC 27695, USA Nicholas School of the Environment and Earth Sciences, Duke University, Durham, North Carolina 27708, USA.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Oren</LastName>
<ForeName>Ram</ForeName>
<Initials>R</Initials>
<AffiliationInfo>
<Affiliation>Nicholas School of the Environment and Earth Sciences, Duke University, Durham, North Carolina 27708, USA Department of Forest Ecology & Management, Swedish University of Agricultural Sciences (SLU), SE-901 83, Umeå, Sweden.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Way</LastName>
<ForeName>Danielle A</ForeName>
<Initials>DA</Initials>
<AffiliationInfo>
<Affiliation>Nicholas School of the Environment and Earth Sciences, Duke University, Durham, North Carolina 27708, USA Department of Biology, University of Western Ontario, London, ON, N6A 5B7, Canada dway4@uwo.ca.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Moshelion</LastName>
<ForeName>Menachem</ForeName>
<Initials>M</Initials>
<AffiliationInfo>
<Affiliation>Institute of Plant Sciences and Genetics in Agriculture, The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot 76100, Israel.</Affiliation>
</AffiliationInfo>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D013485">Research Support, Non-U.S. Gov't</PublicationType>
<PublicationType UI="D013486">Research Support, U.S. Gov't, Non-P.H.S.</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2015</Year>
<Month>05</Month>
<Day>07</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>England</Country>
<MedlineTA>J Exp Bot</MedlineTA>
<NlmUniqueID>9882906</NlmUniqueID>
<ISSNLinking>0022-0957</ISSNLinking>
</MedlineJournalInfo>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D055864" MajorTopicYN="Y">Droughts</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D032107" MajorTopicYN="N">Populus</DescriptorName>
<QualifierName UI="Q000254" MajorTopicYN="N">growth & development</QualifierName>
<QualifierName UI="Q000502" MajorTopicYN="Y">physiology</QualifierName>
</MeshHeading>
</MeshHeadingList>
<KeywordList Owner="NOTNLM">
<Keyword MajorTopicYN="N">Bioenergy</Keyword>
<Keyword MajorTopicYN="N">biomass</Keyword>
<Keyword MajorTopicYN="N">carbon</Keyword>
<Keyword MajorTopicYN="N">hydraulic conductance</Keyword>
<Keyword MajorTopicYN="N">stomata</Keyword>
<Keyword MajorTopicYN="N">transpiration</Keyword>
</KeywordList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="entrez">
<Year>2015</Year>
<Month>5</Month>
<Day>9</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2015</Year>
<Month>5</Month>
<Day>9</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2016</Year>
<Month>4</Month>
<Day>6</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">25954045</ArticleId>
<ArticleId IdType="pii">erv195</ArticleId>
<ArticleId IdType="doi">10.1093/jxb/erv195</ArticleId>
<ArticleId IdType="pmc">PMC4493787</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>Plant Physiol. 2003 Aug;132(4):2166-73</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12913171</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Tree Physiol. 1992 Oct;11(3):271-87</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14969951</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Am Nat. 2004 May;163(5):654-71</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15122485</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 1970 Aug;46(2):343-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16657462</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Annu Rev Plant Biol. 2006;57:361-81</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16669766</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Colloids Surf B Biointerfaces. 2006 Nov 1;53(1):23-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16949801</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2006 Sep 15;313(5793):1596-604</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16973872</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell Environ. 2007 May;30(5):559-69</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17407534</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>New Phytol. 2008;178(4):719-39</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18422905</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2009 Jan;149(1):575-84</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19011001</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>New Phytol. 2009;181(3):651-61</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19054338</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>New Phytol. 2009;182(3):763-73</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19228296</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Tree Physiol. 2009 Jul;29(7):879-87</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19429900</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell Environ. 2009 Nov;32(11):1500-12</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19558405</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell Environ. 2009 Dec;32(12):1821-32</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19712064</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Am Nat. 2010 Apr;175(4):447-60</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20178410</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Physiol Plant. 2010 Dec;140(4):321-33</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20681973</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Tree Physiol. 2011 Mar;31(3):240-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21444373</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2011 Jun;156(2):832-43</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21511989</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Physiol Plant. 2011 Oct;143(2):154-65</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21623799</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Tree Physiol. 2012 Mar;32(3):245-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22427373</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Signal Behav. 2012 Jul;7(7):767-70</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22751307</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Tree Physiol. 2013 Apr;33(4):331-4</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23612243</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Photosynth Res. 2013 Nov;117(1-3):45-59</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23670217</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Planta. 1980 Jun;149(1):78-90</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24306196</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Opin Biotechnol. 2014 Apr;26:31-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24679255</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>New Phytol. 2014 Oct;204(1):105-15</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24985503</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell Environ. 2015 Sep;38(9):1785-93</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25039365</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Tree Physiol. 2014 Nov;34(11):1199-202</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25192885</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell Environ. 2015 Jul;38(7):1233-51</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25444560</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Oecologia. 1995 Apr;101(4):514-522</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28306968</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Oecologia. 2002 Jun;132(1):34-43</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28547288</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/PoplarV1/Data/Main/Curation
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 001D00 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Curation/biblio.hfd -nk 001D00 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    PoplarV1
   |flux=    Main
   |étape=   Curation
   |type=    RBID
   |clé=     pubmed:25954045
   |texte=   Growth and physiological responses of isohydric and anisohydric poplars to drought.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Curation/RBID.i   -Sk "pubmed:25954045" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Curation/biblio.hfd   \
       | NlmPubMed2Wicri -a PoplarV1 

Wicri

This area was generated with Dilib version V0.6.37.
Data generation: Wed Nov 18 12:07:19 2020. Site generation: Wed Nov 18 12:16:31 2020