Serveur d'exploration sur le peuplier

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Prioritization of copper for the use in photosynthetic electron transport in developing leaves of hybrid poplar.

Identifieur interne : 001C53 ( Main/Curation ); précédent : 001C52; suivant : 001C54

Prioritization of copper for the use in photosynthetic electron transport in developing leaves of hybrid poplar.

Auteurs : Muhammad Shahbaz [États-Unis] ; Karl Ravet [États-Unis] ; Graham Peers [États-Unis] ; Marinus Pilon [États-Unis]

Source :

RBID : pubmed:26089828

Abstract

Plastocyanin (PC) is an essential and abundant copper (Cu) protein required for photosynthesis in higher plants. Severe copper deprivation has the potential to cause a defect in photosynthetic electron transport due to a lack in PC. The Cu-microRNAs, which are up-regulated under Cu deficiency, down-regulate the expression of target Cu proteins other than PC, cytochrome-c oxidase and the ethylene receptors. It has been proposed that this mechanism saves Cu for PC maturation. We aimed to test how hybrid poplar, a species that has capacity to rapidly expand its photosynthetically active tissue, responds to variations in Cu availability over time. Measurement of chlorophyll fluorescence after Cu depletion revealed a drastic effect on photosynthesis in hybrid poplar. The decrease in photosynthetic capacity was correlated with a reduction in PC protein levels. Compared to older leaves, PC decreased more strongly in developing leaves, which also lost more photosynthetic electron transport capacity. The effect of Cu depletion on older and more developed leaves was minor and these leaves maintained much of their photosynthetic capacity. Interestingly, upon resupply of Cu to the medium a very rapid recovery of Cu levels was seen in the younger leaves with a concomitant rise in the expression and activity of PC. In contrast, the expression of those Cu proteins, which are targets of microRNAs was under the same circumstances delayed. At the same time, Cu resupply had only minor effects on the older leaves. The data suggest a model where rapid recovery of photosynthetic capacity in younger leaves is made possible by a preferred allocation of Cu to PC in younger leaves, which is supported by Cu-microRNA expression.

DOI: 10.3389/fpls.2015.00407
PubMed: 26089828
PubMed Central: PMC4452806

Links toward previous steps (curation, corpus...)


Links to Exploration step

pubmed:26089828

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Prioritization of copper for the use in photosynthetic electron transport in developing leaves of hybrid poplar.</title>
<author>
<name sortKey="Shahbaz, Muhammad" sort="Shahbaz, Muhammad" uniqKey="Shahbaz M" first="Muhammad" last="Shahbaz">Muhammad Shahbaz</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Biology, Colorado State University, Fort Collins CO, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Biology, Colorado State University, Fort Collins CO</wicri:regionArea>
</affiliation>
</author>
<author>
<name sortKey="Ravet, Karl" sort="Ravet, Karl" uniqKey="Ravet K" first="Karl" last="Ravet">Karl Ravet</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Biology, Colorado State University, Fort Collins CO, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Biology, Colorado State University, Fort Collins CO</wicri:regionArea>
</affiliation>
</author>
<author>
<name sortKey="Peers, Graham" sort="Peers, Graham" uniqKey="Peers G" first="Graham" last="Peers">Graham Peers</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Biology, Colorado State University, Fort Collins CO, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Biology, Colorado State University, Fort Collins CO</wicri:regionArea>
</affiliation>
</author>
<author>
<name sortKey="Pilon, Marinus" sort="Pilon, Marinus" uniqKey="Pilon M" first="Marinus" last="Pilon">Marinus Pilon</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Biology, Colorado State University, Fort Collins CO, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Biology, Colorado State University, Fort Collins CO</wicri:regionArea>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2015">2015</date>
<idno type="RBID">pubmed:26089828</idno>
<idno type="pmid">26089828</idno>
<idno type="doi">10.3389/fpls.2015.00407</idno>
<idno type="pmc">PMC4452806</idno>
<idno type="wicri:Area/Main/Corpus">001C53</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">001C53</idno>
<idno type="wicri:Area/Main/Curation">001C53</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">001C53</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Prioritization of copper for the use in photosynthetic electron transport in developing leaves of hybrid poplar.</title>
<author>
<name sortKey="Shahbaz, Muhammad" sort="Shahbaz, Muhammad" uniqKey="Shahbaz M" first="Muhammad" last="Shahbaz">Muhammad Shahbaz</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Biology, Colorado State University, Fort Collins CO, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Biology, Colorado State University, Fort Collins CO</wicri:regionArea>
</affiliation>
</author>
<author>
<name sortKey="Ravet, Karl" sort="Ravet, Karl" uniqKey="Ravet K" first="Karl" last="Ravet">Karl Ravet</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Biology, Colorado State University, Fort Collins CO, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Biology, Colorado State University, Fort Collins CO</wicri:regionArea>
</affiliation>
</author>
<author>
<name sortKey="Peers, Graham" sort="Peers, Graham" uniqKey="Peers G" first="Graham" last="Peers">Graham Peers</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Biology, Colorado State University, Fort Collins CO, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Biology, Colorado State University, Fort Collins CO</wicri:regionArea>
</affiliation>
</author>
<author>
<name sortKey="Pilon, Marinus" sort="Pilon, Marinus" uniqKey="Pilon M" first="Marinus" last="Pilon">Marinus Pilon</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Biology, Colorado State University, Fort Collins CO, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Biology, Colorado State University, Fort Collins CO</wicri:regionArea>
</affiliation>
</author>
</analytic>
<series>
<title level="j">Frontiers in plant science</title>
<idno type="ISSN">1664-462X</idno>
<imprint>
<date when="2015" type="published">2015</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass></textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Plastocyanin (PC) is an essential and abundant copper (Cu) protein required for photosynthesis in higher plants. Severe copper deprivation has the potential to cause a defect in photosynthetic electron transport due to a lack in PC. The Cu-microRNAs, which are up-regulated under Cu deficiency, down-regulate the expression of target Cu proteins other than PC, cytochrome-c oxidase and the ethylene receptors. It has been proposed that this mechanism saves Cu for PC maturation. We aimed to test how hybrid poplar, a species that has capacity to rapidly expand its photosynthetically active tissue, responds to variations in Cu availability over time. Measurement of chlorophyll fluorescence after Cu depletion revealed a drastic effect on photosynthesis in hybrid poplar. The decrease in photosynthetic capacity was correlated with a reduction in PC protein levels. Compared to older leaves, PC decreased more strongly in developing leaves, which also lost more photosynthetic electron transport capacity. The effect of Cu depletion on older and more developed leaves was minor and these leaves maintained much of their photosynthetic capacity. Interestingly, upon resupply of Cu to the medium a very rapid recovery of Cu levels was seen in the younger leaves with a concomitant rise in the expression and activity of PC. In contrast, the expression of those Cu proteins, which are targets of microRNAs was under the same circumstances delayed. At the same time, Cu resupply had only minor effects on the older leaves. The data suggest a model where rapid recovery of photosynthetic capacity in younger leaves is made possible by a preferred allocation of Cu to PC in younger leaves, which is supported by Cu-microRNA expression. </div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="PubMed-not-MEDLINE" Owner="NLM">
<PMID Version="1">26089828</PMID>
<DateCompleted>
<Year>2015</Year>
<Month>06</Month>
<Day>19</Day>
</DateCompleted>
<DateRevised>
<Year>2020</Year>
<Month>09</Month>
<Day>30</Day>
</DateRevised>
<Article PubModel="Electronic-eCollection">
<Journal>
<ISSN IssnType="Print">1664-462X</ISSN>
<JournalIssue CitedMedium="Print">
<Volume>6</Volume>
<PubDate>
<Year>2015</Year>
</PubDate>
</JournalIssue>
<Title>Frontiers in plant science</Title>
<ISOAbbreviation>Front Plant Sci</ISOAbbreviation>
</Journal>
<ArticleTitle>Prioritization of copper for the use in photosynthetic electron transport in developing leaves of hybrid poplar.</ArticleTitle>
<Pagination>
<MedlinePgn>407</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.3389/fpls.2015.00407</ELocationID>
<Abstract>
<AbstractText>Plastocyanin (PC) is an essential and abundant copper (Cu) protein required for photosynthesis in higher plants. Severe copper deprivation has the potential to cause a defect in photosynthetic electron transport due to a lack in PC. The Cu-microRNAs, which are up-regulated under Cu deficiency, down-regulate the expression of target Cu proteins other than PC, cytochrome-c oxidase and the ethylene receptors. It has been proposed that this mechanism saves Cu for PC maturation. We aimed to test how hybrid poplar, a species that has capacity to rapidly expand its photosynthetically active tissue, responds to variations in Cu availability over time. Measurement of chlorophyll fluorescence after Cu depletion revealed a drastic effect on photosynthesis in hybrid poplar. The decrease in photosynthetic capacity was correlated with a reduction in PC protein levels. Compared to older leaves, PC decreased more strongly in developing leaves, which also lost more photosynthetic electron transport capacity. The effect of Cu depletion on older and more developed leaves was minor and these leaves maintained much of their photosynthetic capacity. Interestingly, upon resupply of Cu to the medium a very rapid recovery of Cu levels was seen in the younger leaves with a concomitant rise in the expression and activity of PC. In contrast, the expression of those Cu proteins, which are targets of microRNAs was under the same circumstances delayed. At the same time, Cu resupply had only minor effects on the older leaves. The data suggest a model where rapid recovery of photosynthetic capacity in younger leaves is made possible by a preferred allocation of Cu to PC in younger leaves, which is supported by Cu-microRNA expression. </AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Shahbaz</LastName>
<ForeName>Muhammad</ForeName>
<Initials>M</Initials>
<AffiliationInfo>
<Affiliation>Department of Biology, Colorado State University, Fort Collins CO, USA.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Ravet</LastName>
<ForeName>Karl</ForeName>
<Initials>K</Initials>
<AffiliationInfo>
<Affiliation>Department of Biology, Colorado State University, Fort Collins CO, USA.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Peers</LastName>
<ForeName>Graham</ForeName>
<Initials>G</Initials>
<AffiliationInfo>
<Affiliation>Department of Biology, Colorado State University, Fort Collins CO, USA.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Pilon</LastName>
<ForeName>Marinus</ForeName>
<Initials>M</Initials>
<AffiliationInfo>
<Affiliation>Department of Biology, Colorado State University, Fort Collins CO, USA.</Affiliation>
</AffiliationInfo>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2015</Year>
<Month>06</Month>
<Day>03</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>Switzerland</Country>
<MedlineTA>Front Plant Sci</MedlineTA>
<NlmUniqueID>101568200</NlmUniqueID>
<ISSNLinking>1664-462X</ISSNLinking>
</MedlineJournalInfo>
<KeywordList Owner="NOTNLM">
<Keyword MajorTopicYN="N">Cu-miRNA</Keyword>
<Keyword MajorTopicYN="N">copper deficiency</Keyword>
<Keyword MajorTopicYN="N">photosynthesis</Keyword>
<Keyword MajorTopicYN="N">plastocyanin</Keyword>
<Keyword MajorTopicYN="N">polyphenol oxidase</Keyword>
<Keyword MajorTopicYN="N">poplar</Keyword>
<Keyword MajorTopicYN="N">prioritization</Keyword>
<Keyword MajorTopicYN="N">superoxide dismutase</Keyword>
</KeywordList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2015</Year>
<Month>03</Month>
<Day>01</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2015</Year>
<Month>05</Month>
<Day>21</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2015</Year>
<Month>6</Month>
<Day>20</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2015</Year>
<Month>6</Month>
<Day>20</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2015</Year>
<Month>6</Month>
<Day>20</Day>
<Hour>6</Hour>
<Minute>1</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>epublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">26089828</ArticleId>
<ArticleId IdType="doi">10.3389/fpls.2015.00407</ArticleId>
<ArticleId IdType="pmc">PMC4452806</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>J Biol Chem. 2003 Aug 15;278(33):31286-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12773541</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2000 Sep;124(1):285-95</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10982443</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2004 Dec;136(4):4265-74</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15563617</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2012 May 25;287(22):18544-50</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22493454</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2005 Apr;17(4):1233-51</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15772282</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2012 Sep;24(9):3767-82</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23012434</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2012 Feb;24(2):738-61</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22374396</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2013 Jun 25;110(26):10848-53</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23754401</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Planta. 2004 Nov;220(1):87-96</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15309534</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>New Phytol. 2009 Jun;182(4):799-816</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19402880</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Plant. 2009 Nov;2(6):1336-50</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19969519</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2014 Dec;26(12):4933-53</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25516599</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Methods Mol Biol. 2011;744:145-57</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21533691</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2007 Jun 1;282(22):16369-78</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17405879</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2011 Mar;23(3):1124-37</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21447792</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Anal Biochem. 1971 Nov;44(1):276-87</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">4943714</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2008 Jun 6;283(23):15932-45</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18408011</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2006 Sep 15;313(5793):1596-604</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16973872</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant J. 1993 Dec;4(6):933-45</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8281188</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2005 Jun;138(2):778-89</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15908590</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2009 Jan;21(1):347-61</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19122104</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Phytochemistry. 2006 Nov;67(21):2318-31</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16973188</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Trends Plant Sci. 2008 Jul;13(7):343-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18502167</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Integr Plant Biol. 2011 Nov;53(11):879-91</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22013976</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Anal Biochem. 1976 May 7;72:248-54</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">942051</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2013 Oct;25(10):3976-87</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24143805</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2011 Nov;157(3):1300-12</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21941002</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>New Phytol. 2011 Mar;189(4):1096-109</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21158867</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2002 Mar 8;277(10):8354-65</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11719511</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Mol Biol. 2003 Mar;51(4):577-87</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12650623</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 1999 Jan;119(1):123-32</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9880353</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/PoplarV1/Data/Main/Curation
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 001C53 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Curation/biblio.hfd -nk 001C53 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    PoplarV1
   |flux=    Main
   |étape=   Curation
   |type=    RBID
   |clé=     pubmed:26089828
   |texte=   Prioritization of copper for the use in photosynthetic electron transport in developing leaves of hybrid poplar.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Curation/RBID.i   -Sk "pubmed:26089828" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Curation/biblio.hfd   \
       | NlmPubMed2Wicri -a PoplarV1 

Wicri

This area was generated with Dilib version V0.6.37.
Data generation: Wed Nov 18 12:07:19 2020. Site generation: Wed Nov 18 12:16:31 2020