Serveur d'exploration sur le peuplier

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Multimodal analysis of pretreated biomass species highlights generic markers of lignocellulose recalcitrance.

Identifieur interne : 000F44 ( Main/Curation ); précédent : 000F43; suivant : 000F45

Multimodal analysis of pretreated biomass species highlights generic markers of lignocellulose recalcitrance.

Auteurs : Mickaël Herbaut [France] ; Aya Zoghlami [France] ; Anouck Habrant [France] ; Xavier Falourd [France] ; Loïc Foucat [France] ; Brigitte Chabbert [France] ; Gabriel Paës [France]

Source :

RBID : pubmed:29492107

Abstract

Background

Biomass recalcitrance to enzymatic hydrolysis has been assigned to several structural and chemical factors. However, their relative importance remains challenging to evaluate. Three representative biomass species (wheat straw, poplar and miscanthus) were submitted to four standard pretreatments (dilute acid, hot water, ionic liquid and sodium chlorite) in order to generate a set of contrasted samples. A large array of techniques, including wet chemistry analysis, porosity measurements using NMR spectroscopy, electron and fluorescence microscopy, were used in order to determine possible generic factors of biomass recalcitrance.

Results

The pretreatment conditions selected allowed obtaining samples displaying different susceptibility to enzymatic hydrolysis (from 3 up to 98% of the initial glucose content released after 96 h of saccharification). Generic correlation coefficients were calculated between the measured chemical and structural features and the final saccharification rates. Increases in porosity displayed overall strong positive correlations with saccharification efficiency, but different porosity ranges were concerned depending on the considered biomass. Lignin-related factors displayed highly negative coefficients for all biomasses. Lignin content, which is likely involved in the correlations observed for porosity, was less detrimental to enzymatic hydrolysis than lignin composition. Lignin influence was highlighted by the strong negative correlation with fluorescence intensity which mainly originates from monolignols in mature tissues.

Conclusions

Our results provide a better understanding of the factors responsible for biomass recalcitrance that can reasonably be considered as generic. The correlations with specific porosity ranges are biomass species-dependent, meaning that enzymes cocktails with fitted enzyme size are likely to be needed to optimise saccharification depending on the biomass origin. Lignin composition, which probably influences its structure, is the most important parameter to overcome to enhance enzymes access to the polysaccharides. Accordingly, fluorescence intensity was found to be a rapid and simple method to assess recalcitrance after pretreatment.


DOI: 10.1186/s13068-018-1053-8
PubMed: 29492107
PubMed Central: PMC5828075

Links toward previous steps (curation, corpus...)


Links to Exploration step

pubmed:29492107

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Multimodal analysis of pretreated biomass species highlights generic markers of lignocellulose recalcitrance.</title>
<author>
<name sortKey="Herbaut, Mickael" sort="Herbaut, Mickael" uniqKey="Herbaut M" first="Mickaël" last="Herbaut">Mickaël Herbaut</name>
<affiliation wicri:level="1">
<nlm:affiliation>1Fractionation of AgroResources and Environment (FARE) Laboratory, INRA, University of Reims Champagne-Ardenne, Reims, France.</nlm:affiliation>
<country xml:lang="fr">France</country>
<wicri:regionArea>1Fractionation of AgroResources and Environment (FARE) Laboratory, INRA, University of Reims Champagne-Ardenne, Reims</wicri:regionArea>
</affiliation>
</author>
<author>
<name sortKey="Zoghlami, Aya" sort="Zoghlami, Aya" uniqKey="Zoghlami A" first="Aya" last="Zoghlami">Aya Zoghlami</name>
<affiliation wicri:level="1">
<nlm:affiliation>1Fractionation of AgroResources and Environment (FARE) Laboratory, INRA, University of Reims Champagne-Ardenne, Reims, France.</nlm:affiliation>
<country xml:lang="fr">France</country>
<wicri:regionArea>1Fractionation of AgroResources and Environment (FARE) Laboratory, INRA, University of Reims Champagne-Ardenne, Reims</wicri:regionArea>
</affiliation>
</author>
<author>
<name sortKey="Habrant, Anouck" sort="Habrant, Anouck" uniqKey="Habrant A" first="Anouck" last="Habrant">Anouck Habrant</name>
<affiliation wicri:level="1">
<nlm:affiliation>1Fractionation of AgroResources and Environment (FARE) Laboratory, INRA, University of Reims Champagne-Ardenne, Reims, France.</nlm:affiliation>
<country xml:lang="fr">France</country>
<wicri:regionArea>1Fractionation of AgroResources and Environment (FARE) Laboratory, INRA, University of Reims Champagne-Ardenne, Reims</wicri:regionArea>
</affiliation>
</author>
<author>
<name sortKey="Falourd, Xavier" sort="Falourd, Xavier" uniqKey="Falourd X" first="Xavier" last="Falourd">Xavier Falourd</name>
<affiliation wicri:level="1">
<nlm:affiliation>2Biopolymères Interactions Assemblages (BIA) Laboratory, INRA, Nantes, France.</nlm:affiliation>
<country xml:lang="fr">France</country>
<wicri:regionArea>2Biopolymères Interactions Assemblages (BIA) Laboratory, INRA, Nantes</wicri:regionArea>
</affiliation>
</author>
<author>
<name sortKey="Foucat, Loic" sort="Foucat, Loic" uniqKey="Foucat L" first="Loïc" last="Foucat">Loïc Foucat</name>
<affiliation wicri:level="1">
<nlm:affiliation>2Biopolymères Interactions Assemblages (BIA) Laboratory, INRA, Nantes, France.</nlm:affiliation>
<country xml:lang="fr">France</country>
<wicri:regionArea>2Biopolymères Interactions Assemblages (BIA) Laboratory, INRA, Nantes</wicri:regionArea>
</affiliation>
</author>
<author>
<name sortKey="Chabbert, Brigitte" sort="Chabbert, Brigitte" uniqKey="Chabbert B" first="Brigitte" last="Chabbert">Brigitte Chabbert</name>
<affiliation wicri:level="1">
<nlm:affiliation>1Fractionation of AgroResources and Environment (FARE) Laboratory, INRA, University of Reims Champagne-Ardenne, Reims, France.</nlm:affiliation>
<country xml:lang="fr">France</country>
<wicri:regionArea>1Fractionation of AgroResources and Environment (FARE) Laboratory, INRA, University of Reims Champagne-Ardenne, Reims</wicri:regionArea>
</affiliation>
</author>
<author>
<name sortKey="Paes, Gabriel" sort="Paes, Gabriel" uniqKey="Paes G" first="Gabriel" last="Paës">Gabriel Paës</name>
<affiliation wicri:level="1">
<nlm:affiliation>1Fractionation of AgroResources and Environment (FARE) Laboratory, INRA, University of Reims Champagne-Ardenne, Reims, France.</nlm:affiliation>
<country xml:lang="fr">France</country>
<wicri:regionArea>1Fractionation of AgroResources and Environment (FARE) Laboratory, INRA, University of Reims Champagne-Ardenne, Reims</wicri:regionArea>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2018">2018</date>
<idno type="RBID">pubmed:29492107</idno>
<idno type="pmid">29492107</idno>
<idno type="doi">10.1186/s13068-018-1053-8</idno>
<idno type="pmc">PMC5828075</idno>
<idno type="wicri:Area/Main/Corpus">000F44</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">000F44</idno>
<idno type="wicri:Area/Main/Curation">000F44</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">000F44</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Multimodal analysis of pretreated biomass species highlights generic markers of lignocellulose recalcitrance.</title>
<author>
<name sortKey="Herbaut, Mickael" sort="Herbaut, Mickael" uniqKey="Herbaut M" first="Mickaël" last="Herbaut">Mickaël Herbaut</name>
<affiliation wicri:level="1">
<nlm:affiliation>1Fractionation of AgroResources and Environment (FARE) Laboratory, INRA, University of Reims Champagne-Ardenne, Reims, France.</nlm:affiliation>
<country xml:lang="fr">France</country>
<wicri:regionArea>1Fractionation of AgroResources and Environment (FARE) Laboratory, INRA, University of Reims Champagne-Ardenne, Reims</wicri:regionArea>
</affiliation>
</author>
<author>
<name sortKey="Zoghlami, Aya" sort="Zoghlami, Aya" uniqKey="Zoghlami A" first="Aya" last="Zoghlami">Aya Zoghlami</name>
<affiliation wicri:level="1">
<nlm:affiliation>1Fractionation of AgroResources and Environment (FARE) Laboratory, INRA, University of Reims Champagne-Ardenne, Reims, France.</nlm:affiliation>
<country xml:lang="fr">France</country>
<wicri:regionArea>1Fractionation of AgroResources and Environment (FARE) Laboratory, INRA, University of Reims Champagne-Ardenne, Reims</wicri:regionArea>
</affiliation>
</author>
<author>
<name sortKey="Habrant, Anouck" sort="Habrant, Anouck" uniqKey="Habrant A" first="Anouck" last="Habrant">Anouck Habrant</name>
<affiliation wicri:level="1">
<nlm:affiliation>1Fractionation of AgroResources and Environment (FARE) Laboratory, INRA, University of Reims Champagne-Ardenne, Reims, France.</nlm:affiliation>
<country xml:lang="fr">France</country>
<wicri:regionArea>1Fractionation of AgroResources and Environment (FARE) Laboratory, INRA, University of Reims Champagne-Ardenne, Reims</wicri:regionArea>
</affiliation>
</author>
<author>
<name sortKey="Falourd, Xavier" sort="Falourd, Xavier" uniqKey="Falourd X" first="Xavier" last="Falourd">Xavier Falourd</name>
<affiliation wicri:level="1">
<nlm:affiliation>2Biopolymères Interactions Assemblages (BIA) Laboratory, INRA, Nantes, France.</nlm:affiliation>
<country xml:lang="fr">France</country>
<wicri:regionArea>2Biopolymères Interactions Assemblages (BIA) Laboratory, INRA, Nantes</wicri:regionArea>
</affiliation>
</author>
<author>
<name sortKey="Foucat, Loic" sort="Foucat, Loic" uniqKey="Foucat L" first="Loïc" last="Foucat">Loïc Foucat</name>
<affiliation wicri:level="1">
<nlm:affiliation>2Biopolymères Interactions Assemblages (BIA) Laboratory, INRA, Nantes, France.</nlm:affiliation>
<country xml:lang="fr">France</country>
<wicri:regionArea>2Biopolymères Interactions Assemblages (BIA) Laboratory, INRA, Nantes</wicri:regionArea>
</affiliation>
</author>
<author>
<name sortKey="Chabbert, Brigitte" sort="Chabbert, Brigitte" uniqKey="Chabbert B" first="Brigitte" last="Chabbert">Brigitte Chabbert</name>
<affiliation wicri:level="1">
<nlm:affiliation>1Fractionation of AgroResources and Environment (FARE) Laboratory, INRA, University of Reims Champagne-Ardenne, Reims, France.</nlm:affiliation>
<country xml:lang="fr">France</country>
<wicri:regionArea>1Fractionation of AgroResources and Environment (FARE) Laboratory, INRA, University of Reims Champagne-Ardenne, Reims</wicri:regionArea>
</affiliation>
</author>
<author>
<name sortKey="Paes, Gabriel" sort="Paes, Gabriel" uniqKey="Paes G" first="Gabriel" last="Paës">Gabriel Paës</name>
<affiliation wicri:level="1">
<nlm:affiliation>1Fractionation of AgroResources and Environment (FARE) Laboratory, INRA, University of Reims Champagne-Ardenne, Reims, France.</nlm:affiliation>
<country xml:lang="fr">France</country>
<wicri:regionArea>1Fractionation of AgroResources and Environment (FARE) Laboratory, INRA, University of Reims Champagne-Ardenne, Reims</wicri:regionArea>
</affiliation>
</author>
</analytic>
<series>
<title level="j">Biotechnology for biofuels</title>
<idno type="ISSN">1754-6834</idno>
<imprint>
<date when="2018" type="published">2018</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass></textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">
<p>
<b>Background</b>
</p>
<p>Biomass recalcitrance to enzymatic hydrolysis has been assigned to several structural and chemical factors. However, their relative importance remains challenging to evaluate. Three representative biomass species (wheat straw, poplar and miscanthus) were submitted to four standard pretreatments (dilute acid, hot water, ionic liquid and sodium chlorite) in order to generate a set of contrasted samples. A large array of techniques, including wet chemistry analysis, porosity measurements using NMR spectroscopy, electron and fluorescence microscopy, were used in order to determine possible generic factors of biomass recalcitrance.</p>
</div>
<div type="abstract" xml:lang="en">
<p>
<b>Results</b>
</p>
<p>The pretreatment conditions selected allowed obtaining samples displaying different susceptibility to enzymatic hydrolysis (from 3 up to 98% of the initial glucose content released after 96 h of saccharification). Generic correlation coefficients were calculated between the measured chemical and structural features and the final saccharification rates. Increases in porosity displayed overall strong positive correlations with saccharification efficiency, but different porosity ranges were concerned depending on the considered biomass. Lignin-related factors displayed highly negative coefficients for all biomasses. Lignin content, which is likely involved in the correlations observed for porosity, was less detrimental to enzymatic hydrolysis than lignin composition. Lignin influence was highlighted by the strong negative correlation with fluorescence intensity which mainly originates from monolignols in mature tissues.</p>
</div>
<div type="abstract" xml:lang="en">
<p>
<b>Conclusions</b>
</p>
<p>Our results provide a better understanding of the factors responsible for biomass recalcitrance that can reasonably be considered as generic. The correlations with specific porosity ranges are biomass species-dependent, meaning that enzymes cocktails with fitted enzyme size are likely to be needed to optimise saccharification depending on the biomass origin. Lignin composition, which probably influences its structure, is the most important parameter to overcome to enhance enzymes access to the polysaccharides. Accordingly, fluorescence intensity was found to be a rapid and simple method to assess recalcitrance after pretreatment.</p>
</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="PubMed-not-MEDLINE" Owner="NLM">
<PMID Version="1">29492107</PMID>
<DateRevised>
<Year>2020</Year>
<Month>09</Month>
<Day>30</Day>
</DateRevised>
<Article PubModel="Electronic-eCollection">
<Journal>
<ISSN IssnType="Print">1754-6834</ISSN>
<JournalIssue CitedMedium="Print">
<Volume>11</Volume>
<PubDate>
<Year>2018</Year>
</PubDate>
</JournalIssue>
<Title>Biotechnology for biofuels</Title>
<ISOAbbreviation>Biotechnol Biofuels</ISOAbbreviation>
</Journal>
<ArticleTitle>Multimodal analysis of pretreated biomass species highlights generic markers of lignocellulose recalcitrance.</ArticleTitle>
<Pagination>
<MedlinePgn>52</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1186/s13068-018-1053-8</ELocationID>
<Abstract>
<AbstractText Label="Background" NlmCategory="UNASSIGNED">Biomass recalcitrance to enzymatic hydrolysis has been assigned to several structural and chemical factors. However, their relative importance remains challenging to evaluate. Three representative biomass species (wheat straw, poplar and miscanthus) were submitted to four standard pretreatments (dilute acid, hot water, ionic liquid and sodium chlorite) in order to generate a set of contrasted samples. A large array of techniques, including wet chemistry analysis, porosity measurements using NMR spectroscopy, electron and fluorescence microscopy, were used in order to determine possible generic factors of biomass recalcitrance.</AbstractText>
<AbstractText Label="Results" NlmCategory="UNASSIGNED">The pretreatment conditions selected allowed obtaining samples displaying different susceptibility to enzymatic hydrolysis (from 3 up to 98% of the initial glucose content released after 96 h of saccharification). Generic correlation coefficients were calculated between the measured chemical and structural features and the final saccharification rates. Increases in porosity displayed overall strong positive correlations with saccharification efficiency, but different porosity ranges were concerned depending on the considered biomass. Lignin-related factors displayed highly negative coefficients for all biomasses. Lignin content, which is likely involved in the correlations observed for porosity, was less detrimental to enzymatic hydrolysis than lignin composition. Lignin influence was highlighted by the strong negative correlation with fluorescence intensity which mainly originates from monolignols in mature tissues.</AbstractText>
<AbstractText Label="Conclusions" NlmCategory="UNASSIGNED">Our results provide a better understanding of the factors responsible for biomass recalcitrance that can reasonably be considered as generic. The correlations with specific porosity ranges are biomass species-dependent, meaning that enzymes cocktails with fitted enzyme size are likely to be needed to optimise saccharification depending on the biomass origin. Lignin composition, which probably influences its structure, is the most important parameter to overcome to enhance enzymes access to the polysaccharides. Accordingly, fluorescence intensity was found to be a rapid and simple method to assess recalcitrance after pretreatment.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Herbaut</LastName>
<ForeName>Mickaël</ForeName>
<Initials>M</Initials>
<AffiliationInfo>
<Affiliation>1Fractionation of AgroResources and Environment (FARE) Laboratory, INRA, University of Reims Champagne-Ardenne, Reims, France.</Affiliation>
<Identifier Source="ISNI">0000 0004 1937 0618</Identifier>
<Identifier Source="GRID">grid.11667.37</Identifier>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Zoghlami</LastName>
<ForeName>Aya</ForeName>
<Initials>A</Initials>
<AffiliationInfo>
<Affiliation>1Fractionation of AgroResources and Environment (FARE) Laboratory, INRA, University of Reims Champagne-Ardenne, Reims, France.</Affiliation>
<Identifier Source="ISNI">0000 0004 1937 0618</Identifier>
<Identifier Source="GRID">grid.11667.37</Identifier>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Habrant</LastName>
<ForeName>Anouck</ForeName>
<Initials>A</Initials>
<AffiliationInfo>
<Affiliation>1Fractionation of AgroResources and Environment (FARE) Laboratory, INRA, University of Reims Champagne-Ardenne, Reims, France.</Affiliation>
<Identifier Source="ISNI">0000 0004 1937 0618</Identifier>
<Identifier Source="GRID">grid.11667.37</Identifier>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Falourd</LastName>
<ForeName>Xavier</ForeName>
<Initials>X</Initials>
<AffiliationInfo>
<Affiliation>2Biopolymères Interactions Assemblages (BIA) Laboratory, INRA, Nantes, France.</Affiliation>
<Identifier Source="GRID">grid.460203.3</Identifier>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Foucat</LastName>
<ForeName>Loïc</ForeName>
<Initials>L</Initials>
<AffiliationInfo>
<Affiliation>2Biopolymères Interactions Assemblages (BIA) Laboratory, INRA, Nantes, France.</Affiliation>
<Identifier Source="GRID">grid.460203.3</Identifier>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Chabbert</LastName>
<ForeName>Brigitte</ForeName>
<Initials>B</Initials>
<AffiliationInfo>
<Affiliation>1Fractionation of AgroResources and Environment (FARE) Laboratory, INRA, University of Reims Champagne-Ardenne, Reims, France.</Affiliation>
<Identifier Source="ISNI">0000 0004 1937 0618</Identifier>
<Identifier Source="GRID">grid.11667.37</Identifier>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Paës</LastName>
<ForeName>Gabriel</ForeName>
<Initials>G</Initials>
<Identifier Source="ORCID">0000-0003-0239-9716</Identifier>
<AffiliationInfo>
<Affiliation>1Fractionation of AgroResources and Environment (FARE) Laboratory, INRA, University of Reims Champagne-Ardenne, Reims, France.</Affiliation>
<Identifier Source="ISNI">0000 0004 1937 0618</Identifier>
<Identifier Source="GRID">grid.11667.37</Identifier>
</AffiliationInfo>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2018</Year>
<Month>02</Month>
<Day>27</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>England</Country>
<MedlineTA>Biotechnol Biofuels</MedlineTA>
<NlmUniqueID>101316935</NlmUniqueID>
<ISSNLinking>1754-6834</ISSNLinking>
</MedlineJournalInfo>
<KeywordList Owner="NOTNLM">
<Keyword MajorTopicYN="N">Correlation</Keyword>
<Keyword MajorTopicYN="N">Fluorescence</Keyword>
<Keyword MajorTopicYN="N">Lignin</Keyword>
<Keyword MajorTopicYN="N">Lignocellulose</Keyword>
<Keyword MajorTopicYN="N">Porosity</Keyword>
<Keyword MajorTopicYN="N">Pretreatment</Keyword>
<Keyword MajorTopicYN="N">Recalcitrance</Keyword>
<Keyword MajorTopicYN="N">Saccharification</Keyword>
</KeywordList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2017</Year>
<Month>11</Month>
<Day>09</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2018</Year>
<Month>02</Month>
<Day>14</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2018</Year>
<Month>3</Month>
<Day>2</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2018</Year>
<Month>3</Month>
<Day>2</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2018</Year>
<Month>3</Month>
<Day>2</Day>
<Hour>6</Hour>
<Minute>1</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>epublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">29492107</ArticleId>
<ArticleId IdType="doi">10.1186/s13068-018-1053-8</ArticleId>
<ArticleId IdType="pii">1053</ArticleId>
<ArticleId IdType="pmc">PMC5828075</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>Biotechnol Bioeng. 2013 Jun;110(6):1674-80</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23280599</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biotechnol Biofuels. 2016 Sep 05;9(1):193</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27602056</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 1979 Sep 14;205(4411):1144-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17735052</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Agric Food Chem. 2012 Feb 1;60(4):922-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22191493</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biotechnol Prog. 2007 Nov-Dec;23(6):1333-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17973399</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>ChemSusChem. 2015 Oct 26;8(20):3366-90</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26365899</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biotechnol Biofuels. 2017 Feb 7;10 :36</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28191037</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Bioresour Technol. 2011 Feb;102(3):2804-11</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21036603</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biotechnol Bioeng. 1988 Aug 20;32(5):698-706</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18587771</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Concepts Magn Reson Part A Bridg Educ Res. 2013 May;42(3):72-88</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23847452</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Enzyme Microb Technol. 2015 Nov;79-80:70-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26320717</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>New Phytol. 2012 Apr;194(1):91-101</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22239166</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Bioresour Technol. 2013 Sep;144:467-76</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23899571</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Opin Biotechnol. 2014 Jun;27:38-45</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24863895</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Bioresour Technol. 2010 Oct;101(19):7587-91</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20494571</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Agric Food Chem. 2010 Jan 27;58(2):895-901</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20041658</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Bioresour Technol. 2010 Oct;101(19):7410-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20471250</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Front Chem. 2016 Nov 18;4:45</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27917379</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2011 Apr 12;108(15):6300-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21444820</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochem J. 2001 Jun 1;356(Pt 2):453-60</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11368772</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell Physiol. 2015 Feb;56(2):195-214</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25294860</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Annu Rev Plant Biol. 2003;54:519-46</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14503002</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biotechnol Biofuels. 2014 Sep 10;7(1):127</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25342969</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biotechnol Biofuels. 2017 Jan 14;10 :15</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28101142</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Opin Biotechnol. 2014 Jun;27:150-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24549148</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Bioresour Technol. 2013 Feb;130:372-81</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23313683</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Bioresour Technol. 2012 Jan;103(1):201-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22047660</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Bioresour Technol. 2012 Dec;126:208-15</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23073110</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Plant. 2009 Sep;2(5):933-42</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19825670</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Sci Rep. 2017 Aug 18;7(1):8838</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28821835</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>ChemSusChem. 2014 Jul;7(7):1942-50</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24903047</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biotechnol Biofuels. 2015 Dec 25;8:212</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26709354</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biotechnol Bioeng. 2011 Jan;108(1):22-30</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20812260</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Bioresour Technol. 2012 Aug;117:352-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22634318</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Bioresour Technol. 2015 Mar;179:331-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25553563</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Exp Bot. 2015 Jul;66(14):4109-18</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26060266</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Carbohydr Polym. 2016 Dec 10;154:247-56</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27577916</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biotechnol Prog. 2017 Jan;33(1):146-153</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27802565</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Struct Biol. 2010 Jan;169(1):106-15</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19747548</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Bioresour Technol. 2015 Jun;185:411-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25804532</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Enzyme Res. 2011;2011:787532</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21687609</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/PoplarV1/Data/Main/Curation
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000F44 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Curation/biblio.hfd -nk 000F44 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    PoplarV1
   |flux=    Main
   |étape=   Curation
   |type=    RBID
   |clé=     pubmed:29492107
   |texte=   Multimodal analysis of pretreated biomass species highlights generic markers of lignocellulose recalcitrance.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Curation/RBID.i   -Sk "pubmed:29492107" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Curation/biblio.hfd   \
       | NlmPubMed2Wicri -a PoplarV1 

Wicri

This area was generated with Dilib version V0.6.37.
Data generation: Wed Nov 18 12:07:19 2020. Site generation: Wed Nov 18 12:16:31 2020