Serveur d'exploration sur le peuplier

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

On-line analysis of the (13)CO(2) labeling of leaf isoprene suggests multiple subcellular origins of isoprene precursors.

Identifieur interne : 004598 ( Main/Corpus ); précédent : 004597; suivant : 004599

On-line analysis of the (13)CO(2) labeling of leaf isoprene suggests multiple subcellular origins of isoprene precursors.

Auteurs : T. Karl ; R. Fall ; T N Rosenstiel ; P. Prazeller ; B. Larsen ; G. Seufert ; W. Lindinger

Source :

RBID : pubmed:12355149

English descriptors

Abstract

Isoprene (2-methyl-1,3-butadiene) is the most abundant biogenic hydrocarbon released from vegetation, and there is continuing interest in understanding its biosynthesis from photosynthetic precursors in leaf chloroplasts. We used on-line proton-transfer-reaction mass spectrometry (PTR-MS) to observe the kinetics of (13)C-labeling of isoprene following exposure to (13)CO(2) and then the loss of (13)C after a return to normal (12)CO(2) in oak ( Quercus agrifolia Nee) and cottonwood (Populus deltoides Barr.) leaves. Assignments of labeled isoprene species were verified by gas chromatography-mass spectrometry. For the first time, it was possible to observe the half-lives of individually (13)C-labeled isoprene species during these transitions, and to trace some of the label to a C3 fragment that contained the two isoprene carbons derived from pyruvate via the deoxyxylulose-5-phosphate (DOXP) pathway. At steady state (under (13)CO(2)), approximately 80% of isoprene carbon was labeled, with fully labeled isoprene as the major species (approx. 60%). The source of the unlabeled C is suggested to be extrachloroplastic, but not from photorespiratory carbon. After a transfer to (12)CO(2), (13)C-labeling persisted in one isoprene carbon for several hours; this persistence was much more pronounced in (i) leaves inhibited by fosmidomycin, a specific inhibitor of the DOXP pathway, and (ii) in sun leaves which have higher ratios of soluble sugars to starch. From the mass 41-44 fragment data, and labeling predicted from the DOXP pathway in chloroplasts, precursors may arise from cytosolic pyruvate/phospho enolpyruvate equivalents transported into the chloroplast; this idea was supported by an indirect measure of pyruvate labeling. Other sources of cytosolic isoprene precursors (i.e. dimethylallyl diphosphate or pentose phosphate) could not be excluded. The data obtained shed light on the half-lives of photosynthetic metabolites, exchanges of carbon between cellular pools, and suggest multiple origins of isoprene precursors in leaves.

DOI: 10.1007/s00425-002-0825-2
PubMed: 12355149

Links to Exploration step

pubmed:12355149

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">On-line analysis of the (13)CO(2) labeling of leaf isoprene suggests multiple subcellular origins of isoprene precursors.</title>
<author>
<name sortKey="Karl, T" sort="Karl, T" uniqKey="Karl T" first="T" last="Karl">T. Karl</name>
<affiliation>
<nlm:affiliation>Institut für Ionenphysik, Universität Innsbruck, Technikerstrasse 25, 6020 Innsbruck Austria. tomkarl@ucar.edu</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Fall, R" sort="Fall, R" uniqKey="Fall R" first="R" last="Fall">R. Fall</name>
</author>
<author>
<name sortKey="Rosenstiel, T N" sort="Rosenstiel, T N" uniqKey="Rosenstiel T" first="T N" last="Rosenstiel">T N Rosenstiel</name>
</author>
<author>
<name sortKey="Prazeller, P" sort="Prazeller, P" uniqKey="Prazeller P" first="P" last="Prazeller">P. Prazeller</name>
</author>
<author>
<name sortKey="Larsen, B" sort="Larsen, B" uniqKey="Larsen B" first="B" last="Larsen">B. Larsen</name>
</author>
<author>
<name sortKey="Seufert, G" sort="Seufert, G" uniqKey="Seufert G" first="G" last="Seufert">G. Seufert</name>
</author>
<author>
<name sortKey="Lindinger, W" sort="Lindinger, W" uniqKey="Lindinger W" first="W" last="Lindinger">W. Lindinger</name>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2002">2002</date>
<idno type="RBID">pubmed:12355149</idno>
<idno type="pmid">12355149</idno>
<idno type="doi">10.1007/s00425-002-0825-2</idno>
<idno type="wicri:Area/Main/Corpus">004598</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">004598</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">On-line analysis of the (13)CO(2) labeling of leaf isoprene suggests multiple subcellular origins of isoprene precursors.</title>
<author>
<name sortKey="Karl, T" sort="Karl, T" uniqKey="Karl T" first="T" last="Karl">T. Karl</name>
<affiliation>
<nlm:affiliation>Institut für Ionenphysik, Universität Innsbruck, Technikerstrasse 25, 6020 Innsbruck Austria. tomkarl@ucar.edu</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Fall, R" sort="Fall, R" uniqKey="Fall R" first="R" last="Fall">R. Fall</name>
</author>
<author>
<name sortKey="Rosenstiel, T N" sort="Rosenstiel, T N" uniqKey="Rosenstiel T" first="T N" last="Rosenstiel">T N Rosenstiel</name>
</author>
<author>
<name sortKey="Prazeller, P" sort="Prazeller, P" uniqKey="Prazeller P" first="P" last="Prazeller">P. Prazeller</name>
</author>
<author>
<name sortKey="Larsen, B" sort="Larsen, B" uniqKey="Larsen B" first="B" last="Larsen">B. Larsen</name>
</author>
<author>
<name sortKey="Seufert, G" sort="Seufert, G" uniqKey="Seufert G" first="G" last="Seufert">G. Seufert</name>
</author>
<author>
<name sortKey="Lindinger, W" sort="Lindinger, W" uniqKey="Lindinger W" first="W" last="Lindinger">W. Lindinger</name>
</author>
</analytic>
<series>
<title level="j">Planta</title>
<idno type="ISSN">0032-0935</idno>
<imprint>
<date when="2002" type="published">2002</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Algorithms (MeSH)</term>
<term>Butadienes (antagonists & inhibitors)</term>
<term>Butadienes (metabolism)</term>
<term>Carbon Dioxide (metabolism)</term>
<term>Carbon Isotopes (MeSH)</term>
<term>Chloroplasts (metabolism)</term>
<term>Cytosol (metabolism)</term>
<term>Fosfomycin (analogs & derivatives)</term>
<term>Fosfomycin (pharmacology)</term>
<term>Gas Chromatography-Mass Spectrometry (MeSH)</term>
<term>Half-Life (MeSH)</term>
<term>Hemiterpenes (MeSH)</term>
<term>Light (MeSH)</term>
<term>Lovastatin (pharmacology)</term>
<term>Models, Biological (MeSH)</term>
<term>Oxygen (pharmacology)</term>
<term>Oxygen Consumption (drug effects)</term>
<term>Pentanes (MeSH)</term>
<term>Photosynthesis (drug effects)</term>
<term>Plant Leaves (metabolism)</term>
<term>Populus (metabolism)</term>
<term>Pyruvic Acid (metabolism)</term>
<term>Quercus (metabolism)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="analogs & derivatives" xml:lang="en">
<term>Fosfomycin</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="antagonists & inhibitors" xml:lang="en">
<term>Butadienes</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="metabolism" xml:lang="en">
<term>Butadienes</term>
<term>Carbon Dioxide</term>
<term>Pyruvic Acid</term>
</keywords>
<keywords scheme="MESH" qualifier="drug effects" xml:lang="en">
<term>Oxygen Consumption</term>
<term>Photosynthesis</term>
</keywords>
<keywords scheme="MESH" qualifier="metabolism" xml:lang="en">
<term>Chloroplasts</term>
<term>Cytosol</term>
<term>Plant Leaves</term>
<term>Populus</term>
<term>Quercus</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="pharmacology" xml:lang="en">
<term>Fosfomycin</term>
<term>Lovastatin</term>
<term>Oxygen</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Algorithms</term>
<term>Carbon Isotopes</term>
<term>Gas Chromatography-Mass Spectrometry</term>
<term>Half-Life</term>
<term>Hemiterpenes</term>
<term>Light</term>
<term>Models, Biological</term>
<term>Pentanes</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Isoprene (2-methyl-1,3-butadiene) is the most abundant biogenic hydrocarbon released from vegetation, and there is continuing interest in understanding its biosynthesis from photosynthetic precursors in leaf chloroplasts. We used on-line proton-transfer-reaction mass spectrometry (PTR-MS) to observe the kinetics of (13)C-labeling of isoprene following exposure to (13)CO(2) and then the loss of (13)C after a return to normal (12)CO(2) in oak ( Quercus agrifolia Nee) and cottonwood (Populus deltoides Barr.) leaves. Assignments of labeled isoprene species were verified by gas chromatography-mass spectrometry. For the first time, it was possible to observe the half-lives of individually (13)C-labeled isoprene species during these transitions, and to trace some of the label to a C3 fragment that contained the two isoprene carbons derived from pyruvate via the deoxyxylulose-5-phosphate (DOXP) pathway. At steady state (under (13)CO(2)), approximately 80% of isoprene carbon was labeled, with fully labeled isoprene as the major species (approx. 60%). The source of the unlabeled C is suggested to be extrachloroplastic, but not from photorespiratory carbon. After a transfer to (12)CO(2), (13)C-labeling persisted in one isoprene carbon for several hours; this persistence was much more pronounced in (i) leaves inhibited by fosmidomycin, a specific inhibitor of the DOXP pathway, and (ii) in sun leaves which have higher ratios of soluble sugars to starch. From the mass 41-44 fragment data, and labeling predicted from the DOXP pathway in chloroplasts, precursors may arise from cytosolic pyruvate/phospho enolpyruvate equivalents transported into the chloroplast; this idea was supported by an indirect measure of pyruvate labeling. Other sources of cytosolic isoprene precursors (i.e. dimethylallyl diphosphate or pentose phosphate) could not be excluded. The data obtained shed light on the half-lives of photosynthetic metabolites, exchanges of carbon between cellular pools, and suggest multiple origins of isoprene precursors in leaves.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">12355149</PMID>
<DateCompleted>
<Year>2003</Year>
<Month>01</Month>
<Day>23</Day>
</DateCompleted>
<DateRevised>
<Year>2013</Year>
<Month>11</Month>
<Day>21</Day>
</DateRevised>
<Article PubModel="Print-Electronic">
<Journal>
<ISSN IssnType="Print">0032-0935</ISSN>
<JournalIssue CitedMedium="Print">
<Volume>215</Volume>
<Issue>6</Issue>
<PubDate>
<Year>2002</Year>
<Month>Oct</Month>
</PubDate>
</JournalIssue>
<Title>Planta</Title>
<ISOAbbreviation>Planta</ISOAbbreviation>
</Journal>
<ArticleTitle>On-line analysis of the (13)CO(2) labeling of leaf isoprene suggests multiple subcellular origins of isoprene precursors.</ArticleTitle>
<Pagination>
<MedlinePgn>894-905</MedlinePgn>
</Pagination>
<Abstract>
<AbstractText>Isoprene (2-methyl-1,3-butadiene) is the most abundant biogenic hydrocarbon released from vegetation, and there is continuing interest in understanding its biosynthesis from photosynthetic precursors in leaf chloroplasts. We used on-line proton-transfer-reaction mass spectrometry (PTR-MS) to observe the kinetics of (13)C-labeling of isoprene following exposure to (13)CO(2) and then the loss of (13)C after a return to normal (12)CO(2) in oak ( Quercus agrifolia Nee) and cottonwood (Populus deltoides Barr.) leaves. Assignments of labeled isoprene species were verified by gas chromatography-mass spectrometry. For the first time, it was possible to observe the half-lives of individually (13)C-labeled isoprene species during these transitions, and to trace some of the label to a C3 fragment that contained the two isoprene carbons derived from pyruvate via the deoxyxylulose-5-phosphate (DOXP) pathway. At steady state (under (13)CO(2)), approximately 80% of isoprene carbon was labeled, with fully labeled isoprene as the major species (approx. 60%). The source of the unlabeled C is suggested to be extrachloroplastic, but not from photorespiratory carbon. After a transfer to (12)CO(2), (13)C-labeling persisted in one isoprene carbon for several hours; this persistence was much more pronounced in (i) leaves inhibited by fosmidomycin, a specific inhibitor of the DOXP pathway, and (ii) in sun leaves which have higher ratios of soluble sugars to starch. From the mass 41-44 fragment data, and labeling predicted from the DOXP pathway in chloroplasts, precursors may arise from cytosolic pyruvate/phospho enolpyruvate equivalents transported into the chloroplast; this idea was supported by an indirect measure of pyruvate labeling. Other sources of cytosolic isoprene precursors (i.e. dimethylallyl diphosphate or pentose phosphate) could not be excluded. The data obtained shed light on the half-lives of photosynthetic metabolites, exchanges of carbon between cellular pools, and suggest multiple origins of isoprene precursors in leaves.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Karl</LastName>
<ForeName>T</ForeName>
<Initials>T</Initials>
<AffiliationInfo>
<Affiliation>Institut für Ionenphysik, Universität Innsbruck, Technikerstrasse 25, 6020 Innsbruck Austria. tomkarl@ucar.edu</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Fall</LastName>
<ForeName>R</ForeName>
<Initials>R</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Rosenstiel</LastName>
<ForeName>T N</ForeName>
<Initials>TN</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Prazeller</LastName>
<ForeName>P</ForeName>
<Initials>P</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Larsen</LastName>
<ForeName>B</ForeName>
<Initials>B</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Seufert</LastName>
<ForeName>G</ForeName>
<Initials>G</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Lindinger</LastName>
<ForeName>W</ForeName>
<Initials>W</Initials>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2002</Year>
<Month>07</Month>
<Day>17</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>Germany</Country>
<MedlineTA>Planta</MedlineTA>
<NlmUniqueID>1250576</NlmUniqueID>
<ISSNLinking>0032-0935</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D002070">Butadienes</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D002247">Carbon Isotopes</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D045782">Hemiterpenes</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D010420">Pentanes</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0A62964IBU</RegistryNumber>
<NameOfSubstance UI="C005059">isoprene</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>142M471B3J</RegistryNumber>
<NameOfSubstance UI="D002245">Carbon Dioxide</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>2N81MY12TE</RegistryNumber>
<NameOfSubstance UI="D005578">Fosfomycin</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>5829E3D9I9</RegistryNumber>
<NameOfSubstance UI="C024640">fosmidomycin</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>8558G7RUTR</RegistryNumber>
<NameOfSubstance UI="D019289">Pyruvic Acid</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>9LHU78OQFD</RegistryNumber>
<NameOfSubstance UI="D008148">Lovastatin</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>S88TT14065</RegistryNumber>
<NameOfSubstance UI="D010100">Oxygen</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D000465" MajorTopicYN="N">Algorithms</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D002070" MajorTopicYN="N">Butadienes</DescriptorName>
<QualifierName UI="Q000037" MajorTopicYN="N">antagonists & inhibitors</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D002245" MajorTopicYN="N">Carbon Dioxide</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D002247" MajorTopicYN="N">Carbon Isotopes</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D002736" MajorTopicYN="N">Chloroplasts</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D003600" MajorTopicYN="N">Cytosol</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D005578" MajorTopicYN="N">Fosfomycin</DescriptorName>
<QualifierName UI="Q000031" MajorTopicYN="Y">analogs & derivatives</QualifierName>
<QualifierName UI="Q000494" MajorTopicYN="N">pharmacology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D008401" MajorTopicYN="N">Gas Chromatography-Mass Spectrometry</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D006207" MajorTopicYN="N">Half-Life</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D045782" MajorTopicYN="Y">Hemiterpenes</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D008027" MajorTopicYN="N">Light</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D008148" MajorTopicYN="N">Lovastatin</DescriptorName>
<QualifierName UI="Q000494" MajorTopicYN="N">pharmacology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D008954" MajorTopicYN="N">Models, Biological</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D010100" MajorTopicYN="N">Oxygen</DescriptorName>
<QualifierName UI="Q000494" MajorTopicYN="N">pharmacology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D010101" MajorTopicYN="N">Oxygen Consumption</DescriptorName>
<QualifierName UI="Q000187" MajorTopicYN="N">drug effects</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D010420" MajorTopicYN="Y">Pentanes</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D010788" MajorTopicYN="N">Photosynthesis</DescriptorName>
<QualifierName UI="Q000187" MajorTopicYN="N">drug effects</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D018515" MajorTopicYN="N">Plant Leaves</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D032107" MajorTopicYN="N">Populus</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D019289" MajorTopicYN="N">Pyruvic Acid</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D029963" MajorTopicYN="N">Quercus</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
</MeshHeadingList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2002</Year>
<Month>03</Month>
<Day>03</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2002</Year>
<Month>05</Month>
<Day>23</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2002</Year>
<Month>10</Month>
<Day>2</Day>
<Hour>4</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2003</Year>
<Month>1</Month>
<Day>24</Day>
<Hour>4</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2002</Year>
<Month>10</Month>
<Day>2</Day>
<Hour>4</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">12355149</ArticleId>
<ArticleId IdType="doi">10.1007/s00425-002-0825-2</ArticleId>
</ArticleIdList>
</PubmedData>
</pubmed>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/PoplarV1/Data/Main/Corpus
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 004598 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Corpus/biblio.hfd -nk 004598 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    PoplarV1
   |flux=    Main
   |étape=   Corpus
   |type=    RBID
   |clé=     pubmed:12355149
   |texte=   On-line analysis of the (13)CO(2) labeling of leaf isoprene suggests multiple subcellular origins of isoprene precursors.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Corpus/RBID.i   -Sk "pubmed:12355149" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Corpus/biblio.hfd   \
       | NlmPubMed2Wicri -a PoplarV1 

Wicri

This area was generated with Dilib version V0.6.37.
Data generation: Wed Nov 18 12:07:19 2020. Site generation: Wed Nov 18 12:16:31 2020