Serveur d'exploration sur le peuplier

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Comparative analysis of divergent and convergent gene pairs and their expression patterns in rice, Arabidopsis, and populus.

Identifieur interne : 003875 ( Main/Corpus ); précédent : 003874; suivant : 003876

Comparative analysis of divergent and convergent gene pairs and their expression patterns in rice, Arabidopsis, and populus.

Auteurs : Nicholas Krom ; Wusirika Ramakrishna

Source :

RBID : pubmed:18515639

English descriptors

Abstract

Comparative analysis of the organization and expression patterns of divergent and convergent gene pairs in multiple plant genomes can identify patterns that are shared by more than one species or are unique to a particular species. Here, we study the coexpression and interspecies conservation of divergent and convergent gene pairs in three plant species: rice (Oryza sativa), Arabidopsis (Arabidopsis thaliana), and black cottonwood (Populus trichocarpa). Strongly correlated expression levels between divergent and convergent genes were found to be quite common in all three species, and the frequency of strong correlation appears to be independent of intergenic distance. Conservation of divergent or convergent arrangement among these species appears to be quite rare. However, conserved arrangement is significantly more frequent when the genes display strongly correlated expression levels or have one or more Gene Ontology (GO) classes in common. A correlation between intergenic distance in divergent and convergent gene pairs and shared GO classes was observed, in varying degrees, in rice and Populus but not in Arabidopsis. Furthermore, multiple GO classes were either overrepresented or underrepresented in Arabidopsis and Populus gene pairs, while only two GO classes were underrepresented in rice divergent gene pairs. Three cis-regulatory elements common to both Arabidopsis and rice were overrepresented in the intergenic regions of strongly correlated divergent gene pairs compared to those of noncorrelated pairs. Our results suggest that shared as well as unique mechanisms operate in shaping the organization and function of divergent and convergent gene pairs in different plant species.

DOI: 10.1104/pp.108.122416
PubMed: 18515639
PubMed Central: PMC2492640

Links to Exploration step

pubmed:18515639

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Comparative analysis of divergent and convergent gene pairs and their expression patterns in rice, Arabidopsis, and populus.</title>
<author>
<name sortKey="Krom, Nicholas" sort="Krom, Nicholas" uniqKey="Krom N" first="Nicholas" last="Krom">Nicholas Krom</name>
<affiliation>
<nlm:affiliation>Department of Biological Sciences, Michigan Technological University, Houghton, Michigan 49931, USA.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Ramakrishna, Wusirika" sort="Ramakrishna, Wusirika" uniqKey="Ramakrishna W" first="Wusirika" last="Ramakrishna">Wusirika Ramakrishna</name>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2008">2008</date>
<idno type="RBID">pubmed:18515639</idno>
<idno type="pmid">18515639</idno>
<idno type="doi">10.1104/pp.108.122416</idno>
<idno type="pmc">PMC2492640</idno>
<idno type="wicri:Area/Main/Corpus">003875</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">003875</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Comparative analysis of divergent and convergent gene pairs and their expression patterns in rice, Arabidopsis, and populus.</title>
<author>
<name sortKey="Krom, Nicholas" sort="Krom, Nicholas" uniqKey="Krom N" first="Nicholas" last="Krom">Nicholas Krom</name>
<affiliation>
<nlm:affiliation>Department of Biological Sciences, Michigan Technological University, Houghton, Michigan 49931, USA.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Ramakrishna, Wusirika" sort="Ramakrishna, Wusirika" uniqKey="Ramakrishna W" first="Wusirika" last="Ramakrishna">Wusirika Ramakrishna</name>
</author>
</analytic>
<series>
<title level="j">Plant physiology</title>
<idno type="ISSN">0032-0889</idno>
<imprint>
<date when="2008" type="published">2008</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Arabidopsis (genetics)</term>
<term>Arabidopsis (metabolism)</term>
<term>Computational Biology (MeSH)</term>
<term>DNA, Intergenic (MeSH)</term>
<term>Gene Expression (MeSH)</term>
<term>Gene Order (MeSH)</term>
<term>Genes, Plant (MeSH)</term>
<term>Genomics (MeSH)</term>
<term>Oryza (genetics)</term>
<term>Oryza (metabolism)</term>
<term>Populus (genetics)</term>
<term>Populus (metabolism)</term>
<term>Regulatory Elements, Transcriptional (MeSH)</term>
<term>Sequence Analysis, DNA (MeSH)</term>
<term>Species Specificity (MeSH)</term>
</keywords>
<keywords scheme="MESH" type="chemical" xml:lang="en">
<term>DNA, Intergenic</term>
</keywords>
<keywords scheme="MESH" qualifier="genetics" xml:lang="en">
<term>Arabidopsis</term>
<term>Oryza</term>
<term>Populus</term>
</keywords>
<keywords scheme="MESH" qualifier="metabolism" xml:lang="en">
<term>Arabidopsis</term>
<term>Oryza</term>
<term>Populus</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Computational Biology</term>
<term>Gene Expression</term>
<term>Gene Order</term>
<term>Genes, Plant</term>
<term>Genomics</term>
<term>Regulatory Elements, Transcriptional</term>
<term>Sequence Analysis, DNA</term>
<term>Species Specificity</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Comparative analysis of the organization and expression patterns of divergent and convergent gene pairs in multiple plant genomes can identify patterns that are shared by more than one species or are unique to a particular species. Here, we study the coexpression and interspecies conservation of divergent and convergent gene pairs in three plant species: rice (Oryza sativa), Arabidopsis (Arabidopsis thaliana), and black cottonwood (Populus trichocarpa). Strongly correlated expression levels between divergent and convergent genes were found to be quite common in all three species, and the frequency of strong correlation appears to be independent of intergenic distance. Conservation of divergent or convergent arrangement among these species appears to be quite rare. However, conserved arrangement is significantly more frequent when the genes display strongly correlated expression levels or have one or more Gene Ontology (GO) classes in common. A correlation between intergenic distance in divergent and convergent gene pairs and shared GO classes was observed, in varying degrees, in rice and Populus but not in Arabidopsis. Furthermore, multiple GO classes were either overrepresented or underrepresented in Arabidopsis and Populus gene pairs, while only two GO classes were underrepresented in rice divergent gene pairs. Three cis-regulatory elements common to both Arabidopsis and rice were overrepresented in the intergenic regions of strongly correlated divergent gene pairs compared to those of noncorrelated pairs. Our results suggest that shared as well as unique mechanisms operate in shaping the organization and function of divergent and convergent gene pairs in different plant species.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">18515639</PMID>
<DateCompleted>
<Year>2008</Year>
<Month>10</Month>
<Day>14</Day>
</DateCompleted>
<DateRevised>
<Year>2018</Year>
<Month>11</Month>
<Day>13</Day>
</DateRevised>
<Article PubModel="Print-Electronic">
<Journal>
<ISSN IssnType="Print">0032-0889</ISSN>
<JournalIssue CitedMedium="Print">
<Volume>147</Volume>
<Issue>4</Issue>
<PubDate>
<Year>2008</Year>
<Month>Aug</Month>
</PubDate>
</JournalIssue>
<Title>Plant physiology</Title>
<ISOAbbreviation>Plant Physiol</ISOAbbreviation>
</Journal>
<ArticleTitle>Comparative analysis of divergent and convergent gene pairs and their expression patterns in rice, Arabidopsis, and populus.</ArticleTitle>
<Pagination>
<MedlinePgn>1763-73</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1104/pp.108.122416</ELocationID>
<Abstract>
<AbstractText>Comparative analysis of the organization and expression patterns of divergent and convergent gene pairs in multiple plant genomes can identify patterns that are shared by more than one species or are unique to a particular species. Here, we study the coexpression and interspecies conservation of divergent and convergent gene pairs in three plant species: rice (Oryza sativa), Arabidopsis (Arabidopsis thaliana), and black cottonwood (Populus trichocarpa). Strongly correlated expression levels between divergent and convergent genes were found to be quite common in all three species, and the frequency of strong correlation appears to be independent of intergenic distance. Conservation of divergent or convergent arrangement among these species appears to be quite rare. However, conserved arrangement is significantly more frequent when the genes display strongly correlated expression levels or have one or more Gene Ontology (GO) classes in common. A correlation between intergenic distance in divergent and convergent gene pairs and shared GO classes was observed, in varying degrees, in rice and Populus but not in Arabidopsis. Furthermore, multiple GO classes were either overrepresented or underrepresented in Arabidopsis and Populus gene pairs, while only two GO classes were underrepresented in rice divergent gene pairs. Three cis-regulatory elements common to both Arabidopsis and rice were overrepresented in the intergenic regions of strongly correlated divergent gene pairs compared to those of noncorrelated pairs. Our results suggest that shared as well as unique mechanisms operate in shaping the organization and function of divergent and convergent gene pairs in different plant species.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Krom</LastName>
<ForeName>Nicholas</ForeName>
<Initials>N</Initials>
<AffiliationInfo>
<Affiliation>Department of Biological Sciences, Michigan Technological University, Houghton, Michigan 49931, USA.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Ramakrishna</LastName>
<ForeName>Wusirika</ForeName>
<Initials>W</Initials>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D003160">Comparative Study</PublicationType>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D013486">Research Support, U.S. Gov't, Non-P.H.S.</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2008</Year>
<Month>05</Month>
<Day>30</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>United States</Country>
<MedlineTA>Plant Physiol</MedlineTA>
<NlmUniqueID>0401224</NlmUniqueID>
<ISSNLinking>0032-0889</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D021901">DNA, Intergenic</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D017360" MajorTopicYN="N">Arabidopsis</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="Y">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D019295" MajorTopicYN="N">Computational Biology</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D021901" MajorTopicYN="N">DNA, Intergenic</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D015870" MajorTopicYN="Y">Gene Expression</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D023061" MajorTopicYN="N">Gene Order</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D017343" MajorTopicYN="Y">Genes, Plant</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D023281" MajorTopicYN="N">Genomics</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D012275" MajorTopicYN="N">Oryza</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="Y">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D032107" MajorTopicYN="N">Populus</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="Y">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D050436" MajorTopicYN="N">Regulatory Elements, Transcriptional</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D017422" MajorTopicYN="N">Sequence Analysis, DNA</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D013045" MajorTopicYN="N">Species Specificity</DescriptorName>
</MeshHeading>
</MeshHeadingList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="pubmed">
<Year>2008</Year>
<Month>6</Month>
<Day>3</Day>
<Hour>9</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2008</Year>
<Month>10</Month>
<Day>15</Day>
<Hour>9</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2008</Year>
<Month>6</Month>
<Day>3</Day>
<Hour>9</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">18515639</ArticleId>
<ArticleId IdType="pii">pp.108.122416</ArticleId>
<ArticleId IdType="doi">10.1104/pp.108.122416</ArticleId>
<ArticleId IdType="pmc">PMC2492640</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>Trends Genet. 2000 Mar;16(3):109-11</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10689350</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2000 Dec 19;97(26):14433-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11087826</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2000 Dec 14;408(6814):796-815</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11130711</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genome Res. 2001 Dec;11(12):2020-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11731491</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genetics. 2002 Feb;160(2):727-40</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11861574</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell. 2002 Jun 28;109(7):807-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12110178</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genome Res. 2002 Nov;12(11):1792-801</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12421767</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2003 Jun;132(2):1020-32</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12805630</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genome Res. 2004 Jan;14(1):62-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14707170</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Mol Evol. 2004 Apr;58(4):424-41</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15114421</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Rev Genet. 2004 Apr;5(4):299-310</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15131653</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genome Res. 2004 Jun;14(6):1060-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15173112</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2004 Jun;135(2):801-13</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15173564</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 1989 Aug;86(16):6201-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">2762323</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 1997 Sep 1;25(17):3389-402</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9254694</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Mol Biol. 1998 Feb;36(3):331-41</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9484474</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 1999 Jan 1;27(1):297-300</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9847208</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genome Res. 1999 Sep;9(9):825-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10508840</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant J. 2005 May;42(3):305-14</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15842617</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2005 Jun;138(2):757-66</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15908603</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2005 Jun;138(2):923-34</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15923337</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2005 Aug 11;436(7052):793-800</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16100779</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2005 Sep 2;309(5740):1564-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16141073</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2005 Sep;139(1):316-28</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16126853</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant J. 2006 Feb;45(3):347-57</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16412082</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genome Res. 2006 May;16(5):606-17</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16606698</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2006 Sep 15;313(5793):1596-604</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16973872</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 2006;34(17):4767-79</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16971458</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genome Res. 2007 Jun;17(6):818-27</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17568000</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Mol Biol. 2007 Sep;65(1-2):205-17</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17641976</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Genet. 2000 Oct;26(2):183-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11017073</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/PoplarV1/Data/Main/Corpus
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 003875 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Corpus/biblio.hfd -nk 003875 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    PoplarV1
   |flux=    Main
   |étape=   Corpus
   |type=    RBID
   |clé=     pubmed:18515639
   |texte=   Comparative analysis of divergent and convergent gene pairs and their expression patterns in rice, Arabidopsis, and populus.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Corpus/RBID.i   -Sk "pubmed:18515639" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Corpus/biblio.hfd   \
       | NlmPubMed2Wicri -a PoplarV1 

Wicri

This area was generated with Dilib version V0.6.37.
Data generation: Wed Nov 18 12:07:19 2020. Site generation: Wed Nov 18 12:16:31 2020