Serveur d'exploration sur le peuplier

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Differential and dynamic regulation of miR398 in response to ABA and salt stress in Populus tremula and Arabidopsis thaliana.

Identifieur interne : 003536 ( Main/Corpus ); précédent : 003535; suivant : 003537

Differential and dynamic regulation of miR398 in response to ABA and salt stress in Populus tremula and Arabidopsis thaliana.

Auteurs : Xiaoyun Jia ; Wang-Xia Wang ; Ligang Ren ; Qi-Jun Chen ; Venugopal Mendu ; Benjamin Willcut ; Randy Dinkins ; Xiaoqing Tang ; Guiliang Tang

Source :

RBID : pubmed:19533381

English descriptors

Abstract

MicroRNAs (miRNAs) are endogenous small RNAs of ~22 nucleotides (nt) that play a key role in down regulation of gene expression at the post-transcriptional level in plants and animals. Various studies have identified numerous miRNAs that were either up regulated or down regulated upon stress treatment. Here, we sought to understand the temporal regulation of miRNAs in different plant species under abscisic acid (ABA) and salt (NaCl) stress. Our results showed that the regulation of miR398 in response to ABA and salt stress was more dynamic in plants than previously reported. In poplars, miR398 was first induced upon 3-4 h of ABA or salt stress. However, this induction declined after 48 h and finally accumulated again over a prolonged stress (72 h). We referred to this kind of regulation as dynamic regulation. In contrast, such dynamic regulation of miR398 under salt stress was completely absent in Arabidopsis, in which miR398 was steadily and unidirectionally suppressed. Interestingly, ABA treatment caused a deviate dynamic regulation of miR398 in Arabidopsis, showing an opposite response as compared to that in poplars. We referred to the difference in regulation between Arabidopsis and poplars as differential regulation. Furthermore, the expression of the miR398 target, copper superoxide dismutase1 (CSD1), was in reverse correlation with the miR398 level, suggesting a control of this specific target expression predominantly by miR398 under abiotic stress. Together, these data consistently show a correlated regulation between miR398 and its representative target, CSD1, by ABA and salt stresses, and raise the possibility that regulation of miRNAs in plants is twofold: a dynamic regulation within a plant species and a differential regulation between different plant species.

DOI: 10.1007/s11103-009-9508-8
PubMed: 19533381

Links to Exploration step

pubmed:19533381

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Differential and dynamic regulation of miR398 in response to ABA and salt stress in Populus tremula and Arabidopsis thaliana.</title>
<author>
<name sortKey="Jia, Xiaoyun" sort="Jia, Xiaoyun" uniqKey="Jia X" first="Xiaoyun" last="Jia">Xiaoyun Jia</name>
<affiliation>
<nlm:affiliation>Department of Plant and Soil Sciences and KTRDC, Gene Suppression Laboratory, University of Kentucky, Lexington, KY 40546-0236, USA.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Wang, Wang Xia" sort="Wang, Wang Xia" uniqKey="Wang W" first="Wang-Xia" last="Wang">Wang-Xia Wang</name>
</author>
<author>
<name sortKey="Ren, Ligang" sort="Ren, Ligang" uniqKey="Ren L" first="Ligang" last="Ren">Ligang Ren</name>
</author>
<author>
<name sortKey="Chen, Qi Jun" sort="Chen, Qi Jun" uniqKey="Chen Q" first="Qi-Jun" last="Chen">Qi-Jun Chen</name>
</author>
<author>
<name sortKey="Mendu, Venugopal" sort="Mendu, Venugopal" uniqKey="Mendu V" first="Venugopal" last="Mendu">Venugopal Mendu</name>
</author>
<author>
<name sortKey="Willcut, Benjamin" sort="Willcut, Benjamin" uniqKey="Willcut B" first="Benjamin" last="Willcut">Benjamin Willcut</name>
</author>
<author>
<name sortKey="Dinkins, Randy" sort="Dinkins, Randy" uniqKey="Dinkins R" first="Randy" last="Dinkins">Randy Dinkins</name>
</author>
<author>
<name sortKey="Tang, Xiaoqing" sort="Tang, Xiaoqing" uniqKey="Tang X" first="Xiaoqing" last="Tang">Xiaoqing Tang</name>
</author>
<author>
<name sortKey="Tang, Guiliang" sort="Tang, Guiliang" uniqKey="Tang G" first="Guiliang" last="Tang">Guiliang Tang</name>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2009">2009</date>
<idno type="RBID">pubmed:19533381</idno>
<idno type="pmid">19533381</idno>
<idno type="doi">10.1007/s11103-009-9508-8</idno>
<idno type="wicri:Area/Main/Corpus">003536</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">003536</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Differential and dynamic regulation of miR398 in response to ABA and salt stress in Populus tremula and Arabidopsis thaliana.</title>
<author>
<name sortKey="Jia, Xiaoyun" sort="Jia, Xiaoyun" uniqKey="Jia X" first="Xiaoyun" last="Jia">Xiaoyun Jia</name>
<affiliation>
<nlm:affiliation>Department of Plant and Soil Sciences and KTRDC, Gene Suppression Laboratory, University of Kentucky, Lexington, KY 40546-0236, USA.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Wang, Wang Xia" sort="Wang, Wang Xia" uniqKey="Wang W" first="Wang-Xia" last="Wang">Wang-Xia Wang</name>
</author>
<author>
<name sortKey="Ren, Ligang" sort="Ren, Ligang" uniqKey="Ren L" first="Ligang" last="Ren">Ligang Ren</name>
</author>
<author>
<name sortKey="Chen, Qi Jun" sort="Chen, Qi Jun" uniqKey="Chen Q" first="Qi-Jun" last="Chen">Qi-Jun Chen</name>
</author>
<author>
<name sortKey="Mendu, Venugopal" sort="Mendu, Venugopal" uniqKey="Mendu V" first="Venugopal" last="Mendu">Venugopal Mendu</name>
</author>
<author>
<name sortKey="Willcut, Benjamin" sort="Willcut, Benjamin" uniqKey="Willcut B" first="Benjamin" last="Willcut">Benjamin Willcut</name>
</author>
<author>
<name sortKey="Dinkins, Randy" sort="Dinkins, Randy" uniqKey="Dinkins R" first="Randy" last="Dinkins">Randy Dinkins</name>
</author>
<author>
<name sortKey="Tang, Xiaoqing" sort="Tang, Xiaoqing" uniqKey="Tang X" first="Xiaoqing" last="Tang">Xiaoqing Tang</name>
</author>
<author>
<name sortKey="Tang, Guiliang" sort="Tang, Guiliang" uniqKey="Tang G" first="Guiliang" last="Tang">Guiliang Tang</name>
</author>
</analytic>
<series>
<title level="j">Plant molecular biology</title>
<idno type="eISSN">1573-5028</idno>
<imprint>
<date when="2009" type="published">2009</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Abscisic Acid (pharmacology)</term>
<term>Arabidopsis (genetics)</term>
<term>Arabidopsis (metabolism)</term>
<term>Gene Expression Regulation, Plant (drug effects)</term>
<term>Kinetics (MeSH)</term>
<term>MicroRNAs (genetics)</term>
<term>Plant Proteins (genetics)</term>
<term>Populus (genetics)</term>
<term>Populus (metabolism)</term>
<term>RNA, Plant (genetics)</term>
<term>Salts (pharmacology)</term>
<term>Species Specificity (MeSH)</term>
<term>Superoxide Dismutase (genetics)</term>
<term>Superoxide Dismutase-1 (MeSH)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="genetics" xml:lang="en">
<term>MicroRNAs</term>
<term>Plant Proteins</term>
<term>RNA, Plant</term>
<term>Superoxide Dismutase</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="pharmacology" xml:lang="en">
<term>Abscisic Acid</term>
<term>Salts</term>
</keywords>
<keywords scheme="MESH" qualifier="drug effects" xml:lang="en">
<term>Gene Expression Regulation, Plant</term>
</keywords>
<keywords scheme="MESH" qualifier="genetics" xml:lang="en">
<term>Arabidopsis</term>
<term>Populus</term>
</keywords>
<keywords scheme="MESH" qualifier="metabolism" xml:lang="en">
<term>Arabidopsis</term>
<term>Populus</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Kinetics</term>
<term>Species Specificity</term>
<term>Superoxide Dismutase-1</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">MicroRNAs (miRNAs) are endogenous small RNAs of ~22 nucleotides (nt) that play a key role in down regulation of gene expression at the post-transcriptional level in plants and animals. Various studies have identified numerous miRNAs that were either up regulated or down regulated upon stress treatment. Here, we sought to understand the temporal regulation of miRNAs in different plant species under abscisic acid (ABA) and salt (NaCl) stress. Our results showed that the regulation of miR398 in response to ABA and salt stress was more dynamic in plants than previously reported. In poplars, miR398 was first induced upon 3-4 h of ABA or salt stress. However, this induction declined after 48 h and finally accumulated again over a prolonged stress (72 h). We referred to this kind of regulation as dynamic regulation. In contrast, such dynamic regulation of miR398 under salt stress was completely absent in Arabidopsis, in which miR398 was steadily and unidirectionally suppressed. Interestingly, ABA treatment caused a deviate dynamic regulation of miR398 in Arabidopsis, showing an opposite response as compared to that in poplars. We referred to the difference in regulation between Arabidopsis and poplars as differential regulation. Furthermore, the expression of the miR398 target, copper superoxide dismutase1 (CSD1), was in reverse correlation with the miR398 level, suggesting a control of this specific target expression predominantly by miR398 under abiotic stress. Together, these data consistently show a correlated regulation between miR398 and its representative target, CSD1, by ABA and salt stresses, and raise the possibility that regulation of miRNAs in plants is twofold: a dynamic regulation within a plant species and a differential regulation between different plant species.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">19533381</PMID>
<DateCompleted>
<Year>2009</Year>
<Month>09</Month>
<Day>16</Day>
</DateCompleted>
<DateRevised>
<Year>2018</Year>
<Month>11</Month>
<Day>13</Day>
</DateRevised>
<Article PubModel="Print-Electronic">
<Journal>
<ISSN IssnType="Electronic">1573-5028</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>71</Volume>
<Issue>1-2</Issue>
<PubDate>
<Year>2009</Year>
<Month>Sep</Month>
</PubDate>
</JournalIssue>
<Title>Plant molecular biology</Title>
<ISOAbbreviation>Plant Mol Biol</ISOAbbreviation>
</Journal>
<ArticleTitle>Differential and dynamic regulation of miR398 in response to ABA and salt stress in Populus tremula and Arabidopsis thaliana.</ArticleTitle>
<Pagination>
<MedlinePgn>51-9</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1007/s11103-009-9508-8</ELocationID>
<Abstract>
<AbstractText>MicroRNAs (miRNAs) are endogenous small RNAs of ~22 nucleotides (nt) that play a key role in down regulation of gene expression at the post-transcriptional level in plants and animals. Various studies have identified numerous miRNAs that were either up regulated or down regulated upon stress treatment. Here, we sought to understand the temporal regulation of miRNAs in different plant species under abscisic acid (ABA) and salt (NaCl) stress. Our results showed that the regulation of miR398 in response to ABA and salt stress was more dynamic in plants than previously reported. In poplars, miR398 was first induced upon 3-4 h of ABA or salt stress. However, this induction declined after 48 h and finally accumulated again over a prolonged stress (72 h). We referred to this kind of regulation as dynamic regulation. In contrast, such dynamic regulation of miR398 under salt stress was completely absent in Arabidopsis, in which miR398 was steadily and unidirectionally suppressed. Interestingly, ABA treatment caused a deviate dynamic regulation of miR398 in Arabidopsis, showing an opposite response as compared to that in poplars. We referred to the difference in regulation between Arabidopsis and poplars as differential regulation. Furthermore, the expression of the miR398 target, copper superoxide dismutase1 (CSD1), was in reverse correlation with the miR398 level, suggesting a control of this specific target expression predominantly by miR398 under abiotic stress. Together, these data consistently show a correlated regulation between miR398 and its representative target, CSD1, by ABA and salt stresses, and raise the possibility that regulation of miRNAs in plants is twofold: a dynamic regulation within a plant species and a differential regulation between different plant species.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Jia</LastName>
<ForeName>Xiaoyun</ForeName>
<Initials>X</Initials>
<AffiliationInfo>
<Affiliation>Department of Plant and Soil Sciences and KTRDC, Gene Suppression Laboratory, University of Kentucky, Lexington, KY 40546-0236, USA.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Wang</LastName>
<ForeName>Wang-Xia</ForeName>
<Initials>WX</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Ren</LastName>
<ForeName>Ligang</ForeName>
<Initials>L</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Chen</LastName>
<ForeName>Qi-Jun</ForeName>
<Initials>QJ</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Mendu</LastName>
<ForeName>Venugopal</ForeName>
<Initials>V</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Willcut</LastName>
<ForeName>Benjamin</ForeName>
<Initials>B</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Dinkins</LastName>
<ForeName>Randy</ForeName>
<Initials>R</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Tang</LastName>
<ForeName>Xiaoqing</ForeName>
<Initials>X</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Tang</LastName>
<ForeName>Guiliang</ForeName>
<Initials>G</Initials>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D013485">Research Support, Non-U.S. Gov't</PublicationType>
<PublicationType UI="D013486">Research Support, U.S. Gov't, Non-P.H.S.</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2009</Year>
<Month>06</Month>
<Day>17</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>Netherlands</Country>
<MedlineTA>Plant Mol Biol</MedlineTA>
<NlmUniqueID>9106343</NlmUniqueID>
<ISSNLinking>0167-4412</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D035683">MicroRNAs</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D010940">Plant Proteins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D018749">RNA, Plant</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D012492">Salts</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>72S9A8J5GW</RegistryNumber>
<NameOfSubstance UI="D000040">Abscisic Acid</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 1.15.1.1</RegistryNumber>
<NameOfSubstance UI="D013482">Superoxide Dismutase</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 1.15.1.1</RegistryNumber>
<NameOfSubstance UI="D000072105">Superoxide Dismutase-1</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D000040" MajorTopicYN="N">Abscisic Acid</DescriptorName>
<QualifierName UI="Q000494" MajorTopicYN="Y">pharmacology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D017360" MajorTopicYN="N">Arabidopsis</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="Y">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D018506" MajorTopicYN="N">Gene Expression Regulation, Plant</DescriptorName>
<QualifierName UI="Q000187" MajorTopicYN="Y">drug effects</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D007700" MajorTopicYN="N">Kinetics</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D035683" MajorTopicYN="N">MicroRNAs</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="Y">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D010940" MajorTopicYN="N">Plant Proteins</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D032107" MajorTopicYN="N">Populus</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="Y">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D018749" MajorTopicYN="N">RNA, Plant</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="Y">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D012492" MajorTopicYN="N">Salts</DescriptorName>
<QualifierName UI="Q000494" MajorTopicYN="N">pharmacology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D013045" MajorTopicYN="N">Species Specificity</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D013482" MajorTopicYN="N">Superoxide Dismutase</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D000072105" MajorTopicYN="N">Superoxide Dismutase-1</DescriptorName>
</MeshHeading>
</MeshHeadingList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2009</Year>
<Month>02</Month>
<Day>05</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2009</Year>
<Month>05</Month>
<Day>22</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2009</Year>
<Month>6</Month>
<Day>18</Day>
<Hour>9</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2009</Year>
<Month>6</Month>
<Day>18</Day>
<Hour>9</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2009</Year>
<Month>9</Month>
<Day>17</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">19533381</ArticleId>
<ArticleId IdType="doi">10.1007/s11103-009-9508-8</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>Ann Bot. 2008 Oct;102(4):509-19</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18669574</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cancer Res. 2006 Nov 15;66(22):10843-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17108120</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Trends Plant Sci. 2007 Jul;12(7):301-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17573231</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2006 Aug;18(8):2051-65</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16861386</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Genet. 2007 Jul;39(7):901-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17589508</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>FEBS Lett. 2005 Oct 31;579(26):5923-31</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16144699</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant J. 2008 Jul;55(1):131-51</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18363789</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Bioinformatics. 2004 Jun 12;20(9):1453-4</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14871861</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Methods. 2001 Dec;25(4):402-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11846609</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>RNA. 2008 May;14(5):836-43</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18356539</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>RNA. 2007 Oct;13(10):1803-22</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17675362</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Cell Physiol. 2007 Feb;210(2):279-89</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17096367</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genes Dev. 2003 Jan 1;17(1):49-63</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12514099</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Rev Mol Cell Biol. 2005 May;6(5):376-85</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15852042</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2006 Feb;18(2):412-21</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16387831</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Bioinformatics. 2004 Nov 22;20(17):3246-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15180930</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Mol Biol. 2008 Jul;67(4):403-17</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18392778</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Dev Biol. 2006 Jan 1;289(1):3-16</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16325172</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Ann N Y Acad Sci. 1998 Jun 30;851:187-98</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9668620</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Trends Genet. 2007 May;23(5):243-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17368621</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochim Biophys Acta. 2008 Nov;1779(11):655-62</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18620087</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2008 Jun 6;283(23):15932-45</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18408011</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Opin Cell Biol. 2004 Jun;16(3):223-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15145345</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell. 2004 Jan 23;116(2):281-97</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14744438</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Cell. 2004 Jun 18;14(6):787-99</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15200956</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2004 Aug;16(8):2001-19</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15258262</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Trends Biochem Sci. 2005 Feb;30(2):106-14</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15691656</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Development. 2005 Nov;132(21):4645-52</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16224044</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Planta. 2009 Mar;229(4):1009-14</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19148671</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2005 Aug;17(8):2186-203</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15994906</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant J. 2009 Jan;57(2):313-21</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18801012</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2006 Jul;141(3):988-99</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16679424</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Biol. 2005 Jun 21;15(12):R458-60</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15964265</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochim Biophys Acta. 2008 Nov;1779(11):743-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18457682</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2007 May 25;282(21):15589-96</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17403669</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Struct Mol Biol. 2008 Apr;15(4):354-63</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18376413</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochem Biophys Res Commun. 2007 Mar 9;354(2):585-90</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17254555</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Biol. 2005 Nov 22;15(22):2038-43</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16303564</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/PoplarV1/Data/Main/Corpus
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 003536 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Corpus/biblio.hfd -nk 003536 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    PoplarV1
   |flux=    Main
   |étape=   Corpus
   |type=    RBID
   |clé=     pubmed:19533381
   |texte=   Differential and dynamic regulation of miR398 in response to ABA and salt stress in Populus tremula and Arabidopsis thaliana.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Corpus/RBID.i   -Sk "pubmed:19533381" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Corpus/biblio.hfd   \
       | NlmPubMed2Wicri -a PoplarV1 

Wicri

This area was generated with Dilib version V0.6.37.
Data generation: Wed Nov 18 12:07:19 2020. Site generation: Wed Nov 18 12:16:31 2020