Serveur d'exploration sur le peuplier

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Drought tolerance of two black poplar (Populus nigra L.) clones: contribution of carbohydrates and oxidative stress defence.

Identifieur interne : 003488 ( Main/Corpus ); précédent : 003487; suivant : 003489

Drought tolerance of two black poplar (Populus nigra L.) clones: contribution of carbohydrates and oxidative stress defence.

Auteurs : Nicole Regier ; Sebastian Streb ; Claudia Cocozza ; Marcus Schaub ; Paolo Cherubini ; Samuel C. Zeeman ; Beat Frey

Source :

RBID : pubmed:19671097

English descriptors

Abstract

Drought is expected to become an increasingly important factor limiting tree growth caused by climate change. Two divergent clones of Populus nigra (58-861 and Poli) originating from contrasting environments were subjected to water limitation (WL) to elucidate whether they differ in tolerance to drought, which mechanisms to avoid stress they exhibit and whether drought has an impact on the interactions between roots and shoots. Limiting water availability caused photosynthetic rate and total non-structural carbohydrate (TNC) levels to decrease in 58-861. However, starch-degrading enzyme activity and gene expression were induced in roots, and soluble sugar levels were higher than in well-watered (WW) plants. These data suggest that assimilation and partitioning of carbon to the roots are decreased, resulting in mobilization of stored starch. In contrast, the photosynthetic rate of Poli was reduced only late in the treatment, and carbohydrate levels in WL plants were higher than in WW plants. Superoxide dismutase (SOD) activity and gene expression were higher in Poli than in 58-861, even in WW plants, leading to a higher capacity to defend against oxidative stress.

DOI: 10.1111/j.1365-3040.2009.02030.x
PubMed: 19671097

Links to Exploration step

pubmed:19671097

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Drought tolerance of two black poplar (Populus nigra L.) clones: contribution of carbohydrates and oxidative stress defence.</title>
<author>
<name sortKey="Regier, Nicole" sort="Regier, Nicole" uniqKey="Regier N" first="Nicole" last="Regier">Nicole Regier</name>
<affiliation>
<nlm:affiliation>Swiss Federal Research Institute WSL, 8903 Birmensdorf, Switzerland.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Streb, Sebastian" sort="Streb, Sebastian" uniqKey="Streb S" first="Sebastian" last="Streb">Sebastian Streb</name>
</author>
<author>
<name sortKey="Cocozza, Claudia" sort="Cocozza, Claudia" uniqKey="Cocozza C" first="Claudia" last="Cocozza">Claudia Cocozza</name>
</author>
<author>
<name sortKey="Schaub, Marcus" sort="Schaub, Marcus" uniqKey="Schaub M" first="Marcus" last="Schaub">Marcus Schaub</name>
</author>
<author>
<name sortKey="Cherubini, Paolo" sort="Cherubini, Paolo" uniqKey="Cherubini P" first="Paolo" last="Cherubini">Paolo Cherubini</name>
</author>
<author>
<name sortKey="Zeeman, Samuel C" sort="Zeeman, Samuel C" uniqKey="Zeeman S" first="Samuel C" last="Zeeman">Samuel C. Zeeman</name>
</author>
<author>
<name sortKey="Frey, Beat" sort="Frey, Beat" uniqKey="Frey B" first="Beat" last="Frey">Beat Frey</name>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2009">2009</date>
<idno type="RBID">pubmed:19671097</idno>
<idno type="pmid">19671097</idno>
<idno type="doi">10.1111/j.1365-3040.2009.02030.x</idno>
<idno type="wicri:Area/Main/Corpus">003488</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">003488</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Drought tolerance of two black poplar (Populus nigra L.) clones: contribution of carbohydrates and oxidative stress defence.</title>
<author>
<name sortKey="Regier, Nicole" sort="Regier, Nicole" uniqKey="Regier N" first="Nicole" last="Regier">Nicole Regier</name>
<affiliation>
<nlm:affiliation>Swiss Federal Research Institute WSL, 8903 Birmensdorf, Switzerland.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Streb, Sebastian" sort="Streb, Sebastian" uniqKey="Streb S" first="Sebastian" last="Streb">Sebastian Streb</name>
</author>
<author>
<name sortKey="Cocozza, Claudia" sort="Cocozza, Claudia" uniqKey="Cocozza C" first="Claudia" last="Cocozza">Claudia Cocozza</name>
</author>
<author>
<name sortKey="Schaub, Marcus" sort="Schaub, Marcus" uniqKey="Schaub M" first="Marcus" last="Schaub">Marcus Schaub</name>
</author>
<author>
<name sortKey="Cherubini, Paolo" sort="Cherubini, Paolo" uniqKey="Cherubini P" first="Paolo" last="Cherubini">Paolo Cherubini</name>
</author>
<author>
<name sortKey="Zeeman, Samuel C" sort="Zeeman, Samuel C" uniqKey="Zeeman S" first="Samuel C" last="Zeeman">Samuel C. Zeeman</name>
</author>
<author>
<name sortKey="Frey, Beat" sort="Frey, Beat" uniqKey="Frey B" first="Beat" last="Frey">Beat Frey</name>
</author>
</analytic>
<series>
<title level="j">Plant, cell & environment</title>
<idno type="eISSN">1365-3040</idno>
<imprint>
<date when="2009" type="published">2009</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Carbohydrate Metabolism (MeSH)</term>
<term>Droughts (MeSH)</term>
<term>Gene Expression Regulation, Plant (MeSH)</term>
<term>Genotype (MeSH)</term>
<term>Oxidative Stress (MeSH)</term>
<term>Phenotype (MeSH)</term>
<term>Photosynthesis (MeSH)</term>
<term>Plant Roots (metabolism)</term>
<term>Plant Shoots (metabolism)</term>
<term>Plant Stomata (metabolism)</term>
<term>Populus (genetics)</term>
<term>Populus (metabolism)</term>
<term>RNA, Plant (genetics)</term>
<term>Reactive Oxygen Species (metabolism)</term>
<term>Superoxide Dismutase (metabolism)</term>
<term>Water (metabolism)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="genetics" xml:lang="en">
<term>RNA, Plant</term>
</keywords>
<keywords scheme="MESH" qualifier="genetics" xml:lang="en">
<term>Populus</term>
</keywords>
<keywords scheme="MESH" qualifier="metabolism" xml:lang="en">
<term>Plant Roots</term>
<term>Plant Shoots</term>
<term>Plant Stomata</term>
<term>Populus</term>
<term>Reactive Oxygen Species</term>
<term>Superoxide Dismutase</term>
<term>Water</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Carbohydrate Metabolism</term>
<term>Droughts</term>
<term>Gene Expression Regulation, Plant</term>
<term>Genotype</term>
<term>Oxidative Stress</term>
<term>Phenotype</term>
<term>Photosynthesis</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Drought is expected to become an increasingly important factor limiting tree growth caused by climate change. Two divergent clones of Populus nigra (58-861 and Poli) originating from contrasting environments were subjected to water limitation (WL) to elucidate whether they differ in tolerance to drought, which mechanisms to avoid stress they exhibit and whether drought has an impact on the interactions between roots and shoots. Limiting water availability caused photosynthetic rate and total non-structural carbohydrate (TNC) levels to decrease in 58-861. However, starch-degrading enzyme activity and gene expression were induced in roots, and soluble sugar levels were higher than in well-watered (WW) plants. These data suggest that assimilation and partitioning of carbon to the roots are decreased, resulting in mobilization of stored starch. In contrast, the photosynthetic rate of Poli was reduced only late in the treatment, and carbohydrate levels in WL plants were higher than in WW plants. Superoxide dismutase (SOD) activity and gene expression were higher in Poli than in 58-861, even in WW plants, leading to a higher capacity to defend against oxidative stress.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">19671097</PMID>
<DateCompleted>
<Year>2010</Year>
<Month>01</Month>
<Day>20</Day>
</DateCompleted>
<DateRevised>
<Year>2013</Year>
<Month>11</Month>
<Day>21</Day>
</DateRevised>
<Article PubModel="Print-Electronic">
<Journal>
<ISSN IssnType="Electronic">1365-3040</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>32</Volume>
<Issue>12</Issue>
<PubDate>
<Year>2009</Year>
<Month>Dec</Month>
</PubDate>
</JournalIssue>
<Title>Plant, cell & environment</Title>
<ISOAbbreviation>Plant Cell Environ</ISOAbbreviation>
</Journal>
<ArticleTitle>Drought tolerance of two black poplar (Populus nigra L.) clones: contribution of carbohydrates and oxidative stress defence.</ArticleTitle>
<Pagination>
<MedlinePgn>1724-36</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1111/j.1365-3040.2009.02030.x</ELocationID>
<Abstract>
<AbstractText>Drought is expected to become an increasingly important factor limiting tree growth caused by climate change. Two divergent clones of Populus nigra (58-861 and Poli) originating from contrasting environments were subjected to water limitation (WL) to elucidate whether they differ in tolerance to drought, which mechanisms to avoid stress they exhibit and whether drought has an impact on the interactions between roots and shoots. Limiting water availability caused photosynthetic rate and total non-structural carbohydrate (TNC) levels to decrease in 58-861. However, starch-degrading enzyme activity and gene expression were induced in roots, and soluble sugar levels were higher than in well-watered (WW) plants. These data suggest that assimilation and partitioning of carbon to the roots are decreased, resulting in mobilization of stored starch. In contrast, the photosynthetic rate of Poli was reduced only late in the treatment, and carbohydrate levels in WL plants were higher than in WW plants. Superoxide dismutase (SOD) activity and gene expression were higher in Poli than in 58-861, even in WW plants, leading to a higher capacity to defend against oxidative stress.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Regier</LastName>
<ForeName>Nicole</ForeName>
<Initials>N</Initials>
<AffiliationInfo>
<Affiliation>Swiss Federal Research Institute WSL, 8903 Birmensdorf, Switzerland.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Streb</LastName>
<ForeName>Sebastian</ForeName>
<Initials>S</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Cocozza</LastName>
<ForeName>Claudia</ForeName>
<Initials>C</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Schaub</LastName>
<ForeName>Marcus</ForeName>
<Initials>M</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Cherubini</LastName>
<ForeName>Paolo</ForeName>
<Initials>P</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Zeeman</LastName>
<ForeName>Samuel C</ForeName>
<Initials>SC</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Frey</LastName>
<ForeName>Beat</ForeName>
<Initials>B</Initials>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D013485">Research Support, Non-U.S. Gov't</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2009</Year>
<Month>08</Month>
<Day>07</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>United States</Country>
<MedlineTA>Plant Cell Environ</MedlineTA>
<NlmUniqueID>9309004</NlmUniqueID>
<ISSNLinking>0140-7791</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D018749">RNA, Plant</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D017382">Reactive Oxygen Species</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>059QF0KO0R</RegistryNumber>
<NameOfSubstance UI="D014867">Water</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 1.15.1.1</RegistryNumber>
<NameOfSubstance UI="D013482">Superoxide Dismutase</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D050260" MajorTopicYN="Y">Carbohydrate Metabolism</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D055864" MajorTopicYN="Y">Droughts</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D018506" MajorTopicYN="N">Gene Expression Regulation, Plant</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D005838" MajorTopicYN="N">Genotype</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D018384" MajorTopicYN="Y">Oxidative Stress</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D010641" MajorTopicYN="N">Phenotype</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D010788" MajorTopicYN="Y">Photosynthesis</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D018517" MajorTopicYN="N">Plant Roots</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D018520" MajorTopicYN="N">Plant Shoots</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D054046" MajorTopicYN="N">Plant Stomata</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D032107" MajorTopicYN="N">Populus</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D018749" MajorTopicYN="N">RNA, Plant</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D017382" MajorTopicYN="N">Reactive Oxygen Species</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D013482" MajorTopicYN="N">Superoxide Dismutase</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D014867" MajorTopicYN="N">Water</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
</MeshHeadingList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="entrez">
<Year>2009</Year>
<Month>8</Month>
<Day>13</Day>
<Hour>9</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2009</Year>
<Month>8</Month>
<Day>13</Day>
<Hour>9</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2010</Year>
<Month>1</Month>
<Day>21</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">19671097</ArticleId>
<ArticleId IdType="pii">PCE2030</ArticleId>
<ArticleId IdType="doi">10.1111/j.1365-3040.2009.02030.x</ArticleId>
</ArticleIdList>
</PubmedData>
</pubmed>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/PoplarV1/Data/Main/Corpus
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 003488 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Corpus/biblio.hfd -nk 003488 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    PoplarV1
   |flux=    Main
   |étape=   Corpus
   |type=    RBID
   |clé=     pubmed:19671097
   |texte=   Drought tolerance of two black poplar (Populus nigra L.) clones: contribution of carbohydrates and oxidative stress defence.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Corpus/RBID.i   -Sk "pubmed:19671097" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Corpus/biblio.hfd   \
       | NlmPubMed2Wicri -a PoplarV1 

Wicri

This area was generated with Dilib version V0.6.37.
Data generation: Wed Nov 18 12:07:19 2020. Site generation: Wed Nov 18 12:16:31 2020