Serveur d'exploration sur le peuplier

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Alternative splicing and gene duplication differentially shaped the regulation of isochorismate synthase in Populus and Arabidopsis.

Identifieur interne : 003369 ( Main/Corpus ); précédent : 003368; suivant : 003370

Alternative splicing and gene duplication differentially shaped the regulation of isochorismate synthase in Populus and Arabidopsis.

Auteurs : Yinan Yuan ; Jeng-Der Chung ; Xueyan Fu ; Virgil E. Johnson ; Priya Ranjan ; Sarah L. Booth ; Scott A. Harding ; Chung-Jui Tsai

Source :

RBID : pubmed:19996170

English descriptors

Abstract

Isochorismate synthase (ICS) converts chorismate to isochorismate for the biosynthesis of phylloquinone, an essential cofactor for photosynthetic electron transport. ICS is also required for salicylic acid (SA) synthesis during Arabidopsis defense. In several other species, including Populus, SA is derived primarily from the phenylpropanoid pathway. We therefore sought to investigate ICS regulation in Populus to learn the extent of ICS involvement in SA synthesis and defense. Arabidopsis harbors duplicated AtICS genes that differ in their exon-intron structure, basal expression, and stress inducibility. In contrast, we found a single ICS gene in Populus and six other sequenced plant genomes, pointing to the AtICS duplication as a lineage-specific event. The Populus ICS encodes a functional plastidic enzyme, and was not responsive to stresses that stimulated phenylpropanoid accumulation. Populus ICS underwent extensive alternative splicing that was rare for the duplicated AtICSs. Sequencing of 184 RT-PCR Populus clones revealed 37 alternative splice variants, with normal transcripts representing approximately 50% of the population. When expressed in Arabidopsis, Populus ICS again underwent alternative splicing, but did not produce normal transcripts to complement AtICS1 function. The splice-site sequences of Populus ICS are unusual, suggesting a causal link between junction sequence, alternative splicing, and ICS function. We propose that gene duplication and alternative splicing of ICS evolved independently in Arabidopsis and Populus in accordance with their distinct defense strategies. AtICS1 represents a divergent isoform for inducible SA synthesis during defense. Populus ICS primarily functions in phylloquinone biosynthesis, a process that can be sustained at low ICS transcript levels.

DOI: 10.1073/pnas.0906869106
PubMed: 19996170
PubMed Central: PMC2790362

Links to Exploration step

pubmed:19996170

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Alternative splicing and gene duplication differentially shaped the regulation of isochorismate synthase in Populus and Arabidopsis.</title>
<author>
<name sortKey="Yuan, Yinan" sort="Yuan, Yinan" uniqKey="Yuan Y" first="Yinan" last="Yuan">Yinan Yuan</name>
<affiliation>
<nlm:affiliation>School of Forest Resources and Environmental Science, Michigan Technological University, Houghton, MI 49931, USA.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Chung, Jeng Der" sort="Chung, Jeng Der" uniqKey="Chung J" first="Jeng-Der" last="Chung">Jeng-Der Chung</name>
</author>
<author>
<name sortKey="Fu, Xueyan" sort="Fu, Xueyan" uniqKey="Fu X" first="Xueyan" last="Fu">Xueyan Fu</name>
</author>
<author>
<name sortKey="Johnson, Virgil E" sort="Johnson, Virgil E" uniqKey="Johnson V" first="Virgil E" last="Johnson">Virgil E. Johnson</name>
</author>
<author>
<name sortKey="Ranjan, Priya" sort="Ranjan, Priya" uniqKey="Ranjan P" first="Priya" last="Ranjan">Priya Ranjan</name>
</author>
<author>
<name sortKey="Booth, Sarah L" sort="Booth, Sarah L" uniqKey="Booth S" first="Sarah L" last="Booth">Sarah L. Booth</name>
</author>
<author>
<name sortKey="Harding, Scott A" sort="Harding, Scott A" uniqKey="Harding S" first="Scott A" last="Harding">Scott A. Harding</name>
</author>
<author>
<name sortKey="Tsai, Chung Jui" sort="Tsai, Chung Jui" uniqKey="Tsai C" first="Chung-Jui" last="Tsai">Chung-Jui Tsai</name>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2009">2009</date>
<idno type="RBID">pubmed:19996170</idno>
<idno type="pmid">19996170</idno>
<idno type="doi">10.1073/pnas.0906869106</idno>
<idno type="pmc">PMC2790362</idno>
<idno type="wicri:Area/Main/Corpus">003369</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">003369</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Alternative splicing and gene duplication differentially shaped the regulation of isochorismate synthase in Populus and Arabidopsis.</title>
<author>
<name sortKey="Yuan, Yinan" sort="Yuan, Yinan" uniqKey="Yuan Y" first="Yinan" last="Yuan">Yinan Yuan</name>
<affiliation>
<nlm:affiliation>School of Forest Resources and Environmental Science, Michigan Technological University, Houghton, MI 49931, USA.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Chung, Jeng Der" sort="Chung, Jeng Der" uniqKey="Chung J" first="Jeng-Der" last="Chung">Jeng-Der Chung</name>
</author>
<author>
<name sortKey="Fu, Xueyan" sort="Fu, Xueyan" uniqKey="Fu X" first="Xueyan" last="Fu">Xueyan Fu</name>
</author>
<author>
<name sortKey="Johnson, Virgil E" sort="Johnson, Virgil E" uniqKey="Johnson V" first="Virgil E" last="Johnson">Virgil E. Johnson</name>
</author>
<author>
<name sortKey="Ranjan, Priya" sort="Ranjan, Priya" uniqKey="Ranjan P" first="Priya" last="Ranjan">Priya Ranjan</name>
</author>
<author>
<name sortKey="Booth, Sarah L" sort="Booth, Sarah L" uniqKey="Booth S" first="Sarah L" last="Booth">Sarah L. Booth</name>
</author>
<author>
<name sortKey="Harding, Scott A" sort="Harding, Scott A" uniqKey="Harding S" first="Scott A" last="Harding">Scott A. Harding</name>
</author>
<author>
<name sortKey="Tsai, Chung Jui" sort="Tsai, Chung Jui" uniqKey="Tsai C" first="Chung-Jui" last="Tsai">Chung-Jui Tsai</name>
</author>
</analytic>
<series>
<title level="j">Proceedings of the National Academy of Sciences of the United States of America</title>
<idno type="eISSN">1091-6490</idno>
<imprint>
<date when="2009" type="published">2009</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Alternative Splicing (MeSH)</term>
<term>Arabidopsis (enzymology)</term>
<term>Arabidopsis (genetics)</term>
<term>Gene Duplication (MeSH)</term>
<term>Gene Expression Regulation, Enzymologic (MeSH)</term>
<term>Gene Expression Regulation, Plant (MeSH)</term>
<term>Genes, Plant (MeSH)</term>
<term>Intramolecular Transferases (genetics)</term>
<term>Molecular Sequence Data (MeSH)</term>
<term>Plants, Genetically Modified (MeSH)</term>
<term>Populus (enzymology)</term>
<term>Populus (genetics)</term>
<term>Reverse Transcriptase Polymerase Chain Reaction (MeSH)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="genetics" xml:lang="en">
<term>Intramolecular Transferases</term>
</keywords>
<keywords scheme="MESH" qualifier="enzymology" xml:lang="en">
<term>Arabidopsis</term>
<term>Populus</term>
</keywords>
<keywords scheme="MESH" qualifier="genetics" xml:lang="en">
<term>Arabidopsis</term>
<term>Populus</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Alternative Splicing</term>
<term>Gene Duplication</term>
<term>Gene Expression Regulation, Enzymologic</term>
<term>Gene Expression Regulation, Plant</term>
<term>Genes, Plant</term>
<term>Molecular Sequence Data</term>
<term>Plants, Genetically Modified</term>
<term>Reverse Transcriptase Polymerase Chain Reaction</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Isochorismate synthase (ICS) converts chorismate to isochorismate for the biosynthesis of phylloquinone, an essential cofactor for photosynthetic electron transport. ICS is also required for salicylic acid (SA) synthesis during Arabidopsis defense. In several other species, including Populus, SA is derived primarily from the phenylpropanoid pathway. We therefore sought to investigate ICS regulation in Populus to learn the extent of ICS involvement in SA synthesis and defense. Arabidopsis harbors duplicated AtICS genes that differ in their exon-intron structure, basal expression, and stress inducibility. In contrast, we found a single ICS gene in Populus and six other sequenced plant genomes, pointing to the AtICS duplication as a lineage-specific event. The Populus ICS encodes a functional plastidic enzyme, and was not responsive to stresses that stimulated phenylpropanoid accumulation. Populus ICS underwent extensive alternative splicing that was rare for the duplicated AtICSs. Sequencing of 184 RT-PCR Populus clones revealed 37 alternative splice variants, with normal transcripts representing approximately 50% of the population. When expressed in Arabidopsis, Populus ICS again underwent alternative splicing, but did not produce normal transcripts to complement AtICS1 function. The splice-site sequences of Populus ICS are unusual, suggesting a causal link between junction sequence, alternative splicing, and ICS function. We propose that gene duplication and alternative splicing of ICS evolved independently in Arabidopsis and Populus in accordance with their distinct defense strategies. AtICS1 represents a divergent isoform for inducible SA synthesis during defense. Populus ICS primarily functions in phylloquinone biosynthesis, a process that can be sustained at low ICS transcript levels.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">19996170</PMID>
<DateCompleted>
<Year>2010</Year>
<Month>02</Month>
<Day>18</Day>
</DateCompleted>
<DateRevised>
<Year>2018</Year>
<Month>11</Month>
<Day>13</Day>
</DateRevised>
<Article PubModel="Print-Electronic">
<Journal>
<ISSN IssnType="Electronic">1091-6490</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>106</Volume>
<Issue>51</Issue>
<PubDate>
<Year>2009</Year>
<Month>Dec</Month>
<Day>22</Day>
</PubDate>
</JournalIssue>
<Title>Proceedings of the National Academy of Sciences of the United States of America</Title>
<ISOAbbreviation>Proc Natl Acad Sci U S A</ISOAbbreviation>
</Journal>
<ArticleTitle>Alternative splicing and gene duplication differentially shaped the regulation of isochorismate synthase in Populus and Arabidopsis.</ArticleTitle>
<Pagination>
<MedlinePgn>22020-5</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1073/pnas.0906869106</ELocationID>
<Abstract>
<AbstractText>Isochorismate synthase (ICS) converts chorismate to isochorismate for the biosynthesis of phylloquinone, an essential cofactor for photosynthetic electron transport. ICS is also required for salicylic acid (SA) synthesis during Arabidopsis defense. In several other species, including Populus, SA is derived primarily from the phenylpropanoid pathway. We therefore sought to investigate ICS regulation in Populus to learn the extent of ICS involvement in SA synthesis and defense. Arabidopsis harbors duplicated AtICS genes that differ in their exon-intron structure, basal expression, and stress inducibility. In contrast, we found a single ICS gene in Populus and six other sequenced plant genomes, pointing to the AtICS duplication as a lineage-specific event. The Populus ICS encodes a functional plastidic enzyme, and was not responsive to stresses that stimulated phenylpropanoid accumulation. Populus ICS underwent extensive alternative splicing that was rare for the duplicated AtICSs. Sequencing of 184 RT-PCR Populus clones revealed 37 alternative splice variants, with normal transcripts representing approximately 50% of the population. When expressed in Arabidopsis, Populus ICS again underwent alternative splicing, but did not produce normal transcripts to complement AtICS1 function. The splice-site sequences of Populus ICS are unusual, suggesting a causal link between junction sequence, alternative splicing, and ICS function. We propose that gene duplication and alternative splicing of ICS evolved independently in Arabidopsis and Populus in accordance with their distinct defense strategies. AtICS1 represents a divergent isoform for inducible SA synthesis during defense. Populus ICS primarily functions in phylloquinone biosynthesis, a process that can be sustained at low ICS transcript levels.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Yuan</LastName>
<ForeName>Yinan</ForeName>
<Initials>Y</Initials>
<AffiliationInfo>
<Affiliation>School of Forest Resources and Environmental Science, Michigan Technological University, Houghton, MI 49931, USA.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Chung</LastName>
<ForeName>Jeng-Der</ForeName>
<Initials>JD</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Fu</LastName>
<ForeName>Xueyan</ForeName>
<Initials>X</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Johnson</LastName>
<ForeName>Virgil E</ForeName>
<Initials>VE</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Ranjan</LastName>
<ForeName>Priya</ForeName>
<Initials>P</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Booth</LastName>
<ForeName>Sarah L</ForeName>
<Initials>SL</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Harding</LastName>
<ForeName>Scott A</ForeName>
<Initials>SA</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Tsai</LastName>
<ForeName>Chung-Jui</ForeName>
<Initials>CJ</Initials>
</Author>
</AuthorList>
<Language>eng</Language>
<DataBankList CompleteYN="Y">
<DataBank>
<DataBankName>GENBANK</DataBankName>
<AccessionNumberList>
<AccessionNumber>FJ968815</AccessionNumber>
<AccessionNumber>FJ968816</AccessionNumber>
<AccessionNumber>FJ968817</AccessionNumber>
<AccessionNumber>FJ968818</AccessionNumber>
<AccessionNumber>FJ968819</AccessionNumber>
<AccessionNumber>FJ968820</AccessionNumber>
<AccessionNumber>FJ968821</AccessionNumber>
<AccessionNumber>FJ968822</AccessionNumber>
<AccessionNumber>FJ968823</AccessionNumber>
<AccessionNumber>FJ968824</AccessionNumber>
<AccessionNumber>FJ968825</AccessionNumber>
<AccessionNumber>FJ968826</AccessionNumber>
<AccessionNumber>FJ968827</AccessionNumber>
<AccessionNumber>FJ968828</AccessionNumber>
<AccessionNumber>FJ968829</AccessionNumber>
<AccessionNumber>FJ968830</AccessionNumber>
<AccessionNumber>FJ968831</AccessionNumber>
<AccessionNumber>FJ968832</AccessionNumber>
<AccessionNumber>FJ968833</AccessionNumber>
<AccessionNumber>FJ968834</AccessionNumber>
<AccessionNumber>FJ968835</AccessionNumber>
<AccessionNumber>FJ968836</AccessionNumber>
<AccessionNumber>FJ968837</AccessionNumber>
<AccessionNumber>FJ968838</AccessionNumber>
<AccessionNumber>FJ968839</AccessionNumber>
<AccessionNumber>FJ968840</AccessionNumber>
<AccessionNumber>FJ968841</AccessionNumber>
<AccessionNumber>FJ968842</AccessionNumber>
<AccessionNumber>FJ968843</AccessionNumber>
<AccessionNumber>FJ968844</AccessionNumber>
<AccessionNumber>FJ968845</AccessionNumber>
<AccessionNumber>FJ968846</AccessionNumber>
<AccessionNumber>FJ968847</AccessionNumber>
<AccessionNumber>FJ968848</AccessionNumber>
<AccessionNumber>FJ968849</AccessionNumber>
<AccessionNumber>FJ968850</AccessionNumber>
<AccessionNumber>FJ968851</AccessionNumber>
<AccessionNumber>FJ968852</AccessionNumber>
<AccessionNumber>FJ968853</AccessionNumber>
<AccessionNumber>FJ968854</AccessionNumber>
<AccessionNumber>GQ260071</AccessionNumber>
<AccessionNumber>GQ260072</AccessionNumber>
</AccessionNumberList>
</DataBank>
</DataBankList>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D013486">Research Support, U.S. Gov't, Non-P.H.S.</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2009</Year>
<Month>12</Month>
<Day>08</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>United States</Country>
<MedlineTA>Proc Natl Acad Sci U S A</MedlineTA>
<NlmUniqueID>7505876</NlmUniqueID>
<ISSNLinking>0027-8424</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>EC 5.4.-</RegistryNumber>
<NameOfSubstance UI="D019751">Intramolecular Transferases</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 5.4.4.2</RegistryNumber>
<NameOfSubstance UI="C058486">isochorismate synthase</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D017398" MajorTopicYN="Y">Alternative Splicing</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D017360" MajorTopicYN="N">Arabidopsis</DescriptorName>
<QualifierName UI="Q000201" MajorTopicYN="Y">enzymology</QualifierName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D020440" MajorTopicYN="Y">Gene Duplication</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D015971" MajorTopicYN="Y">Gene Expression Regulation, Enzymologic</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D018506" MajorTopicYN="Y">Gene Expression Regulation, Plant</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D017343" MajorTopicYN="N">Genes, Plant</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D019751" MajorTopicYN="N">Intramolecular Transferases</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="Y">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D008969" MajorTopicYN="N">Molecular Sequence Data</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D030821" MajorTopicYN="N">Plants, Genetically Modified</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D032107" MajorTopicYN="N">Populus</DescriptorName>
<QualifierName UI="Q000201" MajorTopicYN="Y">enzymology</QualifierName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D020133" MajorTopicYN="N">Reverse Transcriptase Polymerase Chain Reaction</DescriptorName>
</MeshHeading>
</MeshHeadingList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="entrez">
<Year>2009</Year>
<Month>12</Month>
<Day>10</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2009</Year>
<Month>12</Month>
<Day>10</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2010</Year>
<Month>2</Month>
<Day>19</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">19996170</ArticleId>
<ArticleId IdType="pii">0906869106</ArticleId>
<ArticleId IdType="doi">10.1073/pnas.0906869106</ArticleId>
<ArticleId IdType="pmc">PMC2790362</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>New Phytol. 2006;172(1):47-62</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16945088</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 1999 Feb;119(2):705-12</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9952467</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Phytochemistry. 2007 Aug;68(15):2043-52</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17599371</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 1999 Aug;11(8):1393-404</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10449575</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Anal Biochem. 1987 Jan;160(1):47-56</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">2952030</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Opin Cell Biol. 2004 Jun;16(3):293-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15145354</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Trends Plant Sci. 2009 May;14(5):248-54</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19375973</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Crit Rev Microbiol. 2001;27(2):75-131</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11450855</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genome Biol. 2008;9(12):R175</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19087247</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Mol Biol. 2000 Jul 21;300(4):1005-16</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10891285</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2000 Jun;123(2):487-96</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10859179</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proteomics. 2004 Jun;4(6):1581-90</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15174128</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 2004;32(13):3977-83</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15292448</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Genet. 2004 May;36(5):523-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15064762</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Annu Rev Plant Biol. 2007;58:267-94</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17222076</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2002 Apr 5;296(5565):79-92</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11935017</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Gen Genet. 1995 Nov 15;249(2):217-28</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">7500944</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biol Direct. 2008;3:20</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18495041</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>FEBS Lett. 2008 Feb 20;582(4):473-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18201575</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biofactors. 2003;18(1-4):73-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14695922</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2001 Nov 29;414(6863):562-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11734859</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Med Chem. 2004 Mar;11(5):607-28</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15032608</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2009 Jan 29;457(7229):551-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19189423</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>New Phytol. 2009 Mar;181(4):860-70</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19140946</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Opin Plant Biol. 1998 Aug;1(4):316-23</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10066607</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genome Res. 2008 Sep;18(9):1381-92</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18669480</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2003 Jan 7;100(1):189-92</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12502788</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Nutr. 2008 Dec;138(12):2337-41</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19022954</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Rev Genet. 2006 Jul;7(7):499-509</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16770337</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2006 Sep 15;313(5793):1596-604</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16973872</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2006 Dec 29;281(52):40461-72</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17082184</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Bioinformatics. 2004 Dec 12;20(18):3643-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15247098</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Tree Physiol. 2005 Dec;25(12):1475-86</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16137933</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Brief Bioinform. 2008 Jul;9(4):299-306</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18417537</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 1995 Jun;108(2):633-639</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12228500</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2006 Jun 23;281(25):17189-96</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16617180</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2008 Jul;147(3):1279-87</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18451262</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2002 Oct;130(2):796-807</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12376645</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell Physiol. 2005 Jul;46(7):1062-72</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15870097</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2008 Jan 4;319(5859):64-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18079367</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>FEBS Lett. 1996 Jan 8;378(2):131-4</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8549818</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2007 Sep 27;449(7161):463-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17721507</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/PoplarV1/Data/Main/Corpus
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 003369 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Corpus/biblio.hfd -nk 003369 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    PoplarV1
   |flux=    Main
   |étape=   Corpus
   |type=    RBID
   |clé=     pubmed:19996170
   |texte=   Alternative splicing and gene duplication differentially shaped the regulation of isochorismate synthase in Populus and Arabidopsis.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Corpus/RBID.i   -Sk "pubmed:19996170" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Corpus/biblio.hfd   \
       | NlmPubMed2Wicri -a PoplarV1 

Wicri

This area was generated with Dilib version V0.6.37.
Data generation: Wed Nov 18 12:07:19 2020. Site generation: Wed Nov 18 12:16:31 2020