Serveur d'exploration sur le peuplier

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Genome-wide transcriptome analysis of the transition from primary to secondary stem development in Populus trichocarpa.

Identifieur interne : 003280 ( Main/Corpus ); précédent : 003279; suivant : 003281

Genome-wide transcriptome analysis of the transition from primary to secondary stem development in Populus trichocarpa.

Auteurs : Palitha Dharmawardhana ; Amy M. Brunner ; Steven H. Strauss

Source :

RBID : pubmed:20199690

English descriptors

Abstract

BACKGROUND

With its genome sequence and other experimental attributes, Populus trichocarpa has become the model species for genomic studies of wood development. Wood is derived from secondary growth of tree stems, and begins with the development of a ring of vascular cambium in the young developing stem. The terminal region of the developing shoot provides a steep developmental gradient from primary to secondary growth that facilitates identification of genes that play specialized functions during each of these phases of growth.

RESULTS

Using a genomic microarray representing the majority of the transcriptome, we profiled gene expression in stem segments that spanned primary to secondary growth. We found 3,016 genes that were differentially expressed during stem development (Q-value 2-fold expression variation), and 15% of these genes encode proteins with no significant identities to known genes. We identified all gene family members putatively involved in secondary growth for carbohydrate active enzymes, tubulins, actins, actin depolymerizing factors, fasciclin-like AGPs, and vascular development-associated transcription factors. Almost 70% of expressed transcription factors were upregulated during the transition to secondary growth. The primary shoot elongation region of the stem contained specific carbohydrate active enzyme and expansin family members that are likely to function in primary cell wall synthesis and modification. Genes involved in plant defense and protective functions were also dominant in the primary growth region.

CONCLUSION

Our results describe the global patterns of gene expression that occur during the transition from primary to secondary stem growth. We were able to identify three major patterns of gene expression and over-represented gene ontology categories during stem development. The new regulatory factors and cell wall biogenesis genes that we identified provide candidate genes for further functional characterization, as well as new tools for molecular breeding and biotechnology aimed at improvement of tree growth rate, crown form, and wood quality.


DOI: 10.1186/1471-2164-11-150
PubMed: 20199690
PubMed Central: PMC2846914

Links to Exploration step

pubmed:20199690

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Genome-wide transcriptome analysis of the transition from primary to secondary stem development in Populus trichocarpa.</title>
<author>
<name sortKey="Dharmawardhana, Palitha" sort="Dharmawardhana, Palitha" uniqKey="Dharmawardhana P" first="Palitha" last="Dharmawardhana">Palitha Dharmawardhana</name>
<affiliation>
<nlm:affiliation>Department of Forest Ecosystems and Society, Oregon State University, Corvallis, OR 97331-5752, USA.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Brunner, Amy M" sort="Brunner, Amy M" uniqKey="Brunner A" first="Amy M" last="Brunner">Amy M. Brunner</name>
</author>
<author>
<name sortKey="Strauss, Steven H" sort="Strauss, Steven H" uniqKey="Strauss S" first="Steven H" last="Strauss">Steven H. Strauss</name>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2010">2010</date>
<idno type="RBID">pubmed:20199690</idno>
<idno type="pmid">20199690</idno>
<idno type="doi">10.1186/1471-2164-11-150</idno>
<idno type="pmc">PMC2846914</idno>
<idno type="wicri:Area/Main/Corpus">003280</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">003280</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Genome-wide transcriptome analysis of the transition from primary to secondary stem development in Populus trichocarpa.</title>
<author>
<name sortKey="Dharmawardhana, Palitha" sort="Dharmawardhana, Palitha" uniqKey="Dharmawardhana P" first="Palitha" last="Dharmawardhana">Palitha Dharmawardhana</name>
<affiliation>
<nlm:affiliation>Department of Forest Ecosystems and Society, Oregon State University, Corvallis, OR 97331-5752, USA.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Brunner, Amy M" sort="Brunner, Amy M" uniqKey="Brunner A" first="Amy M" last="Brunner">Amy M. Brunner</name>
</author>
<author>
<name sortKey="Strauss, Steven H" sort="Strauss, Steven H" uniqKey="Strauss S" first="Steven H" last="Strauss">Steven H. Strauss</name>
</author>
</analytic>
<series>
<title level="j">BMC genomics</title>
<idno type="eISSN">1471-2164</idno>
<imprint>
<date when="2010" type="published">2010</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Cluster Analysis (MeSH)</term>
<term>Gene Expression Profiling (MeSH)</term>
<term>Gene Expression Regulation, Developmental (MeSH)</term>
<term>Gene Expression Regulation, Plant (MeSH)</term>
<term>Genes, Plant (MeSH)</term>
<term>Genome, Plant (MeSH)</term>
<term>Multigene Family (MeSH)</term>
<term>Oligonucleotide Array Sequence Analysis (MeSH)</term>
<term>Plant Stems (genetics)</term>
<term>Plant Stems (growth & development)</term>
<term>Populus (genetics)</term>
<term>Populus (growth & development)</term>
<term>RNA, Plant (genetics)</term>
<term>Reverse Transcriptase Polymerase Chain Reaction (MeSH)</term>
<term>Wood (genetics)</term>
<term>Wood (growth & development)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="genetics" xml:lang="en">
<term>RNA, Plant</term>
</keywords>
<keywords scheme="MESH" qualifier="genetics" xml:lang="en">
<term>Plant Stems</term>
<term>Populus</term>
<term>Wood</term>
</keywords>
<keywords scheme="MESH" qualifier="growth & development" xml:lang="en">
<term>Plant Stems</term>
<term>Populus</term>
<term>Wood</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Cluster Analysis</term>
<term>Gene Expression Profiling</term>
<term>Gene Expression Regulation, Developmental</term>
<term>Gene Expression Regulation, Plant</term>
<term>Genes, Plant</term>
<term>Genome, Plant</term>
<term>Multigene Family</term>
<term>Oligonucleotide Array Sequence Analysis</term>
<term>Reverse Transcriptase Polymerase Chain Reaction</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">
<p>
<b>BACKGROUND</b>
</p>
<p>With its genome sequence and other experimental attributes, Populus trichocarpa has become the model species for genomic studies of wood development. Wood is derived from secondary growth of tree stems, and begins with the development of a ring of vascular cambium in the young developing stem. The terminal region of the developing shoot provides a steep developmental gradient from primary to secondary growth that facilitates identification of genes that play specialized functions during each of these phases of growth.</p>
</div>
<div type="abstract" xml:lang="en">
<p>
<b>RESULTS</b>
</p>
<p>Using a genomic microarray representing the majority of the transcriptome, we profiled gene expression in stem segments that spanned primary to secondary growth. We found 3,016 genes that were differentially expressed during stem development (Q-value 2-fold expression variation), and 15% of these genes encode proteins with no significant identities to known genes. We identified all gene family members putatively involved in secondary growth for carbohydrate active enzymes, tubulins, actins, actin depolymerizing factors, fasciclin-like AGPs, and vascular development-associated transcription factors. Almost 70% of expressed transcription factors were upregulated during the transition to secondary growth. The primary shoot elongation region of the stem contained specific carbohydrate active enzyme and expansin family members that are likely to function in primary cell wall synthesis and modification. Genes involved in plant defense and protective functions were also dominant in the primary growth region.</p>
</div>
<div type="abstract" xml:lang="en">
<p>
<b>CONCLUSION</b>
</p>
<p>Our results describe the global patterns of gene expression that occur during the transition from primary to secondary stem growth. We were able to identify three major patterns of gene expression and over-represented gene ontology categories during stem development. The new regulatory factors and cell wall biogenesis genes that we identified provide candidate genes for further functional characterization, as well as new tools for molecular breeding and biotechnology aimed at improvement of tree growth rate, crown form, and wood quality.</p>
</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">20199690</PMID>
<DateCompleted>
<Year>2010</Year>
<Month>05</Month>
<Day>03</Day>
</DateCompleted>
<DateRevised>
<Year>2018</Year>
<Month>11</Month>
<Day>13</Day>
</DateRevised>
<Article PubModel="Electronic">
<Journal>
<ISSN IssnType="Electronic">1471-2164</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>11</Volume>
<PubDate>
<Year>2010</Year>
<Month>Mar</Month>
<Day>04</Day>
</PubDate>
</JournalIssue>
<Title>BMC genomics</Title>
<ISOAbbreviation>BMC Genomics</ISOAbbreviation>
</Journal>
<ArticleTitle>Genome-wide transcriptome analysis of the transition from primary to secondary stem development in Populus trichocarpa.</ArticleTitle>
<Pagination>
<MedlinePgn>150</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1186/1471-2164-11-150</ELocationID>
<Abstract>
<AbstractText Label="BACKGROUND" NlmCategory="BACKGROUND">With its genome sequence and other experimental attributes, Populus trichocarpa has become the model species for genomic studies of wood development. Wood is derived from secondary growth of tree stems, and begins with the development of a ring of vascular cambium in the young developing stem. The terminal region of the developing shoot provides a steep developmental gradient from primary to secondary growth that facilitates identification of genes that play specialized functions during each of these phases of growth.</AbstractText>
<AbstractText Label="RESULTS" NlmCategory="RESULTS">Using a genomic microarray representing the majority of the transcriptome, we profiled gene expression in stem segments that spanned primary to secondary growth. We found 3,016 genes that were differentially expressed during stem development (Q-value 2-fold expression variation), and 15% of these genes encode proteins with no significant identities to known genes. We identified all gene family members putatively involved in secondary growth for carbohydrate active enzymes, tubulins, actins, actin depolymerizing factors, fasciclin-like AGPs, and vascular development-associated transcription factors. Almost 70% of expressed transcription factors were upregulated during the transition to secondary growth. The primary shoot elongation region of the stem contained specific carbohydrate active enzyme and expansin family members that are likely to function in primary cell wall synthesis and modification. Genes involved in plant defense and protective functions were also dominant in the primary growth region.</AbstractText>
<AbstractText Label="CONCLUSION" NlmCategory="CONCLUSIONS">Our results describe the global patterns of gene expression that occur during the transition from primary to secondary stem growth. We were able to identify three major patterns of gene expression and over-represented gene ontology categories during stem development. The new regulatory factors and cell wall biogenesis genes that we identified provide candidate genes for further functional characterization, as well as new tools for molecular breeding and biotechnology aimed at improvement of tree growth rate, crown form, and wood quality.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Dharmawardhana</LastName>
<ForeName>Palitha</ForeName>
<Initials>P</Initials>
<AffiliationInfo>
<Affiliation>Department of Forest Ecosystems and Society, Oregon State University, Corvallis, OR 97331-5752, USA.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Brunner</LastName>
<ForeName>Amy M</ForeName>
<Initials>AM</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Strauss</LastName>
<ForeName>Steven H</ForeName>
<Initials>SH</Initials>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D013485">Research Support, Non-U.S. Gov't</PublicationType>
<PublicationType UI="D013486">Research Support, U.S. Gov't, Non-P.H.S.</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2010</Year>
<Month>03</Month>
<Day>04</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>England</Country>
<MedlineTA>BMC Genomics</MedlineTA>
<NlmUniqueID>100965258</NlmUniqueID>
<ISSNLinking>1471-2164</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D018749">RNA, Plant</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D016000" MajorTopicYN="N">Cluster Analysis</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D020869" MajorTopicYN="Y">Gene Expression Profiling</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D018507" MajorTopicYN="N">Gene Expression Regulation, Developmental</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D018506" MajorTopicYN="N">Gene Expression Regulation, Plant</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D017343" MajorTopicYN="N">Genes, Plant</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D018745" MajorTopicYN="Y">Genome, Plant</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D005810" MajorTopicYN="N">Multigene Family</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D020411" MajorTopicYN="N">Oligonucleotide Array Sequence Analysis</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D018547" MajorTopicYN="N">Plant Stems</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000254" MajorTopicYN="Y">growth & development</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D032107" MajorTopicYN="N">Populus</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="Y">genetics</QualifierName>
<QualifierName UI="Q000254" MajorTopicYN="N">growth & development</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D018749" MajorTopicYN="N">RNA, Plant</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D020133" MajorTopicYN="N">Reverse Transcriptase Polymerase Chain Reaction</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D014934" MajorTopicYN="N">Wood</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000254" MajorTopicYN="N">growth & development</QualifierName>
</MeshHeading>
</MeshHeadingList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2008</Year>
<Month>11</Month>
<Day>24</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2010</Year>
<Month>03</Month>
<Day>04</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2010</Year>
<Month>3</Month>
<Day>5</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2010</Year>
<Month>3</Month>
<Day>5</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2010</Year>
<Month>5</Month>
<Day>4</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>epublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">20199690</ArticleId>
<ArticleId IdType="pii">1471-2164-11-150</ArticleId>
<ArticleId IdType="doi">10.1186/1471-2164-11-150</ArticleId>
<ArticleId IdType="pmc">PMC2846914</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>Plant Cell. 2005 May;17(5):1343-59</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15829601</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant J. 2005 Jun;42(5):618-40</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15918878</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>New Phytol. 2005 Jul;167(1):89-100</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15948833</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2005 Jun;138(2):803-18</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15923329</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2005 Jul;17(7):2009-19</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15937228</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Planta. 2005 Jul;221(5):739-46</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15940463</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Exp Bot. 2005 Aug;56(418):2211-27</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15996985</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2005 Aug;17(8):2186-203</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15994906</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant J. 2005 Aug;43(4):553-67</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16098109</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell Physiol. 2005 Aug;46(8):1213-25</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15908438</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Planta. 2005 Aug;221(6):747-51</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15981004</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2005 Sep 6;102(36):12837-42</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16141318</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2005 Sep 29;437(7059):741-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16193053</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Rev Mol Cell Biol. 2005 Nov;6(11):850-61</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16261190</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2005 Dec;17(12):3390-408</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16272433</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genome Biol. 2005;6(12):242</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16356276</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant J. 2006 Jan;45(2):144-65</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16367961</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Opin Plant Biol. 2006 Feb;9(1):48-54</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16332447</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Opin Plant Biol. 2006 Feb;9(1):55-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16337827</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2006 Jan;140(1):176-83</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16361524</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>New Phytol. 2006;169(3):469-78</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16411950</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Bioinformatics. 2006 Feb 15;22(4):507-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16357033</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2006 Mar;140(3):946-62</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16415215</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Trends Plant Sci. 2006 Apr;11(4):162-4</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16537114</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2006 Nov;142(3):1233-45</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16950861</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Mol Biol. 2006 Dec;62(6):825-43</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17096212</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Bioinformatics. 2006 Dec 1;22(23):2955-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17038341</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2006 Nov;18(11):3158-70</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17114348</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Planta. 2007 Jan;225(2):341-51</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16924539</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>BMC Bioinformatics. 2007;8:28</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17257426</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Exp Bot. 2007;58(3):593-614</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17220514</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Trends Plant Sci. 2007 Feb;12(2):64-70</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17224301</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2007 Jan;19(1):270-80</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17237351</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Gene. 2007 Apr 15;391(1-2):209-22</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17331677</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Trends Plant Sci. 2001 Sep;6(9):414-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11544130</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Mol Biol. 2001 Sep;47(1-2):161-76</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11554470</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Mol Biol. 2001 Sep;47(1-2):239-74</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11554475</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Methods. 2001 Dec;25(4):402-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11846609</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Trends Plant Sci. 2002 Mar;7(3):106-11</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11906833</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2002 Aug;14(8):1737-49</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12172019</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>New Phytol. 2006;170(4):739-52</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16684235</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Plant Res. 2006 May;119(3):189-94</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16552477</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Planta. 2006 Sep;224(4):828-37</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16575593</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>New Phytol. 2006;172(1):47-62</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16945088</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2006 Sep;18(9):2194-206</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16905656</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2006 Sep 15;313(5793):1596-604</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16973872</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2007 Feb;19(2):549-63</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17322407</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>BMC Plant Biol. 2007;7:17</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17397551</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Planta. 2007 May;225(6):1603-11</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17333250</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Annu Rev Plant Biol. 2007;58:435-58</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17280524</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell Physiol. 2007 May;48(5):689-99</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17379696</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant J. 2007 May;50(4):557-73</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17419838</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2007 Jun;144(2):961-75</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17434987</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell Physiol. 2007 Jun;48(6):843-55</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17504814</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Opin Plant Biol. 2007 Aug;10(4):366-71</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17644023</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant J. 2007 Aug;51(4):717-26</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17605757</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Trends Plant Sci. 2007 Sep;12(9):419-26</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17698401</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2007 Sep;19(9):2776-92</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17890373</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2007 Nov;145(3):961-73</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17885081</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Exp Bot. 2007;58(13):3485-501</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17898423</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Biotechnol J. 2008 Jan;6(1):62-72</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17908207</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Planta. 2000 Mar;210(4):686-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10787065</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Mol Biol. 2000 Jan;42(2):291-302</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10794529</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant J. 2000 May;22(4):289-301</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10849346</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant J. 2002 Dec;32(5):701-12</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12472686</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Mol Biol. 2003 May;52(1):91-102</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12825692</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Mol Biol. 2003 Jul;52(4):893-903</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">13677475</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant J. 2003 Dec;36(6):743-54</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14675440</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Trends Plant Sci. 2004 Jan;9(1):49-56</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14729219</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Tree Physiol. 2004 Apr;24(4):461-74</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14757585</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2004 Jul;135(3):1552-64</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15247397</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>BMC Plant Biol. 2004 Aug 18;4:14</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15317655</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2004 Sep;16(9):2278-92</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15316113</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2004 Sep 21;101(38):13951-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15353603</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Protein Sci. 2008 Feb;17(2):191-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18096636</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2008 Feb;146(2):554-65</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18065553</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2008 Feb 12;105(6):2226-31</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18256186</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Planta. 2008 Apr;227(5):1001-11</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18185941</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>New Phytol. 2008;178(2):283-301</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18298434</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Tree Physiol. 2008 Jul;28(7):1099-110</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18450574</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant J. 2008 Jun;54(5):794-805</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18266917</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2008 Jul;147(3):1347-57</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18467450</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant J. 2008 Jul;55(1):131-51</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18363789</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Mol Biol. 2008 Oct;68(3):225-37</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18663586</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Plant Physiol. 2008 Sep 29;165(14):1491-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18242769</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant J. 2008 Aug;55(4):652-64</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18445131</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>New Phytol. 2008;180(4):766-86</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18811621</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant J. 2009 Apr;58(2):260-74</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19175765</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>BMC Plant Biol. 2009;9:132</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19919717</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 1998 Oct;10(10):1677-90</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9761794</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 1998 Oct 27;95(22):13330-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9789088</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant J. 1999 Aug;19(4):473-80</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10504569</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Planta. 2004 Nov;220(1):47-55</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15278458</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Mol Biol. 2004 May;55(2):263-80</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15604680</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Mol Biol. 2004 May;55(3):433-53</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15604691</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Mol Biol. 2004 Sep;56(2):255-70</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15604742</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Opin Plant Biol. 2005 Feb;8(1):38-44</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15653398</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2005 Mar;137(3):983-97</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15734915</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/PoplarV1/Data/Main/Corpus
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 003280 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Corpus/biblio.hfd -nk 003280 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    PoplarV1
   |flux=    Main
   |étape=   Corpus
   |type=    RBID
   |clé=     pubmed:20199690
   |texte=   Genome-wide transcriptome analysis of the transition from primary to secondary stem development in Populus trichocarpa.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Corpus/RBID.i   -Sk "pubmed:20199690" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Corpus/biblio.hfd   \
       | NlmPubMed2Wicri -a PoplarV1 

Wicri

This area was generated with Dilib version V0.6.37.
Data generation: Wed Nov 18 12:07:19 2020. Site generation: Wed Nov 18 12:16:31 2020