Serveur d'exploration sur le peuplier

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Creation of a genome-wide metabolic pathway database for Populus trichocarpa using a new approach for reconstruction and curation of metabolic pathways for plants.

Identifieur interne : 003168 ( Main/Corpus ); précédent : 003167; suivant : 003169

Creation of a genome-wide metabolic pathway database for Populus trichocarpa using a new approach for reconstruction and curation of metabolic pathways for plants.

Auteurs : Peifen Zhang ; Kate Dreher ; A. Karthikeyan ; Anjo Chi ; Anuradha Pujar ; Ron Caspi ; Peter Karp ; Vanessa Kirkup ; Mario Latendresse ; Cynthia Lee ; Lukas A. Mueller ; Robert Muller ; Seung Yon Rhee

Source :

RBID : pubmed:20522724

English descriptors

Abstract

Metabolic networks reconstructed from sequenced genomes or transcriptomes can help visualize and analyze large-scale experimental data, predict metabolic phenotypes, discover enzymes, engineer metabolic pathways, and study metabolic pathway evolution. We developed a general approach for reconstructing metabolic pathway complements of plant genomes. Two new reference databases were created and added to the core of the infrastructure: a comprehensive, all-plant reference pathway database, PlantCyc, and a reference enzyme sequence database, RESD, for annotating metabolic functions of protein sequences. PlantCyc (version 3.0) includes 714 metabolic pathways and 2,619 reactions from over 300 species. RESD (version 1.0) contains 14,187 literature-supported enzyme sequences from across all kingdoms. We used RESD, PlantCyc, and MetaCyc (an all-species reference metabolic pathway database), in conjunction with the pathway prediction software Pathway Tools, to reconstruct a metabolic pathway database, PoplarCyc, from the recently sequenced genome of Populus trichocarpa. PoplarCyc (version 1.0) contains 321 pathways with 1,807 assigned enzymes. Comparing PoplarCyc (version 1.0) with AraCyc (version 6.0, Arabidopsis [Arabidopsis thaliana]) showed comparable numbers of pathways distributed across all domains of metabolism in both databases, except for a higher number of AraCyc pathways in secondary metabolism and a 1.5-fold increase in carbohydrate metabolic enzymes in PoplarCyc. Here, we introduce these new resources and demonstrate the feasibility of using them to identify candidate enzymes for specific pathways and to analyze metabolite profiling data through concrete examples. These resources can be searched by text or BLAST, browsed, and downloaded from our project Web site (http://plantcyc.org).

DOI: 10.1104/pp.110.157396
PubMed: 20522724
PubMed Central: PMC2923894

Links to Exploration step

pubmed:20522724

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Creation of a genome-wide metabolic pathway database for Populus trichocarpa using a new approach for reconstruction and curation of metabolic pathways for plants.</title>
<author>
<name sortKey="Zhang, Peifen" sort="Zhang, Peifen" uniqKey="Zhang P" first="Peifen" last="Zhang">Peifen Zhang</name>
<affiliation>
<nlm:affiliation>Department of Plant Biology, Carnegie Institution, Stanford, California 94305, USA.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Dreher, Kate" sort="Dreher, Kate" uniqKey="Dreher K" first="Kate" last="Dreher">Kate Dreher</name>
</author>
<author>
<name sortKey="Karthikeyan, A" sort="Karthikeyan, A" uniqKey="Karthikeyan A" first="A" last="Karthikeyan">A. Karthikeyan</name>
</author>
<author>
<name sortKey="Chi, Anjo" sort="Chi, Anjo" uniqKey="Chi A" first="Anjo" last="Chi">Anjo Chi</name>
</author>
<author>
<name sortKey="Pujar, Anuradha" sort="Pujar, Anuradha" uniqKey="Pujar A" first="Anuradha" last="Pujar">Anuradha Pujar</name>
</author>
<author>
<name sortKey="Caspi, Ron" sort="Caspi, Ron" uniqKey="Caspi R" first="Ron" last="Caspi">Ron Caspi</name>
</author>
<author>
<name sortKey="Karp, Peter" sort="Karp, Peter" uniqKey="Karp P" first="Peter" last="Karp">Peter Karp</name>
</author>
<author>
<name sortKey="Kirkup, Vanessa" sort="Kirkup, Vanessa" uniqKey="Kirkup V" first="Vanessa" last="Kirkup">Vanessa Kirkup</name>
</author>
<author>
<name sortKey="Latendresse, Mario" sort="Latendresse, Mario" uniqKey="Latendresse M" first="Mario" last="Latendresse">Mario Latendresse</name>
</author>
<author>
<name sortKey="Lee, Cynthia" sort="Lee, Cynthia" uniqKey="Lee C" first="Cynthia" last="Lee">Cynthia Lee</name>
</author>
<author>
<name sortKey="Mueller, Lukas A" sort="Mueller, Lukas A" uniqKey="Mueller L" first="Lukas A" last="Mueller">Lukas A. Mueller</name>
</author>
<author>
<name sortKey="Muller, Robert" sort="Muller, Robert" uniqKey="Muller R" first="Robert" last="Muller">Robert Muller</name>
</author>
<author>
<name sortKey="Rhee, Seung Yon" sort="Rhee, Seung Yon" uniqKey="Rhee S" first="Seung Yon" last="Rhee">Seung Yon Rhee</name>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2010">2010</date>
<idno type="RBID">pubmed:20522724</idno>
<idno type="pmid">20522724</idno>
<idno type="doi">10.1104/pp.110.157396</idno>
<idno type="pmc">PMC2923894</idno>
<idno type="wicri:Area/Main/Corpus">003168</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">003168</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Creation of a genome-wide metabolic pathway database for Populus trichocarpa using a new approach for reconstruction and curation of metabolic pathways for plants.</title>
<author>
<name sortKey="Zhang, Peifen" sort="Zhang, Peifen" uniqKey="Zhang P" first="Peifen" last="Zhang">Peifen Zhang</name>
<affiliation>
<nlm:affiliation>Department of Plant Biology, Carnegie Institution, Stanford, California 94305, USA.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Dreher, Kate" sort="Dreher, Kate" uniqKey="Dreher K" first="Kate" last="Dreher">Kate Dreher</name>
</author>
<author>
<name sortKey="Karthikeyan, A" sort="Karthikeyan, A" uniqKey="Karthikeyan A" first="A" last="Karthikeyan">A. Karthikeyan</name>
</author>
<author>
<name sortKey="Chi, Anjo" sort="Chi, Anjo" uniqKey="Chi A" first="Anjo" last="Chi">Anjo Chi</name>
</author>
<author>
<name sortKey="Pujar, Anuradha" sort="Pujar, Anuradha" uniqKey="Pujar A" first="Anuradha" last="Pujar">Anuradha Pujar</name>
</author>
<author>
<name sortKey="Caspi, Ron" sort="Caspi, Ron" uniqKey="Caspi R" first="Ron" last="Caspi">Ron Caspi</name>
</author>
<author>
<name sortKey="Karp, Peter" sort="Karp, Peter" uniqKey="Karp P" first="Peter" last="Karp">Peter Karp</name>
</author>
<author>
<name sortKey="Kirkup, Vanessa" sort="Kirkup, Vanessa" uniqKey="Kirkup V" first="Vanessa" last="Kirkup">Vanessa Kirkup</name>
</author>
<author>
<name sortKey="Latendresse, Mario" sort="Latendresse, Mario" uniqKey="Latendresse M" first="Mario" last="Latendresse">Mario Latendresse</name>
</author>
<author>
<name sortKey="Lee, Cynthia" sort="Lee, Cynthia" uniqKey="Lee C" first="Cynthia" last="Lee">Cynthia Lee</name>
</author>
<author>
<name sortKey="Mueller, Lukas A" sort="Mueller, Lukas A" uniqKey="Mueller L" first="Lukas A" last="Mueller">Lukas A. Mueller</name>
</author>
<author>
<name sortKey="Muller, Robert" sort="Muller, Robert" uniqKey="Muller R" first="Robert" last="Muller">Robert Muller</name>
</author>
<author>
<name sortKey="Rhee, Seung Yon" sort="Rhee, Seung Yon" uniqKey="Rhee S" first="Seung Yon" last="Rhee">Seung Yon Rhee</name>
</author>
</analytic>
<series>
<title level="j">Plant physiology</title>
<idno type="eISSN">1532-2548</idno>
<imprint>
<date when="2010" type="published">2010</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Arabidopsis (enzymology)</term>
<term>Arabidopsis (genetics)</term>
<term>Databases, Genetic (MeSH)</term>
<term>Genome, Plant (MeSH)</term>
<term>Metabolic Networks and Pathways (genetics)</term>
<term>Populus (enzymology)</term>
<term>Populus (genetics)</term>
</keywords>
<keywords scheme="MESH" qualifier="enzymology" xml:lang="en">
<term>Arabidopsis</term>
<term>Populus</term>
</keywords>
<keywords scheme="MESH" qualifier="genetics" xml:lang="en">
<term>Arabidopsis</term>
<term>Metabolic Networks and Pathways</term>
<term>Populus</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Databases, Genetic</term>
<term>Genome, Plant</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Metabolic networks reconstructed from sequenced genomes or transcriptomes can help visualize and analyze large-scale experimental data, predict metabolic phenotypes, discover enzymes, engineer metabolic pathways, and study metabolic pathway evolution. We developed a general approach for reconstructing metabolic pathway complements of plant genomes. Two new reference databases were created and added to the core of the infrastructure: a comprehensive, all-plant reference pathway database, PlantCyc, and a reference enzyme sequence database, RESD, for annotating metabolic functions of protein sequences. PlantCyc (version 3.0) includes 714 metabolic pathways and 2,619 reactions from over 300 species. RESD (version 1.0) contains 14,187 literature-supported enzyme sequences from across all kingdoms. We used RESD, PlantCyc, and MetaCyc (an all-species reference metabolic pathway database), in conjunction with the pathway prediction software Pathway Tools, to reconstruct a metabolic pathway database, PoplarCyc, from the recently sequenced genome of Populus trichocarpa. PoplarCyc (version 1.0) contains 321 pathways with 1,807 assigned enzymes. Comparing PoplarCyc (version 1.0) with AraCyc (version 6.0, Arabidopsis [Arabidopsis thaliana]) showed comparable numbers of pathways distributed across all domains of metabolism in both databases, except for a higher number of AraCyc pathways in secondary metabolism and a 1.5-fold increase in carbohydrate metabolic enzymes in PoplarCyc. Here, we introduce these new resources and demonstrate the feasibility of using them to identify candidate enzymes for specific pathways and to analyze metabolite profiling data through concrete examples. These resources can be searched by text or BLAST, browsed, and downloaded from our project Web site (http://plantcyc.org).</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">20522724</PMID>
<DateCompleted>
<Year>2010</Year>
<Month>10</Month>
<Day>25</Day>
</DateCompleted>
<DateRevised>
<Year>2018</Year>
<Month>11</Month>
<Day>13</Day>
</DateRevised>
<Article PubModel="Print-Electronic">
<Journal>
<ISSN IssnType="Electronic">1532-2548</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>153</Volume>
<Issue>4</Issue>
<PubDate>
<Year>2010</Year>
<Month>Aug</Month>
</PubDate>
</JournalIssue>
<Title>Plant physiology</Title>
<ISOAbbreviation>Plant Physiol</ISOAbbreviation>
</Journal>
<ArticleTitle>Creation of a genome-wide metabolic pathway database for Populus trichocarpa using a new approach for reconstruction and curation of metabolic pathways for plants.</ArticleTitle>
<Pagination>
<MedlinePgn>1479-91</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1104/pp.110.157396</ELocationID>
<Abstract>
<AbstractText>Metabolic networks reconstructed from sequenced genomes or transcriptomes can help visualize and analyze large-scale experimental data, predict metabolic phenotypes, discover enzymes, engineer metabolic pathways, and study metabolic pathway evolution. We developed a general approach for reconstructing metabolic pathway complements of plant genomes. Two new reference databases were created and added to the core of the infrastructure: a comprehensive, all-plant reference pathway database, PlantCyc, and a reference enzyme sequence database, RESD, for annotating metabolic functions of protein sequences. PlantCyc (version 3.0) includes 714 metabolic pathways and 2,619 reactions from over 300 species. RESD (version 1.0) contains 14,187 literature-supported enzyme sequences from across all kingdoms. We used RESD, PlantCyc, and MetaCyc (an all-species reference metabolic pathway database), in conjunction with the pathway prediction software Pathway Tools, to reconstruct a metabolic pathway database, PoplarCyc, from the recently sequenced genome of Populus trichocarpa. PoplarCyc (version 1.0) contains 321 pathways with 1,807 assigned enzymes. Comparing PoplarCyc (version 1.0) with AraCyc (version 6.0, Arabidopsis [Arabidopsis thaliana]) showed comparable numbers of pathways distributed across all domains of metabolism in both databases, except for a higher number of AraCyc pathways in secondary metabolism and a 1.5-fold increase in carbohydrate metabolic enzymes in PoplarCyc. Here, we introduce these new resources and demonstrate the feasibility of using them to identify candidate enzymes for specific pathways and to analyze metabolite profiling data through concrete examples. These resources can be searched by text or BLAST, browsed, and downloaded from our project Web site (http://plantcyc.org).</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Zhang</LastName>
<ForeName>Peifen</ForeName>
<Initials>P</Initials>
<AffiliationInfo>
<Affiliation>Department of Plant Biology, Carnegie Institution, Stanford, California 94305, USA.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Dreher</LastName>
<ForeName>Kate</ForeName>
<Initials>K</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Karthikeyan</LastName>
<ForeName>A</ForeName>
<Initials>A</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Chi</LastName>
<ForeName>Anjo</ForeName>
<Initials>A</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Pujar</LastName>
<ForeName>Anuradha</ForeName>
<Initials>A</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Caspi</LastName>
<ForeName>Ron</ForeName>
<Initials>R</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Karp</LastName>
<ForeName>Peter</ForeName>
<Initials>P</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Kirkup</LastName>
<ForeName>Vanessa</ForeName>
<Initials>V</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Latendresse</LastName>
<ForeName>Mario</ForeName>
<Initials>M</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Lee</LastName>
<ForeName>Cynthia</ForeName>
<Initials>C</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Mueller</LastName>
<ForeName>Lukas A</ForeName>
<Initials>LA</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Muller</LastName>
<ForeName>Robert</ForeName>
<Initials>R</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Rhee</LastName>
<ForeName>Seung Yon</ForeName>
<Initials>SY</Initials>
</Author>
</AuthorList>
<Language>eng</Language>
<GrantList CompleteYN="Y">
<Grant>
<GrantID>R01 GM080746</GrantID>
<Acronym>GM</Acronym>
<Agency>NIGMS NIH HHS</Agency>
<Country>United States</Country>
</Grant>
<Grant>
<GrantID>R01 GM080746-03</GrantID>
<Acronym>GM</Acronym>
<Agency>NIGMS NIH HHS</Agency>
<Country>United States</Country>
</Grant>
</GrantList>
<PublicationTypeList>
<PublicationType UI="D003160">Comparative Study</PublicationType>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D013486">Research Support, U.S. Gov't, Non-P.H.S.</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2010</Year>
<Month>06</Month>
<Day>03</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>United States</Country>
<MedlineTA>Plant Physiol</MedlineTA>
<NlmUniqueID>0401224</NlmUniqueID>
<ISSNLinking>0032-0889</ISSNLinking>
</MedlineJournalInfo>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D017360" MajorTopicYN="N">Arabidopsis</DescriptorName>
<QualifierName UI="Q000201" MajorTopicYN="N">enzymology</QualifierName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D030541" MajorTopicYN="Y">Databases, Genetic</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D018745" MajorTopicYN="Y">Genome, Plant</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D053858" MajorTopicYN="N">Metabolic Networks and Pathways</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="Y">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D032107" MajorTopicYN="N">Populus</DescriptorName>
<QualifierName UI="Q000201" MajorTopicYN="N">enzymology</QualifierName>
<QualifierName UI="Q000235" MajorTopicYN="Y">genetics</QualifierName>
</MeshHeading>
</MeshHeadingList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="entrez">
<Year>2010</Year>
<Month>6</Month>
<Day>5</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2010</Year>
<Month>6</Month>
<Day>5</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2010</Year>
<Month>10</Month>
<Day>26</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">20522724</ArticleId>
<ArticleId IdType="pii">pp.110.157396</ArticleId>
<ArticleId IdType="doi">10.1104/pp.110.157396</ArticleId>
<ArticleId IdType="pmc">PMC2923894</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>Nucleic Acids Res. 2008 Jan;36(Database issue):D959-65</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18063570</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 2008 Jan;36(Database issue):D1009-14</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17986450</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>BMC Genomics. 2008;9:103</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18304330</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Integr Plant Biol. 2008 Jul;50(7):799-807</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18713390</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Phytochemistry. 2008 Nov;69(15):2655-67</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18842274</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 2009 Jan;37(Database issue):D588-92</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18984617</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>BMC Genomics. 2009;10:209</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19409111</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>BMC Genomics. 2009;10:415</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19732460</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 2010 Jan;38(Database issue):D142-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19843607</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 2010 Jan;38(Database issue):D473-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19850718</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 2010 Jan;38(Database issue):D346-54</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19914934</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Biotechnol J. 2010 Jan;8(1):2-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19906089</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Brief Bioinform. 2010 Jan;11(1):40-79</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19955237</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2001 May;13(5):999-1010</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11340177</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Pac Symp Biocomput. 2004;:190-201</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14992503</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Annu Rev Plant Biol. 2004;55:197-223</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15377219</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Mol Biol. 1990 Oct 5;215(3):403-10</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">2231712</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 1999 Jul 15;400(6741):256-61</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10421366</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2005 May;138(1):27-37</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15888675</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Annu Rev Phytopathol. 2005;43:205-27</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16078883</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Bioinformatics. 2005 Dec 15;21(24):4401-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16234320</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2006 Mar;140(3):946-62</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16415215</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Planta. 2006 Jul;224(2):288-99</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16404575</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2006 Sep 15;313(5793):1596-604</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16973872</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Annu Rev Phytopathol. 2006;44:393-416</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16602950</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genome Biol. 2007;8(3):R39</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17367534</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Bioinformatics. 2007 Jun 1;23(11):1418-23</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17344243</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 2008 Jan;36(Database issue):D954-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17933764</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 2008 Jan;36(Database issue):D480-4</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18077471</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/PoplarV1/Data/Main/Corpus
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 003168 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Corpus/biblio.hfd -nk 003168 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    PoplarV1
   |flux=    Main
   |étape=   Corpus
   |type=    RBID
   |clé=     pubmed:20522724
   |texte=   Creation of a genome-wide metabolic pathway database for Populus trichocarpa using a new approach for reconstruction and curation of metabolic pathways for plants.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Corpus/RBID.i   -Sk "pubmed:20522724" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Corpus/biblio.hfd   \
       | NlmPubMed2Wicri -a PoplarV1 

Wicri

This area was generated with Dilib version V0.6.37.
Data generation: Wed Nov 18 12:07:19 2020. Site generation: Wed Nov 18 12:16:31 2020