Serveur d'exploration sur le peuplier

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

A secreted fungal effector of Glomus intraradices promotes symbiotic biotrophy.

Identifieur interne : 002D42 ( Main/Corpus ); précédent : 002D41; suivant : 002D43

A secreted fungal effector of Glomus intraradices promotes symbiotic biotrophy.

Auteurs : Silke Kloppholz ; Hannah Kuhn ; Natalia Requena

Source :

RBID : pubmed:21757354

English descriptors

Abstract

Biotrophic fungi interacting with plants establish long-term relationships with their hosts to fulfill their life cycles. In contrast to necrotrophs, they need to contend with the defense mechanisms of the plant to develop within the host and feed on living cells. It is generally accepted that microbial pathogens produce and deliver a myriad of effector proteins to hijack the cellular program of their hosts. Arbuscular mycorrhizal (AM) fungi are the most widespread biotrophs of plant roots. We investigated whether AM fungi use effector proteins to short-circuit the plant defense program. Here we show that Glomus intraradices secretes a protein, SP7, that interacts with the pathogenesis-related transcription factor ERF19 in the plant nucleus. ERF19 is highly induced in roots by the fungal pathogen Colletotrichum trifolii as well as by several fungal extracts, but only transiently during mycorrhiza colonization. When constitutively expressed in roots, SP7 leads to higher mycorrhization while reducing the levels of C. trifolii-mediated defense responses. Furthermore, expression of SP7 in the rice blast fungus Magnaporthe oryzae attenuates root decay symptoms. Taken together, these results suggest that SP7 is an effector that contributes to develop the biotrophic status of AM fungi in roots by counteracting the plant immune program.

DOI: 10.1016/j.cub.2011.06.044
PubMed: 21757354

Links to Exploration step

pubmed:21757354

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">A secreted fungal effector of Glomus intraradices promotes symbiotic biotrophy.</title>
<author>
<name sortKey="Kloppholz, Silke" sort="Kloppholz, Silke" uniqKey="Kloppholz S" first="Silke" last="Kloppholz">Silke Kloppholz</name>
<affiliation>
<nlm:affiliation>Plant-Microbial Interactions, Botanical Institute, Karlsruhe Institute of Technology, Hertzstrasse 16, D-76187 Karlsruhe, Germany.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Kuhn, Hannah" sort="Kuhn, Hannah" uniqKey="Kuhn H" first="Hannah" last="Kuhn">Hannah Kuhn</name>
</author>
<author>
<name sortKey="Requena, Natalia" sort="Requena, Natalia" uniqKey="Requena N" first="Natalia" last="Requena">Natalia Requena</name>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2011">2011</date>
<idno type="RBID">pubmed:21757354</idno>
<idno type="pmid">21757354</idno>
<idno type="doi">10.1016/j.cub.2011.06.044</idno>
<idno type="wicri:Area/Main/Corpus">002D42</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">002D42</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">A secreted fungal effector of Glomus intraradices promotes symbiotic biotrophy.</title>
<author>
<name sortKey="Kloppholz, Silke" sort="Kloppholz, Silke" uniqKey="Kloppholz S" first="Silke" last="Kloppholz">Silke Kloppholz</name>
<affiliation>
<nlm:affiliation>Plant-Microbial Interactions, Botanical Institute, Karlsruhe Institute of Technology, Hertzstrasse 16, D-76187 Karlsruhe, Germany.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Kuhn, Hannah" sort="Kuhn, Hannah" uniqKey="Kuhn H" first="Hannah" last="Kuhn">Hannah Kuhn</name>
</author>
<author>
<name sortKey="Requena, Natalia" sort="Requena, Natalia" uniqKey="Requena N" first="Natalia" last="Requena">Natalia Requena</name>
</author>
</analytic>
<series>
<title level="j">Current biology : CB</title>
<idno type="eISSN">1879-0445</idno>
<imprint>
<date when="2011" type="published">2011</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Amino Acid Sequence (MeSH)</term>
<term>Colletotrichum (metabolism)</term>
<term>Fungal Proteins (chemistry)</term>
<term>Fungal Proteins (genetics)</term>
<term>Fungal Proteins (metabolism)</term>
<term>Gene Expression Regulation (MeSH)</term>
<term>Glomeromycota (chemistry)</term>
<term>Glomeromycota (genetics)</term>
<term>Glomeromycota (metabolism)</term>
<term>Glomeromycota (physiology)</term>
<term>Magnaporthe (metabolism)</term>
<term>Mycorrhizae (genetics)</term>
<term>Mycorrhizae (metabolism)</term>
<term>Plant Proteins (metabolism)</term>
<term>Plant Roots (metabolism)</term>
<term>Plant Roots (microbiology)</term>
<term>Populus (microbiology)</term>
<term>Signal Transduction (MeSH)</term>
<term>Symbiosis (MeSH)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="chemistry" xml:lang="en">
<term>Fungal Proteins</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="genetics" xml:lang="en">
<term>Fungal Proteins</term>
</keywords>
<keywords scheme="MESH" qualifier="chemistry" xml:lang="en">
<term>Glomeromycota</term>
</keywords>
<keywords scheme="MESH" qualifier="genetics" xml:lang="en">
<term>Glomeromycota</term>
<term>Mycorrhizae</term>
</keywords>
<keywords scheme="MESH" qualifier="metabolism" xml:lang="en">
<term>Colletotrichum</term>
<term>Fungal Proteins</term>
<term>Glomeromycota</term>
<term>Magnaporthe</term>
<term>Mycorrhizae</term>
<term>Plant Proteins</term>
<term>Plant Roots</term>
</keywords>
<keywords scheme="MESH" qualifier="microbiology" xml:lang="en">
<term>Plant Roots</term>
<term>Populus</term>
</keywords>
<keywords scheme="MESH" qualifier="physiology" xml:lang="en">
<term>Glomeromycota</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Amino Acid Sequence</term>
<term>Gene Expression Regulation</term>
<term>Signal Transduction</term>
<term>Symbiosis</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Biotrophic fungi interacting with plants establish long-term relationships with their hosts to fulfill their life cycles. In contrast to necrotrophs, they need to contend with the defense mechanisms of the plant to develop within the host and feed on living cells. It is generally accepted that microbial pathogens produce and deliver a myriad of effector proteins to hijack the cellular program of their hosts. Arbuscular mycorrhizal (AM) fungi are the most widespread biotrophs of plant roots. We investigated whether AM fungi use effector proteins to short-circuit the plant defense program. Here we show that Glomus intraradices secretes a protein, SP7, that interacts with the pathogenesis-related transcription factor ERF19 in the plant nucleus. ERF19 is highly induced in roots by the fungal pathogen Colletotrichum trifolii as well as by several fungal extracts, but only transiently during mycorrhiza colonization. When constitutively expressed in roots, SP7 leads to higher mycorrhization while reducing the levels of C. trifolii-mediated defense responses. Furthermore, expression of SP7 in the rice blast fungus Magnaporthe oryzae attenuates root decay symptoms. Taken together, these results suggest that SP7 is an effector that contributes to develop the biotrophic status of AM fungi in roots by counteracting the plant immune program.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">21757354</PMID>
<DateCompleted>
<Year>2011</Year>
<Month>12</Month>
<Day>12</Day>
</DateCompleted>
<DateRevised>
<Year>2011</Year>
<Month>07</Month>
<Day>25</Day>
</DateRevised>
<Article PubModel="Print-Electronic">
<Journal>
<ISSN IssnType="Electronic">1879-0445</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>21</Volume>
<Issue>14</Issue>
<PubDate>
<Year>2011</Year>
<Month>Jul</Month>
<Day>26</Day>
</PubDate>
</JournalIssue>
<Title>Current biology : CB</Title>
<ISOAbbreviation>Curr Biol</ISOAbbreviation>
</Journal>
<ArticleTitle>A secreted fungal effector of Glomus intraradices promotes symbiotic biotrophy.</ArticleTitle>
<Pagination>
<MedlinePgn>1204-9</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1016/j.cub.2011.06.044</ELocationID>
<Abstract>
<AbstractText>Biotrophic fungi interacting with plants establish long-term relationships with their hosts to fulfill their life cycles. In contrast to necrotrophs, they need to contend with the defense mechanisms of the plant to develop within the host and feed on living cells. It is generally accepted that microbial pathogens produce and deliver a myriad of effector proteins to hijack the cellular program of their hosts. Arbuscular mycorrhizal (AM) fungi are the most widespread biotrophs of plant roots. We investigated whether AM fungi use effector proteins to short-circuit the plant defense program. Here we show that Glomus intraradices secretes a protein, SP7, that interacts with the pathogenesis-related transcription factor ERF19 in the plant nucleus. ERF19 is highly induced in roots by the fungal pathogen Colletotrichum trifolii as well as by several fungal extracts, but only transiently during mycorrhiza colonization. When constitutively expressed in roots, SP7 leads to higher mycorrhization while reducing the levels of C. trifolii-mediated defense responses. Furthermore, expression of SP7 in the rice blast fungus Magnaporthe oryzae attenuates root decay symptoms. Taken together, these results suggest that SP7 is an effector that contributes to develop the biotrophic status of AM fungi in roots by counteracting the plant immune program.</AbstractText>
<CopyrightInformation>Copyright © 2011 Elsevier Ltd. All rights reserved.</CopyrightInformation>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Kloppholz</LastName>
<ForeName>Silke</ForeName>
<Initials>S</Initials>
<AffiliationInfo>
<Affiliation>Plant-Microbial Interactions, Botanical Institute, Karlsruhe Institute of Technology, Hertzstrasse 16, D-76187 Karlsruhe, Germany.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Kuhn</LastName>
<ForeName>Hannah</ForeName>
<Initials>H</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Requena</LastName>
<ForeName>Natalia</ForeName>
<Initials>N</Initials>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D013485">Research Support, Non-U.S. Gov't</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2011</Year>
<Month>07</Month>
<Day>14</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>England</Country>
<MedlineTA>Curr Biol</MedlineTA>
<NlmUniqueID>9107782</NlmUniqueID>
<ISSNLinking>0960-9822</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D005656">Fungal Proteins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D010940">Plant Proteins</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<CommentsCorrectionsList>
<CommentsCorrections RefType="CommentIn">
<RefSource>Curr Biol. 2011 Jul 26;21(14):R550-2</RefSource>
<PMID Version="1">21783035</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="CommentIn">
<RefSource>Nat Rev Microbiol. 2011 Sep;9(9):629</RefSource>
<PMID Version="1">21836620</PMID>
</CommentsCorrections>
</CommentsCorrectionsList>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D000595" MajorTopicYN="N">Amino Acid Sequence</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D020231" MajorTopicYN="N">Colletotrichum</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D005656" MajorTopicYN="N">Fungal Proteins</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="N">chemistry</QualifierName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D005786" MajorTopicYN="N">Gene Expression Regulation</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D055137" MajorTopicYN="N">Glomeromycota</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="N">chemistry</QualifierName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
<QualifierName UI="Q000502" MajorTopicYN="N">physiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D020082" MajorTopicYN="N">Magnaporthe</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D038821" MajorTopicYN="N">Mycorrhizae</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D010940" MajorTopicYN="N">Plant Proteins</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D018517" MajorTopicYN="N">Plant Roots</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
<QualifierName UI="Q000382" MajorTopicYN="N">microbiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D032107" MajorTopicYN="N">Populus</DescriptorName>
<QualifierName UI="Q000382" MajorTopicYN="N">microbiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D015398" MajorTopicYN="N">Signal Transduction</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D013559" MajorTopicYN="Y">Symbiosis</DescriptorName>
</MeshHeading>
</MeshHeadingList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2011</Year>
<Month>04</Month>
<Day>15</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="revised">
<Year>2011</Year>
<Month>05</Month>
<Day>26</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2011</Year>
<Month>06</Month>
<Day>20</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2011</Year>
<Month>7</Month>
<Day>16</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2011</Year>
<Month>7</Month>
<Day>16</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2011</Year>
<Month>12</Month>
<Day>14</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">21757354</ArticleId>
<ArticleId IdType="pii">S0960-9822(11)00717-2</ArticleId>
<ArticleId IdType="doi">10.1016/j.cub.2011.06.044</ArticleId>
</ArticleIdList>
</PubmedData>
</pubmed>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/PoplarV1/Data/Main/Corpus
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 002D42 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Corpus/biblio.hfd -nk 002D42 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    PoplarV1
   |flux=    Main
   |étape=   Corpus
   |type=    RBID
   |clé=     pubmed:21757354
   |texte=   A secreted fungal effector of Glomus intraradices promotes symbiotic biotrophy.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Corpus/RBID.i   -Sk "pubmed:21757354" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Corpus/biblio.hfd   \
       | NlmPubMed2Wicri -a PoplarV1 

Wicri

This area was generated with Dilib version V0.6.37.
Data generation: Wed Nov 18 12:07:19 2020. Site generation: Wed Nov 18 12:16:31 2020