Serveur d'exploration sur le peuplier

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Isolation and characterization of galactinol synthases from hybrid poplar.

Identifieur interne : 002B93 ( Main/Corpus ); précédent : 002B92; suivant : 002B94

Isolation and characterization of galactinol synthases from hybrid poplar.

Auteurs : Faride Unda ; Thomas Canam ; Lindsay Preston ; Shawn D. Mansfield

Source :

RBID : pubmed:22197892

English descriptors

Abstract

The raffinose family of oligosaccharides (RFOs) serve as transport carbohydrates in the phloem, storage compounds in sink tissues, and putative biological agents to combat both abiotic and biotic stress in several plant species. To investigate further the functional roles of this class of compounds in trees, two cDNAs encoding galactinol synthase (GolS, EC 2.4.1.123), which catalyses the first step in the biosynthesis of RFOs, were identified and cloned from hybrid poplar (Populus alba×grandidentata). Phylogenetic analyses of the Populus GolS isoforms with other known GolS proteins suggested a putative role for these enzymes during biotic or abiotic stress in hybrid poplar. The predicted protein sequences of both isoforms (Pa×gGolSI and Pa×gGolSII) showed characteristics of GolS proteins from other species, including a serine phosphorylation site and the ASAAP pentapeptide hydrophobic domain. Kinetic analyses of recombinant Pa×gGolSI and Pa×gGolSII resulted in K(m) values for UPD-galactose of 0.80 and 0.65 mM and V(max) values of 657.5 and 1245 nM min(-1), respectively. Pa×gGolSI inherently possessed a broader pH and temperature range when compared with Pa×gGolSII. Interestingly, spatial and temporal expression analyses revealed that Pa×gGolSII transcript levels varied seasonally, while Pa×gGolSI did not, implying temperature-regulated transcriptional control of this gene in addition to the observed thermosensitivity of the respective enzyme. This evidence suggested that Pa×gGolSI may be involved in basic metabolic activities such as storage, while Pa×gGolSII is probably involved in seasonal mobilization of carbohydrates.

DOI: 10.1093/jxb/err411
PubMed: 22197892
PubMed Central: PMC3295395

Links to Exploration step

pubmed:22197892

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Isolation and characterization of galactinol synthases from hybrid poplar.</title>
<author>
<name sortKey="Unda, Faride" sort="Unda, Faride" uniqKey="Unda F" first="Faride" last="Unda">Faride Unda</name>
<affiliation>
<nlm:affiliation>Department of Wood Science, The University of British Columbia, Vancouver, BC, Canada.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Canam, Thomas" sort="Canam, Thomas" uniqKey="Canam T" first="Thomas" last="Canam">Thomas Canam</name>
</author>
<author>
<name sortKey="Preston, Lindsay" sort="Preston, Lindsay" uniqKey="Preston L" first="Lindsay" last="Preston">Lindsay Preston</name>
</author>
<author>
<name sortKey="Mansfield, Shawn D" sort="Mansfield, Shawn D" uniqKey="Mansfield S" first="Shawn D" last="Mansfield">Shawn D. Mansfield</name>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2012">2012</date>
<idno type="RBID">pubmed:22197892</idno>
<idno type="pmid">22197892</idno>
<idno type="doi">10.1093/jxb/err411</idno>
<idno type="pmc">PMC3295395</idno>
<idno type="wicri:Area/Main/Corpus">002B93</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">002B93</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Isolation and characterization of galactinol synthases from hybrid poplar.</title>
<author>
<name sortKey="Unda, Faride" sort="Unda, Faride" uniqKey="Unda F" first="Faride" last="Unda">Faride Unda</name>
<affiliation>
<nlm:affiliation>Department of Wood Science, The University of British Columbia, Vancouver, BC, Canada.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Canam, Thomas" sort="Canam, Thomas" uniqKey="Canam T" first="Thomas" last="Canam">Thomas Canam</name>
</author>
<author>
<name sortKey="Preston, Lindsay" sort="Preston, Lindsay" uniqKey="Preston L" first="Lindsay" last="Preston">Lindsay Preston</name>
</author>
<author>
<name sortKey="Mansfield, Shawn D" sort="Mansfield, Shawn D" uniqKey="Mansfield S" first="Shawn D" last="Mansfield">Shawn D. Mansfield</name>
</author>
</analytic>
<series>
<title level="j">Journal of experimental botany</title>
<idno type="eISSN">1460-2431</idno>
<imprint>
<date when="2012" type="published">2012</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Amino Acid Sequence (MeSH)</term>
<term>Chimera (MeSH)</term>
<term>Conserved Sequence (MeSH)</term>
<term>DNA, Complementary (genetics)</term>
<term>Galactosyltransferases (genetics)</term>
<term>Galactosyltransferases (metabolism)</term>
<term>Molecular Sequence Data (MeSH)</term>
<term>Oligosaccharides (metabolism)</term>
<term>Phloem (metabolism)</term>
<term>Phylogeny (MeSH)</term>
<term>Pichia (genetics)</term>
<term>Plant Leaves (genetics)</term>
<term>Plant Leaves (metabolism)</term>
<term>Plant Proteins (genetics)</term>
<term>Plant Proteins (metabolism)</term>
<term>Populus (enzymology)</term>
<term>Populus (genetics)</term>
<term>Populus (metabolism)</term>
<term>Protein Isoforms (MeSH)</term>
<term>Raffinose (metabolism)</term>
<term>Sequence Alignment (MeSH)</term>
<term>Stress, Physiological (MeSH)</term>
<term>Trees (MeSH)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="genetics" xml:lang="en">
<term>DNA, Complementary</term>
<term>Galactosyltransferases</term>
<term>Plant Proteins</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="metabolism" xml:lang="en">
<term>Galactosyltransferases</term>
<term>Oligosaccharides</term>
<term>Plant Proteins</term>
<term>Raffinose</term>
</keywords>
<keywords scheme="MESH" qualifier="enzymology" xml:lang="en">
<term>Populus</term>
</keywords>
<keywords scheme="MESH" qualifier="genetics" xml:lang="en">
<term>Pichia</term>
<term>Plant Leaves</term>
<term>Populus</term>
</keywords>
<keywords scheme="MESH" qualifier="metabolism" xml:lang="en">
<term>Phloem</term>
<term>Plant Leaves</term>
<term>Populus</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Amino Acid Sequence</term>
<term>Chimera</term>
<term>Conserved Sequence</term>
<term>Molecular Sequence Data</term>
<term>Phylogeny</term>
<term>Protein Isoforms</term>
<term>Sequence Alignment</term>
<term>Stress, Physiological</term>
<term>Trees</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">The raffinose family of oligosaccharides (RFOs) serve as transport carbohydrates in the phloem, storage compounds in sink tissues, and putative biological agents to combat both abiotic and biotic stress in several plant species. To investigate further the functional roles of this class of compounds in trees, two cDNAs encoding galactinol synthase (GolS, EC 2.4.1.123), which catalyses the first step in the biosynthesis of RFOs, were identified and cloned from hybrid poplar (Populus alba×grandidentata). Phylogenetic analyses of the Populus GolS isoforms with other known GolS proteins suggested a putative role for these enzymes during biotic or abiotic stress in hybrid poplar. The predicted protein sequences of both isoforms (Pa×gGolSI and Pa×gGolSII) showed characteristics of GolS proteins from other species, including a serine phosphorylation site and the ASAAP pentapeptide hydrophobic domain. Kinetic analyses of recombinant Pa×gGolSI and Pa×gGolSII resulted in K(m) values for UPD-galactose of 0.80 and 0.65 mM and V(max) values of 657.5 and 1245 nM min(-1), respectively. Pa×gGolSI inherently possessed a broader pH and temperature range when compared with Pa×gGolSII. Interestingly, spatial and temporal expression analyses revealed that Pa×gGolSII transcript levels varied seasonally, while Pa×gGolSI did not, implying temperature-regulated transcriptional control of this gene in addition to the observed thermosensitivity of the respective enzyme. This evidence suggested that Pa×gGolSI may be involved in basic metabolic activities such as storage, while Pa×gGolSII is probably involved in seasonal mobilization of carbohydrates.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">22197892</PMID>
<DateCompleted>
<Year>2014</Year>
<Month>06</Month>
<Day>04</Day>
</DateCompleted>
<DateRevised>
<Year>2018</Year>
<Month>12</Month>
<Day>19</Day>
</DateRevised>
<Article PubModel="Print-Electronic">
<Journal>
<ISSN IssnType="Electronic">1460-2431</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>63</Volume>
<Issue>5</Issue>
<PubDate>
<Year>2012</Year>
<Month>Mar</Month>
</PubDate>
</JournalIssue>
<Title>Journal of experimental botany</Title>
<ISOAbbreviation>J Exp Bot</ISOAbbreviation>
</Journal>
<ArticleTitle>Isolation and characterization of galactinol synthases from hybrid poplar.</ArticleTitle>
<Pagination>
<MedlinePgn>2059-69</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1093/jxb/err411</ELocationID>
<Abstract>
<AbstractText>The raffinose family of oligosaccharides (RFOs) serve as transport carbohydrates in the phloem, storage compounds in sink tissues, and putative biological agents to combat both abiotic and biotic stress in several plant species. To investigate further the functional roles of this class of compounds in trees, two cDNAs encoding galactinol synthase (GolS, EC 2.4.1.123), which catalyses the first step in the biosynthesis of RFOs, were identified and cloned from hybrid poplar (Populus alba×grandidentata). Phylogenetic analyses of the Populus GolS isoforms with other known GolS proteins suggested a putative role for these enzymes during biotic or abiotic stress in hybrid poplar. The predicted protein sequences of both isoforms (Pa×gGolSI and Pa×gGolSII) showed characteristics of GolS proteins from other species, including a serine phosphorylation site and the ASAAP pentapeptide hydrophobic domain. Kinetic analyses of recombinant Pa×gGolSI and Pa×gGolSII resulted in K(m) values for UPD-galactose of 0.80 and 0.65 mM and V(max) values of 657.5 and 1245 nM min(-1), respectively. Pa×gGolSI inherently possessed a broader pH and temperature range when compared with Pa×gGolSII. Interestingly, spatial and temporal expression analyses revealed that Pa×gGolSII transcript levels varied seasonally, while Pa×gGolSI did not, implying temperature-regulated transcriptional control of this gene in addition to the observed thermosensitivity of the respective enzyme. This evidence suggested that Pa×gGolSI may be involved in basic metabolic activities such as storage, while Pa×gGolSII is probably involved in seasonal mobilization of carbohydrates.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Unda</LastName>
<ForeName>Faride</ForeName>
<Initials>F</Initials>
<AffiliationInfo>
<Affiliation>Department of Wood Science, The University of British Columbia, Vancouver, BC, Canada.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Canam</LastName>
<ForeName>Thomas</ForeName>
<Initials>T</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Preston</LastName>
<ForeName>Lindsay</ForeName>
<Initials>L</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Mansfield</LastName>
<ForeName>Shawn D</ForeName>
<Initials>SD</Initials>
</Author>
</AuthorList>
<Language>eng</Language>
<DataBankList CompleteYN="Y">
<DataBank>
<DataBankName>GENBANK</DataBankName>
<AccessionNumberList>
<AccessionNumber>JF499886</AccessionNumber>
<AccessionNumber>JF499887</AccessionNumber>
</AccessionNumberList>
</DataBank>
</DataBankList>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D013485">Research Support, Non-U.S. Gov't</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2011</Year>
<Month>12</Month>
<Day>22</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>England</Country>
<MedlineTA>J Exp Bot</MedlineTA>
<NlmUniqueID>9882906</NlmUniqueID>
<ISSNLinking>0022-0957</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D018076">DNA, Complementary</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D009844">Oligosaccharides</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D010940">Plant Proteins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D020033">Protein Isoforms</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 2.4.1.-</RegistryNumber>
<NameOfSubstance UI="D005700">Galactosyltransferases</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 2.4.1.123</RegistryNumber>
<NameOfSubstance UI="C096645">inositol 1-alpha-galactosyltransferase</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>N5O3QU595M</RegistryNumber>
<NameOfSubstance UI="D011887">Raffinose</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D000595" MajorTopicYN="N">Amino Acid Sequence</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D002678" MajorTopicYN="N">Chimera</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D017124" MajorTopicYN="N">Conserved Sequence</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D018076" MajorTopicYN="N">DNA, Complementary</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D005700" MajorTopicYN="N">Galactosyltransferases</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D008969" MajorTopicYN="N">Molecular Sequence Data</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D009844" MajorTopicYN="N">Oligosaccharides</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D052585" MajorTopicYN="N">Phloem</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D010802" MajorTopicYN="N">Phylogeny</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D010843" MajorTopicYN="N">Pichia</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D018515" MajorTopicYN="N">Plant Leaves</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D010940" MajorTopicYN="N">Plant Proteins</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D032107" MajorTopicYN="N">Populus</DescriptorName>
<QualifierName UI="Q000201" MajorTopicYN="Y">enzymology</QualifierName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D020033" MajorTopicYN="N">Protein Isoforms</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D011887" MajorTopicYN="N">Raffinose</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D016415" MajorTopicYN="N">Sequence Alignment</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D013312" MajorTopicYN="N">Stress, Physiological</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D014197" MajorTopicYN="N">Trees</DescriptorName>
</MeshHeading>
</MeshHeadingList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="entrez">
<Year>2011</Year>
<Month>12</Month>
<Day>27</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2011</Year>
<Month>12</Month>
<Day>27</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2014</Year>
<Month>6</Month>
<Day>5</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">22197892</ArticleId>
<ArticleId IdType="pii">err411</ArticleId>
<ArticleId IdType="doi">10.1093/jxb/err411</ArticleId>
<ArticleId IdType="pmc">PMC3295395</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>Plant J. 2000 Feb;21(3):249-58</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10758476</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant J. 2002 Feb;29(4):417-26</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11846875</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 1994 Aug;105(4):1335-1345</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12232288</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2003 Mar;131(3):1347-59</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12644684</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biosci Biotechnol Biochem. 2003 Jul;67(7):1465-71</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12913288</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2003 Nov;133(3):1229-39</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14526110</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biotechniques. 2004 May;36(5):821-4</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15152602</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2004 Oct;136(2):3148-58</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15466240</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Mol Recognit. 2005 Mar-Apr;18(2):119-38</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15565717</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 1983 Apr;71(4):818-21</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16662913</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 1987 Jan;83(1):185-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16665199</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 1991 Jul;96(3):693-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16668244</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2006 Sep 15;313(5793):1596-604</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16973872</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Exp Bot. 2007;58(8):1947-56</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17452754</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Mol Biol. 2009 Mar;69(5):529-39</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19067182</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2009 Aug 4;106(31):13118-23</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19625620</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant J. 2009 Nov;60(4):703-15</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19682285</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>New Phytol. 2010 Nov;188(3):787-802</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20955416</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Biol Evol. 2011 Oct;28(10):2731-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21546353</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Planta. 1992 Oct;188(3):354-61</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24178325</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Evolution. 1985 Jul;39(4):783-791</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28561359</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Biol Evol. 1987 Jul;4(4):406-25</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">3447015</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 1995 Oct;109(2):505-11</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">7480343</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Mol Biol. 1994 Oct;26(1):339-52</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">7948880</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/PoplarV1/Data/Main/Corpus
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 002B93 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Corpus/biblio.hfd -nk 002B93 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    PoplarV1
   |flux=    Main
   |étape=   Corpus
   |type=    RBID
   |clé=     pubmed:22197892
   |texte=   Isolation and characterization of galactinol synthases from hybrid poplar.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Corpus/RBID.i   -Sk "pubmed:22197892" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Corpus/biblio.hfd   \
       | NlmPubMed2Wicri -a PoplarV1 

Wicri

This area was generated with Dilib version V0.6.37.
Data generation: Wed Nov 18 12:07:19 2020. Site generation: Wed Nov 18 12:16:31 2020