Serveur d'exploration sur le peuplier

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Paxillus involutus strains MAJ and NAU mediate K(+)/Na(+) homeostasis in ectomycorrhizal Populus x canescens under sodium chloride stress.

Identifieur interne : 002A17 ( Main/Corpus ); précédent : 002A16; suivant : 002A18

Paxillus involutus strains MAJ and NAU mediate K(+)/Na(+) homeostasis in ectomycorrhizal Populus x canescens under sodium chloride stress.

Auteurs : Jing Li ; Siqin Bao ; Yuhong Zhang ; Xujun Ma ; Manika Mishra-Knyrim ; Jian Sun ; Gang Sa ; Xin Shen ; Andrea Polle ; Shaoliang Chen

Source :

RBID : pubmed:22652127

English descriptors

Abstract

Salt-induced fluxes of H(+), Na(+), K(+), and Ca(2+) were investigated in ectomycorrhizal (EM) associations formed by Paxillus involutus (strains MAJ and NAU) with the salt-sensitive poplar hybrid Populus × canescens. A scanning ion-selective electrode technique was used to measure flux profiles in non-EM roots and axenically grown EM cultures of the two P. involutus isolates to identify whether the major alterations detected in EM roots were promoted by the fungal partner. EM plants exhibited a more pronounced ability to maintain K(+)/Na(+) homeostasis under salt stress. The influx of Na(+) was reduced after short-term (50 mm NaCl, 24 h) and long-term (50 mm NaCl, 7 d) exposure to salt stress in mycorrhizal roots, especially in NAU associations. Flux data for P. involutus and susceptibility to Na(+)-transport inhibitors indicated that fungal colonization contributed to active Na(+) extrusion and H(+) uptake in the salinized roots of P. × canescens. Moreover, EM plants retained the ability to reduce the salt-induced K(+) efflux, especially under long-term salinity. Our study suggests that P. involutus assists in maintaining K(+) homeostasis by delivering this nutrient to host plants and slowing the loss of K(+) under salt stress. EM P. × canescens plants exhibited an enhanced Ca(2+) uptake ability, whereas short-term and long-term treatments caused a marked Ca(2+) efflux from mycorrhizal roots, especially from NAU-colonized roots. We suggest that the release of additional Ca(2+) mediated K(+)/Na(+) homeostasis in EM plants under salt stress.

DOI: 10.1104/pp.112.195370
PubMed: 22652127
PubMed Central: PMC3425212

Links to Exploration step

pubmed:22652127

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Paxillus involutus strains MAJ and NAU mediate K(+)/Na(+) homeostasis in ectomycorrhizal Populus x canescens under sodium chloride stress.</title>
<author>
<name sortKey="Li, Jing" sort="Li, Jing" uniqKey="Li J" first="Jing" last="Li">Jing Li</name>
<affiliation>
<nlm:affiliation>College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, People's Republic of China.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Bao, Siqin" sort="Bao, Siqin" uniqKey="Bao S" first="Siqin" last="Bao">Siqin Bao</name>
</author>
<author>
<name sortKey="Zhang, Yuhong" sort="Zhang, Yuhong" uniqKey="Zhang Y" first="Yuhong" last="Zhang">Yuhong Zhang</name>
</author>
<author>
<name sortKey="Ma, Xujun" sort="Ma, Xujun" uniqKey="Ma X" first="Xujun" last="Ma">Xujun Ma</name>
</author>
<author>
<name sortKey="Mishra Knyrim, Manika" sort="Mishra Knyrim, Manika" uniqKey="Mishra Knyrim M" first="Manika" last="Mishra-Knyrim">Manika Mishra-Knyrim</name>
</author>
<author>
<name sortKey="Sun, Jian" sort="Sun, Jian" uniqKey="Sun J" first="Jian" last="Sun">Jian Sun</name>
</author>
<author>
<name sortKey="Sa, Gang" sort="Sa, Gang" uniqKey="Sa G" first="Gang" last="Sa">Gang Sa</name>
</author>
<author>
<name sortKey="Shen, Xin" sort="Shen, Xin" uniqKey="Shen X" first="Xin" last="Shen">Xin Shen</name>
</author>
<author>
<name sortKey="Polle, Andrea" sort="Polle, Andrea" uniqKey="Polle A" first="Andrea" last="Polle">Andrea Polle</name>
</author>
<author>
<name sortKey="Chen, Shaoliang" sort="Chen, Shaoliang" uniqKey="Chen S" first="Shaoliang" last="Chen">Shaoliang Chen</name>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2012">2012</date>
<idno type="RBID">pubmed:22652127</idno>
<idno type="pmid">22652127</idno>
<idno type="doi">10.1104/pp.112.195370</idno>
<idno type="pmc">PMC3425212</idno>
<idno type="wicri:Area/Main/Corpus">002A17</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">002A17</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Paxillus involutus strains MAJ and NAU mediate K(+)/Na(+) homeostasis in ectomycorrhizal Populus x canescens under sodium chloride stress.</title>
<author>
<name sortKey="Li, Jing" sort="Li, Jing" uniqKey="Li J" first="Jing" last="Li">Jing Li</name>
<affiliation>
<nlm:affiliation>College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, People's Republic of China.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Bao, Siqin" sort="Bao, Siqin" uniqKey="Bao S" first="Siqin" last="Bao">Siqin Bao</name>
</author>
<author>
<name sortKey="Zhang, Yuhong" sort="Zhang, Yuhong" uniqKey="Zhang Y" first="Yuhong" last="Zhang">Yuhong Zhang</name>
</author>
<author>
<name sortKey="Ma, Xujun" sort="Ma, Xujun" uniqKey="Ma X" first="Xujun" last="Ma">Xujun Ma</name>
</author>
<author>
<name sortKey="Mishra Knyrim, Manika" sort="Mishra Knyrim, Manika" uniqKey="Mishra Knyrim M" first="Manika" last="Mishra-Knyrim">Manika Mishra-Knyrim</name>
</author>
<author>
<name sortKey="Sun, Jian" sort="Sun, Jian" uniqKey="Sun J" first="Jian" last="Sun">Jian Sun</name>
</author>
<author>
<name sortKey="Sa, Gang" sort="Sa, Gang" uniqKey="Sa G" first="Gang" last="Sa">Gang Sa</name>
</author>
<author>
<name sortKey="Shen, Xin" sort="Shen, Xin" uniqKey="Shen X" first="Xin" last="Shen">Xin Shen</name>
</author>
<author>
<name sortKey="Polle, Andrea" sort="Polle, Andrea" uniqKey="Polle A" first="Andrea" last="Polle">Andrea Polle</name>
</author>
<author>
<name sortKey="Chen, Shaoliang" sort="Chen, Shaoliang" uniqKey="Chen S" first="Shaoliang" last="Chen">Shaoliang Chen</name>
</author>
</analytic>
<series>
<title level="j">Plant physiology</title>
<idno type="eISSN">1532-2548</idno>
<imprint>
<date when="2012" type="published">2012</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Basidiomycota (drug effects)</term>
<term>Basidiomycota (physiology)</term>
<term>Calcium (metabolism)</term>
<term>Calcium (pharmacology)</term>
<term>Crosses, Genetic (MeSH)</term>
<term>Homeostasis (drug effects)</term>
<term>Ions (MeSH)</term>
<term>Mycorrhizae (drug effects)</term>
<term>Mycorrhizae (physiology)</term>
<term>Plant Leaves (drug effects)</term>
<term>Plant Leaves (metabolism)</term>
<term>Plant Roots (drug effects)</term>
<term>Plant Roots (metabolism)</term>
<term>Populus (drug effects)</term>
<term>Populus (microbiology)</term>
<term>Populus (physiology)</term>
<term>Potassium (metabolism)</term>
<term>Protons (MeSH)</term>
<term>Sodium (metabolism)</term>
<term>Sodium Chloride (pharmacology)</term>
<term>Stress, Physiological (drug effects)</term>
<term>Time Factors (MeSH)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="metabolism" xml:lang="en">
<term>Calcium</term>
<term>Potassium</term>
<term>Sodium</term>
</keywords>
<keywords scheme="MESH" qualifier="drug effects" xml:lang="en">
<term>Basidiomycota</term>
<term>Homeostasis</term>
<term>Mycorrhizae</term>
<term>Plant Leaves</term>
<term>Plant Roots</term>
<term>Populus</term>
<term>Stress, Physiological</term>
</keywords>
<keywords scheme="MESH" qualifier="metabolism" xml:lang="en">
<term>Plant Leaves</term>
<term>Plant Roots</term>
</keywords>
<keywords scheme="MESH" qualifier="microbiology" xml:lang="en">
<term>Populus</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="pharmacology" xml:lang="en">
<term>Calcium</term>
<term>Sodium Chloride</term>
</keywords>
<keywords scheme="MESH" qualifier="physiology" xml:lang="en">
<term>Basidiomycota</term>
<term>Mycorrhizae</term>
<term>Populus</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Crosses, Genetic</term>
<term>Ions</term>
<term>Protons</term>
<term>Time Factors</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Salt-induced fluxes of H(+), Na(+), K(+), and Ca(2+) were investigated in ectomycorrhizal (EM) associations formed by Paxillus involutus (strains MAJ and NAU) with the salt-sensitive poplar hybrid Populus × canescens. A scanning ion-selective electrode technique was used to measure flux profiles in non-EM roots and axenically grown EM cultures of the two P. involutus isolates to identify whether the major alterations detected in EM roots were promoted by the fungal partner. EM plants exhibited a more pronounced ability to maintain K(+)/Na(+) homeostasis under salt stress. The influx of Na(+) was reduced after short-term (50 mm NaCl, 24 h) and long-term (50 mm NaCl, 7 d) exposure to salt stress in mycorrhizal roots, especially in NAU associations. Flux data for P. involutus and susceptibility to Na(+)-transport inhibitors indicated that fungal colonization contributed to active Na(+) extrusion and H(+) uptake in the salinized roots of P. × canescens. Moreover, EM plants retained the ability to reduce the salt-induced K(+) efflux, especially under long-term salinity. Our study suggests that P. involutus assists in maintaining K(+) homeostasis by delivering this nutrient to host plants and slowing the loss of K(+) under salt stress. EM P. × canescens plants exhibited an enhanced Ca(2+) uptake ability, whereas short-term and long-term treatments caused a marked Ca(2+) efflux from mycorrhizal roots, especially from NAU-colonized roots. We suggest that the release of additional Ca(2+) mediated K(+)/Na(+) homeostasis in EM plants under salt stress.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">22652127</PMID>
<DateCompleted>
<Year>2012</Year>
<Month>12</Month>
<Day>10</Day>
</DateCompleted>
<DateRevised>
<Year>2018</Year>
<Month>11</Month>
<Day>13</Day>
</DateRevised>
<Article PubModel="Print-Electronic">
<Journal>
<ISSN IssnType="Electronic">1532-2548</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>159</Volume>
<Issue>4</Issue>
<PubDate>
<Year>2012</Year>
<Month>Aug</Month>
</PubDate>
</JournalIssue>
<Title>Plant physiology</Title>
<ISOAbbreviation>Plant Physiol</ISOAbbreviation>
</Journal>
<ArticleTitle>Paxillus involutus strains MAJ and NAU mediate K(+)/Na(+) homeostasis in ectomycorrhizal Populus x canescens under sodium chloride stress.</ArticleTitle>
<Pagination>
<MedlinePgn>1771-86</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1104/pp.112.195370</ELocationID>
<Abstract>
<AbstractText>Salt-induced fluxes of H(+), Na(+), K(+), and Ca(2+) were investigated in ectomycorrhizal (EM) associations formed by Paxillus involutus (strains MAJ and NAU) with the salt-sensitive poplar hybrid Populus × canescens. A scanning ion-selective electrode technique was used to measure flux profiles in non-EM roots and axenically grown EM cultures of the two P. involutus isolates to identify whether the major alterations detected in EM roots were promoted by the fungal partner. EM plants exhibited a more pronounced ability to maintain K(+)/Na(+) homeostasis under salt stress. The influx of Na(+) was reduced after short-term (50 mm NaCl, 24 h) and long-term (50 mm NaCl, 7 d) exposure to salt stress in mycorrhizal roots, especially in NAU associations. Flux data for P. involutus and susceptibility to Na(+)-transport inhibitors indicated that fungal colonization contributed to active Na(+) extrusion and H(+) uptake in the salinized roots of P. × canescens. Moreover, EM plants retained the ability to reduce the salt-induced K(+) efflux, especially under long-term salinity. Our study suggests that P. involutus assists in maintaining K(+) homeostasis by delivering this nutrient to host plants and slowing the loss of K(+) under salt stress. EM P. × canescens plants exhibited an enhanced Ca(2+) uptake ability, whereas short-term and long-term treatments caused a marked Ca(2+) efflux from mycorrhizal roots, especially from NAU-colonized roots. We suggest that the release of additional Ca(2+) mediated K(+)/Na(+) homeostasis in EM plants under salt stress.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Li</LastName>
<ForeName>Jing</ForeName>
<Initials>J</Initials>
<AffiliationInfo>
<Affiliation>College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, People's Republic of China.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Bao</LastName>
<ForeName>Siqin</ForeName>
<Initials>S</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Zhang</LastName>
<ForeName>Yuhong</ForeName>
<Initials>Y</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Ma</LastName>
<ForeName>Xujun</ForeName>
<Initials>X</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Mishra-Knyrim</LastName>
<ForeName>Manika</ForeName>
<Initials>M</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Sun</LastName>
<ForeName>Jian</ForeName>
<Initials>J</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Sa</LastName>
<ForeName>Gang</ForeName>
<Initials>G</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Shen</LastName>
<ForeName>Xin</ForeName>
<Initials>X</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Polle</LastName>
<ForeName>Andrea</ForeName>
<Initials>A</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Chen</LastName>
<ForeName>Shaoliang</ForeName>
<Initials>S</Initials>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D013485">Research Support, Non-U.S. Gov't</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2012</Year>
<Month>05</Month>
<Day>31</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>United States</Country>
<MedlineTA>Plant Physiol</MedlineTA>
<NlmUniqueID>0401224</NlmUniqueID>
<ISSNLinking>0032-0889</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D007477">Ions</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D011522">Protons</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>451W47IQ8X</RegistryNumber>
<NameOfSubstance UI="D012965">Sodium Chloride</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>9NEZ333N27</RegistryNumber>
<NameOfSubstance UI="D012964">Sodium</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>RWP5GA015D</RegistryNumber>
<NameOfSubstance UI="D011188">Potassium</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>SY7Q814VUP</RegistryNumber>
<NameOfSubstance UI="D002118">Calcium</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D001487" MajorTopicYN="N">Basidiomycota</DescriptorName>
<QualifierName UI="Q000187" MajorTopicYN="N">drug effects</QualifierName>
<QualifierName UI="Q000502" MajorTopicYN="Y">physiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D002118" MajorTopicYN="N">Calcium</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
<QualifierName UI="Q000494" MajorTopicYN="N">pharmacology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D003433" MajorTopicYN="N">Crosses, Genetic</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D006706" MajorTopicYN="N">Homeostasis</DescriptorName>
<QualifierName UI="Q000187" MajorTopicYN="Y">drug effects</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D007477" MajorTopicYN="N">Ions</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D038821" MajorTopicYN="N">Mycorrhizae</DescriptorName>
<QualifierName UI="Q000187" MajorTopicYN="N">drug effects</QualifierName>
<QualifierName UI="Q000502" MajorTopicYN="N">physiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D018515" MajorTopicYN="N">Plant Leaves</DescriptorName>
<QualifierName UI="Q000187" MajorTopicYN="N">drug effects</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D018517" MajorTopicYN="N">Plant Roots</DescriptorName>
<QualifierName UI="Q000187" MajorTopicYN="N">drug effects</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D032107" MajorTopicYN="N">Populus</DescriptorName>
<QualifierName UI="Q000187" MajorTopicYN="N">drug effects</QualifierName>
<QualifierName UI="Q000382" MajorTopicYN="N">microbiology</QualifierName>
<QualifierName UI="Q000502" MajorTopicYN="Y">physiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D011188" MajorTopicYN="N">Potassium</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D011522" MajorTopicYN="N">Protons</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D012964" MajorTopicYN="N">Sodium</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D012965" MajorTopicYN="N">Sodium Chloride</DescriptorName>
<QualifierName UI="Q000494" MajorTopicYN="Y">pharmacology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D013312" MajorTopicYN="N">Stress, Physiological</DescriptorName>
<QualifierName UI="Q000187" MajorTopicYN="Y">drug effects</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D013997" MajorTopicYN="N">Time Factors</DescriptorName>
</MeshHeading>
</MeshHeadingList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="entrez">
<Year>2012</Year>
<Month>6</Month>
<Day>2</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2012</Year>
<Month>6</Month>
<Day>2</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2012</Year>
<Month>12</Month>
<Day>12</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">22652127</ArticleId>
<ArticleId IdType="pii">pp.112.195370</ArticleId>
<ArticleId IdType="doi">10.1104/pp.112.195370</ArticleId>
<ArticleId IdType="pmc">PMC3425212</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>Mycorrhiza. 2007 May;17(3):249-58</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17216501</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Annu Rev Plant Biol. 2008;59:651-81</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18444910</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell Environ. 2011 Jun;34(6):947-61</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21342209</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Biol (Stuttg). 2010 Mar;12(2):317-33</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20398238</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Exp Bot. 2002 Jul;53(374):1683-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12096108</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>FEMS Microbiol Ecol. 2002 Dec 1;42(3):359-66</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19709295</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2007 Dec;145(4):1714-25</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17965172</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 1990 Jun;93(2):532-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16667498</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell Environ. 2010 Jun;33(6):943-58</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20082667</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Opin Plant Biol. 2003 Oct;6(5):441-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12972044</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2002 Feb;128(2):379-87</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11842142</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Trends Plant Sci. 2001 Feb;6(2):66-71</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11173290</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Tree Physiol. 2009 Sep;29(9):1175-86</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19638360</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>New Phytol. 2009 Jan;181(2):448-62</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19121039</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2006 Aug;141(4):1653-65</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16798942</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Physiol Plant. 2008 Aug;133(4):651-69</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18724408</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>New Phytol. 2008;178(1):177-88</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18208473</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Exp Bot. 2002 Jul;53(374):1659-69</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12096105</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Exp Bot. 2002 Jan;53(366):1-11</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11741035</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell Environ. 2012 May;35(5):893-916</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22070751</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>FEBS Lett. 2007 May 25;581(12):2247-54</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17459382</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Planta. 2000 Feb;210(3):488-96</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10750907</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2009 Dec;151(4):1902-17</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19812185</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 1997 Dec 23;94(26):14960-4</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9405721</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell Rep. 1992 Apr;11(3):137-41</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24213546</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 1984 Dec;76(4):918-23</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16663971</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Planta. 2000 Oct;211(5):609-13</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11089672</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mycorrhiza. 2006 Nov;16(8):559-65</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17033816</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Cell Sci. 2003 Jan 1;116(Pt 1):81-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12456718</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>New Phytol. 2007;175(3):387-404</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17635215</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Exp Bot. 2006;57(1):171-84</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16330526</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Annu Rev Plant Biol. 2002;53:67-107</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12221989</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Biol (Stuttg). 2006 Sep;8(5):646-52</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16755463</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochim Biophys Acta. 2000 May 1;1465(1-2):140-51</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10748251</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Biol (Stuttg). 2004 Jan-Feb;6(1):91-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15095139</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biophys J. 1990 Feb;57(2):269-79</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19431754</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2009 Feb;149(2):1141-53</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19028881</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mycorrhiza. 2007 Mar;17(2):121-31</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17115201</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2005 Dec;139(4):1762-72</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16299175</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Ann Bot. 2003 Apr;91(5):503-27</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12646496</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Cell Sci. 2010 May 1;123(Pt 9):1468-79</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20375061</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 1997 Jan;113(1):111-118</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12223594</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Planta. 2005 Dec;222(6):1041-50</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16079998</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Annu Rev Plant Physiol Plant Mol Biol. 2000 Jun;51:463-499</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15012199</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/PoplarV1/Data/Main/Corpus
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 002A17 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Corpus/biblio.hfd -nk 002A17 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    PoplarV1
   |flux=    Main
   |étape=   Corpus
   |type=    RBID
   |clé=     pubmed:22652127
   |texte=   Paxillus involutus strains MAJ and NAU mediate K(+)/Na(+) homeostasis in ectomycorrhizal Populus x canescens under sodium chloride stress.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Corpus/RBID.i   -Sk "pubmed:22652127" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Corpus/biblio.hfd   \
       | NlmPubMed2Wicri -a PoplarV1 

Wicri

This area was generated with Dilib version V0.6.37.
Data generation: Wed Nov 18 12:07:19 2020. Site generation: Wed Nov 18 12:16:31 2020