Serveur d'exploration sur le peuplier

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Allelic variation in PtGA20Ox associates with growth and wood properties in Populus spp.

Identifieur interne : 002739 ( Main/Corpus ); précédent : 002738; suivant : 002740

Allelic variation in PtGA20Ox associates with growth and wood properties in Populus spp.

Auteurs : Jiaxing Tian ; Qingzhang Du ; Mengqi Chang ; Deqiang Zhang

Source :

RBID : pubmed:23300875

English descriptors

Abstract

Populus tomentosa is an economically important tree crop that produces wood for lumber, pulp, paper, and biofuels. Wood quality traits are likely to be strongly affected by the plant hormone gibberellic acid (GA), which regulates growth. GA20Ox encodes one of the major regulatory enzymes of GA biosynthesis and may therefore play a large role in growth and wood quality. Here, linkage disequilibrium (LD) studies were used to identify significant associations between single nucleotide polymorphisms (SNPs) within PtGA20Ox and growth and wood-quality traits of P. tomentosa. We isolated a full-length GA20Ox cDNA from Populus tomentosa by reverse transcription (RT)-PCR; this 1401 bp cDNA clone had an open reading frame of 1158 bp and encoded a protein of 385 amino acids. PtGA20Ox transcripts were maximally expressed in the mature xylem of vascular tissues, suggesting that PtGA20Ox is highly expressed and specifically associated with secondary xylem formation. Resequencing the PtGA20Ox locus of 36 individuals identified 55 SNPs, and the frequency of SNPs was 1/31 bp. The 29 most common SNPs (frequency>0.1) were genotyped in an association population (426 individuals) that was also phenotyped for key growth and wood quality traits. LD did not extend over the entire gene (r(2)<0.1, within 500 bp), demonstrating that a candidate-gene-based LD approach may the best way to understand the molecular basis underlying quantitative variation in this species. SNP- and haplotype-based association analyses indicated that four SNPs (false discovery rate Q<0.05) and 14 haplotypes (P<0.05) were significantly associated with growth and wood properties. The phenotypic variance explained by each SNP ranged from 3.44% to 14.47%. The SNP markers identified in this study can be applied to breeding programs for the improvement of growth and wood-property traits by marker-assisted selection.

DOI: 10.1371/journal.pone.0053116
PubMed: 23300875
PubMed Central: PMC3534044

Links to Exploration step

pubmed:23300875

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Allelic variation in PtGA20Ox associates with growth and wood properties in Populus spp.</title>
<author>
<name sortKey="Tian, Jiaxing" sort="Tian, Jiaxing" uniqKey="Tian J" first="Jiaxing" last="Tian">Jiaxing Tian</name>
<affiliation>
<nlm:affiliation>National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Du, Qingzhang" sort="Du, Qingzhang" uniqKey="Du Q" first="Qingzhang" last="Du">Qingzhang Du</name>
</author>
<author>
<name sortKey="Chang, Mengqi" sort="Chang, Mengqi" uniqKey="Chang M" first="Mengqi" last="Chang">Mengqi Chang</name>
</author>
<author>
<name sortKey="Zhang, Deqiang" sort="Zhang, Deqiang" uniqKey="Zhang D" first="Deqiang" last="Zhang">Deqiang Zhang</name>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2012">2012</date>
<idno type="RBID">pubmed:23300875</idno>
<idno type="pmid">23300875</idno>
<idno type="doi">10.1371/journal.pone.0053116</idno>
<idno type="pmc">PMC3534044</idno>
<idno type="wicri:Area/Main/Corpus">002739</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">002739</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Allelic variation in PtGA20Ox associates with growth and wood properties in Populus spp.</title>
<author>
<name sortKey="Tian, Jiaxing" sort="Tian, Jiaxing" uniqKey="Tian J" first="Jiaxing" last="Tian">Jiaxing Tian</name>
<affiliation>
<nlm:affiliation>National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Du, Qingzhang" sort="Du, Qingzhang" uniqKey="Du Q" first="Qingzhang" last="Du">Qingzhang Du</name>
</author>
<author>
<name sortKey="Chang, Mengqi" sort="Chang, Mengqi" uniqKey="Chang M" first="Mengqi" last="Chang">Mengqi Chang</name>
</author>
<author>
<name sortKey="Zhang, Deqiang" sort="Zhang, Deqiang" uniqKey="Zhang D" first="Deqiang" last="Zhang">Deqiang Zhang</name>
</author>
</analytic>
<series>
<title level="j">PloS one</title>
<idno type="eISSN">1932-6203</idno>
<imprint>
<date when="2012" type="published">2012</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Alleles (MeSH)</term>
<term>Genes, Plant (genetics)</term>
<term>Genetic Association Studies (MeSH)</term>
<term>Genotype (MeSH)</term>
<term>Haplotypes (MeSH)</term>
<term>Linkage Disequilibrium (MeSH)</term>
<term>Molecular Sequence Data (MeSH)</term>
<term>Polymorphism, Single Nucleotide (MeSH)</term>
<term>Populus (genetics)</term>
<term>Populus (growth & development)</term>
<term>Populus (metabolism)</term>
<term>Wood (genetics)</term>
<term>Wood (growth & development)</term>
<term>Wood (metabolism)</term>
</keywords>
<keywords scheme="MESH" qualifier="genetics" xml:lang="en">
<term>Genes, Plant</term>
<term>Populus</term>
<term>Wood</term>
</keywords>
<keywords scheme="MESH" qualifier="growth & development" xml:lang="en">
<term>Populus</term>
<term>Wood</term>
</keywords>
<keywords scheme="MESH" qualifier="metabolism" xml:lang="en">
<term>Populus</term>
<term>Wood</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Alleles</term>
<term>Genetic Association Studies</term>
<term>Genotype</term>
<term>Haplotypes</term>
<term>Linkage Disequilibrium</term>
<term>Molecular Sequence Data</term>
<term>Polymorphism, Single Nucleotide</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Populus tomentosa is an economically important tree crop that produces wood for lumber, pulp, paper, and biofuels. Wood quality traits are likely to be strongly affected by the plant hormone gibberellic acid (GA), which regulates growth. GA20Ox encodes one of the major regulatory enzymes of GA biosynthesis and may therefore play a large role in growth and wood quality. Here, linkage disequilibrium (LD) studies were used to identify significant associations between single nucleotide polymorphisms (SNPs) within PtGA20Ox and growth and wood-quality traits of P. tomentosa. We isolated a full-length GA20Ox cDNA from Populus tomentosa by reverse transcription (RT)-PCR; this 1401 bp cDNA clone had an open reading frame of 1158 bp and encoded a protein of 385 amino acids. PtGA20Ox transcripts were maximally expressed in the mature xylem of vascular tissues, suggesting that PtGA20Ox is highly expressed and specifically associated with secondary xylem formation. Resequencing the PtGA20Ox locus of 36 individuals identified 55 SNPs, and the frequency of SNPs was 1/31 bp. The 29 most common SNPs (frequency>0.1) were genotyped in an association population (426 individuals) that was also phenotyped for key growth and wood quality traits. LD did not extend over the entire gene (r(2)<0.1, within 500 bp), demonstrating that a candidate-gene-based LD approach may the best way to understand the molecular basis underlying quantitative variation in this species. SNP- and haplotype-based association analyses indicated that four SNPs (false discovery rate Q<0.05) and 14 haplotypes (P<0.05) were significantly associated with growth and wood properties. The phenotypic variance explained by each SNP ranged from 3.44% to 14.47%. The SNP markers identified in this study can be applied to breeding programs for the improvement of growth and wood-property traits by marker-assisted selection.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">23300875</PMID>
<DateCompleted>
<Year>2013</Year>
<Month>06</Month>
<Day>24</Day>
</DateCompleted>
<DateRevised>
<Year>2018</Year>
<Month>11</Month>
<Day>13</Day>
</DateRevised>
<Article PubModel="Print-Electronic">
<Journal>
<ISSN IssnType="Electronic">1932-6203</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>7</Volume>
<Issue>12</Issue>
<PubDate>
<Year>2012</Year>
</PubDate>
</JournalIssue>
<Title>PloS one</Title>
<ISOAbbreviation>PLoS One</ISOAbbreviation>
</Journal>
<ArticleTitle>Allelic variation in PtGA20Ox associates with growth and wood properties in Populus spp.</ArticleTitle>
<Pagination>
<MedlinePgn>e53116</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1371/journal.pone.0053116</ELocationID>
<Abstract>
<AbstractText>Populus tomentosa is an economically important tree crop that produces wood for lumber, pulp, paper, and biofuels. Wood quality traits are likely to be strongly affected by the plant hormone gibberellic acid (GA), which regulates growth. GA20Ox encodes one of the major regulatory enzymes of GA biosynthesis and may therefore play a large role in growth and wood quality. Here, linkage disequilibrium (LD) studies were used to identify significant associations between single nucleotide polymorphisms (SNPs) within PtGA20Ox and growth and wood-quality traits of P. tomentosa. We isolated a full-length GA20Ox cDNA from Populus tomentosa by reverse transcription (RT)-PCR; this 1401 bp cDNA clone had an open reading frame of 1158 bp and encoded a protein of 385 amino acids. PtGA20Ox transcripts were maximally expressed in the mature xylem of vascular tissues, suggesting that PtGA20Ox is highly expressed and specifically associated with secondary xylem formation. Resequencing the PtGA20Ox locus of 36 individuals identified 55 SNPs, and the frequency of SNPs was 1/31 bp. The 29 most common SNPs (frequency>0.1) were genotyped in an association population (426 individuals) that was also phenotyped for key growth and wood quality traits. LD did not extend over the entire gene (r(2)<0.1, within 500 bp), demonstrating that a candidate-gene-based LD approach may the best way to understand the molecular basis underlying quantitative variation in this species. SNP- and haplotype-based association analyses indicated that four SNPs (false discovery rate Q<0.05) and 14 haplotypes (P<0.05) were significantly associated with growth and wood properties. The phenotypic variance explained by each SNP ranged from 3.44% to 14.47%. The SNP markers identified in this study can be applied to breeding programs for the improvement of growth and wood-property traits by marker-assisted selection.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Tian</LastName>
<ForeName>Jiaxing</ForeName>
<Initials>J</Initials>
<AffiliationInfo>
<Affiliation>National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Du</LastName>
<ForeName>Qingzhang</ForeName>
<Initials>Q</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Chang</LastName>
<ForeName>Mengqi</ForeName>
<Initials>M</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Zhang</LastName>
<ForeName>Deqiang</ForeName>
<Initials>D</Initials>
</Author>
</AuthorList>
<Language>eng</Language>
<DataBankList CompleteYN="Y">
<DataBank>
<DataBankName>GENBANK</DataBankName>
<AccessionNumberList>
<AccessionNumber>JX305425</AccessionNumber>
<AccessionNumber>JX305426</AccessionNumber>
<AccessionNumber>JX305427</AccessionNumber>
<AccessionNumber>JX305428</AccessionNumber>
<AccessionNumber>JX305429</AccessionNumber>
<AccessionNumber>JX305430</AccessionNumber>
<AccessionNumber>JX305431</AccessionNumber>
<AccessionNumber>JX305432</AccessionNumber>
<AccessionNumber>JX305433</AccessionNumber>
<AccessionNumber>JX305434</AccessionNumber>
<AccessionNumber>JX305435</AccessionNumber>
<AccessionNumber>JX305436</AccessionNumber>
<AccessionNumber>JX305437</AccessionNumber>
<AccessionNumber>JX305438</AccessionNumber>
<AccessionNumber>JX305439</AccessionNumber>
<AccessionNumber>JX305440</AccessionNumber>
<AccessionNumber>JX305441</AccessionNumber>
<AccessionNumber>JX305442</AccessionNumber>
<AccessionNumber>JX305443</AccessionNumber>
<AccessionNumber>JX305444</AccessionNumber>
<AccessionNumber>JX305445</AccessionNumber>
<AccessionNumber>JX305446</AccessionNumber>
<AccessionNumber>JX305447</AccessionNumber>
<AccessionNumber>JX305448</AccessionNumber>
<AccessionNumber>JX305449</AccessionNumber>
<AccessionNumber>JX305450</AccessionNumber>
<AccessionNumber>JX305451</AccessionNumber>
<AccessionNumber>JX305452</AccessionNumber>
<AccessionNumber>JX305453</AccessionNumber>
<AccessionNumber>JX305454</AccessionNumber>
<AccessionNumber>JX305455</AccessionNumber>
<AccessionNumber>JX305456</AccessionNumber>
<AccessionNumber>JX305457</AccessionNumber>
<AccessionNumber>JX305458</AccessionNumber>
<AccessionNumber>JX305459</AccessionNumber>
<AccessionNumber>JX305460</AccessionNumber>
<AccessionNumber>JX305461</AccessionNumber>
</AccessionNumberList>
</DataBank>
</DataBankList>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D013485">Research Support, Non-U.S. Gov't</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2012</Year>
<Month>12</Month>
<Day>31</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>United States</Country>
<MedlineTA>PLoS One</MedlineTA>
<NlmUniqueID>101285081</NlmUniqueID>
<ISSNLinking>1932-6203</ISSNLinking>
</MedlineJournalInfo>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D000483" MajorTopicYN="Y">Alleles</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D017343" MajorTopicYN="N">Genes, Plant</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="Y">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D056726" MajorTopicYN="N">Genetic Association Studies</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D005838" MajorTopicYN="N">Genotype</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D006239" MajorTopicYN="N">Haplotypes</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D015810" MajorTopicYN="N">Linkage Disequilibrium</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D008969" MajorTopicYN="N">Molecular Sequence Data</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D020641" MajorTopicYN="Y">Polymorphism, Single Nucleotide</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D032107" MajorTopicYN="N">Populus</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="Y">genetics</QualifierName>
<QualifierName UI="Q000254" MajorTopicYN="N">growth & development</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D014934" MajorTopicYN="N">Wood</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="Y">genetics</QualifierName>
<QualifierName UI="Q000254" MajorTopicYN="N">growth & development</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
</MeshHeadingList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2012</Year>
<Month>07</Month>
<Day>20</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2012</Year>
<Month>11</Month>
<Day>27</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2013</Year>
<Month>1</Month>
<Day>10</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2013</Year>
<Month>1</Month>
<Day>10</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2013</Year>
<Month>6</Month>
<Day>26</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">23300875</ArticleId>
<ArticleId IdType="doi">10.1371/journal.pone.0053116</ArticleId>
<ArticleId IdType="pii">PONE-D-12-21351</ArticleId>
<ArticleId IdType="pmc">PMC3534044</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>Genetics. 2011 May;188(1):197-214</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21385726</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genetics. 2005 Dec;171(4):2029-41</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16157674</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Rev Genet. 2005 Feb;6(2):95-108</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15716906</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genetics. 2000 Jun;155(2):945-59</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10835412</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Annu Rev Plant Physiol Plant Mol Biol. 1997 Jun;48:431-460</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15012270</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2012 Jan;158(1):531-41</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22052017</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genetics. 2007 Jan;175(1):399-409</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17110498</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2004 Oct 19;101(42):15255-60</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15477602</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Mol Evol. 2012 Jun;74(5-6):257-72</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22562720</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Theor Appl Genet. 2004 Feb;108(4):657-62</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14564399</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Rev Genet. 2011 Feb;12(2):111-22</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21245829</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Theor Appl Genet. 2010 Aug;121(3):417-31</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20349034</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Trends Plant Sci. 2004 Jul;9(7):325-30</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15231277</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Trends Plant Sci. 2000 Dec;5(12):523-30</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11120474</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Annu Rev Plant Biol. 2004;55:197-223</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15377219</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>New Phytol. 2010 Oct;188(2):515-32</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20831625</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Bioinformatics. 2007 Oct 1;23(19):2633-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17586829</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>New Phytol. 2012 Nov;196(3):713-25</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22861491</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Biotechnol. 2000 Jul;18(7):784-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10888850</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2001 Jul;126(3):965-72</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11457947</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genetics. 1964 Jan;49(1):49-67</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17248194</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2002;14 Suppl:S61-80</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12045270</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genetics. 2008 Apr;178(4):2217-26</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18245834</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genetics. 2005 Nov;171(3):1257-65</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16085705</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genetics. 2009 Nov;183(3):1153-64</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19737751</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Bioinformatics. 2005 Jan 15;21(2):263-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15297300</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genetics. 2009 Sep;183(1):325-35</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19581446</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Ecol. 2005 Jul;14(8):2611-20</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15969739</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Bioinformatics. 2003 Dec 12;19(18):2496-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14668244</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 1998 Jan 15;26(2):558-65</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9421516</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genetics. 1987 Oct;117(2):331-41</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">3666445</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Int J Plant Genomics. 2008;2008:574927</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18551188</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Cell Biol. 1997 Aug;17(8):4611-21</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9234718</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Hum Hered. 2002;53(2):79-91</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12037407</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Sci Am. 2009 Jun;300(6):46-53</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19485088</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Mol Biol. 2005 Mar;57(4):461-85</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15821975</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Planta. 1992 Oct;188(3):362-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24178326</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2007 Jan 26;315(5811):525-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17185560</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS One. 2009;4(6):e5639</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19503614</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genetics. 2009 Aug;182(4):1289-302</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19487566</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Genet. 2006 Feb;38(2):203-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16380716</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Trends Plant Sci. 2005 Mar;10(3):123-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15749470</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>New Phytol. 2012 Aug;195(3):596-608</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22680066</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2004 May;135(1):254-65</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15122040</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Theor Appl Genet. 2011 Mar;122(5):1005-16</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21161500</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genetics. 2010 Aug;185(4):1477-87</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20498299</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genetics. 2005 Feb;169(2):945-53</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15489521</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/PoplarV1/Data/Main/Corpus
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 002739 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Corpus/biblio.hfd -nk 002739 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    PoplarV1
   |flux=    Main
   |étape=   Corpus
   |type=    RBID
   |clé=     pubmed:23300875
   |texte=   Allelic variation in PtGA20Ox associates with growth and wood properties in Populus spp.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Corpus/RBID.i   -Sk "pubmed:23300875" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Corpus/biblio.hfd   \
       | NlmPubMed2Wicri -a PoplarV1 

Wicri

This area was generated with Dilib version V0.6.37.
Data generation: Wed Nov 18 12:07:19 2020. Site generation: Wed Nov 18 12:16:31 2020