Serveur d'exploration sur le peuplier

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Isolation and identification of phytate-degrading rhizobacteria with activity of improving growth of poplar and Masson pine.

Identifieur interne : 002580 ( Main/Corpus ); précédent : 002579; suivant : 002581

Isolation and identification of phytate-degrading rhizobacteria with activity of improving growth of poplar and Masson pine.

Auteurs : Gui-E Li ; Xiao-Qin Wu ; Jian-Ren Ye ; Liang Hou ; Ai-Dong Zhou ; Liu Zhao

Source :

RBID : pubmed:23709169

English descriptors

Abstract

A number of soil microorganisms can convert insoluble forms of phosphorus (P) to an accessible form to increase plant yields. Phytate is such a large kind of insoluble organic phosphorus that plants cannot absorb directly in soil, so the objectives of this study were to isolate, screen phytate-degrading rhizobacteria (PDRB), and to select potential microbial inocula that could increase the P uptake by plants. In this study, a total of 24 soil samples were collected from natural habitats of eight poplar and pine planting areas from the eastern to southern China. 17 PDRB strains were preliminarily screened from the rhizosphere soil of poplars and pines by the visible decolorization in the phytate selective medium. The highest ratio of the total diameter (colony + halo zone) to the colony diameter of the isolates was JZ-GX1, 3.85. Afterward, 17 PDRB strains were further determined for their abilities to degrade sodium phytate based on the amount of liberated inorganic P in liquid phytate specific medium. The results showed that the phytase ability of the three highest PDRB strains: JZ-GX1, JZ-DZ1 and JZ-ZJ1 were up to 2.58, 2.36 and 2.24 U/mL, respectively, much better than most of the bacteria reported in previous studies. In the soil-plant experiment, compared to CK, the best three strains of PDRB all could significantly promote growth of poplar and Masson pine under container growing. The three efficient PDRB strains were identified as follow: JZ-GX1, Rahnella aquatilis, both JZ-DZ1 and JZ-ZJ1 being autofluorescent, Pseudomonas fluorescens, by 16S rDNA gene sequencing technology, Biolog Identification System and biological characterization. The present study suggests that the three screened PDRB strains would have great potential application as biological fertilizers in the future.

DOI: 10.1007/s11274-013-1384-3
PubMed: 23709169

Links to Exploration step

pubmed:23709169

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Isolation and identification of phytate-degrading rhizobacteria with activity of improving growth of poplar and Masson pine.</title>
<author>
<name sortKey="Li, Gui E" sort="Li, Gui E" uniqKey="Li G" first="Gui-E" last="Li">Gui-E Li</name>
<affiliation>
<nlm:affiliation>Institute of Forest Protection, College of Forest Resources and Environment, Nanjing Forestry University, Nanjing, China.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Wu, Xiao Qin" sort="Wu, Xiao Qin" uniqKey="Wu X" first="Xiao-Qin" last="Wu">Xiao-Qin Wu</name>
</author>
<author>
<name sortKey="Ye, Jian Ren" sort="Ye, Jian Ren" uniqKey="Ye J" first="Jian-Ren" last="Ye">Jian-Ren Ye</name>
</author>
<author>
<name sortKey="Hou, Liang" sort="Hou, Liang" uniqKey="Hou L" first="Liang" last="Hou">Liang Hou</name>
</author>
<author>
<name sortKey="Zhou, Ai Dong" sort="Zhou, Ai Dong" uniqKey="Zhou A" first="Ai-Dong" last="Zhou">Ai-Dong Zhou</name>
</author>
<author>
<name sortKey="Zhao, Liu" sort="Zhao, Liu" uniqKey="Zhao L" first="Liu" last="Zhao">Liu Zhao</name>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2013">2013</date>
<idno type="RBID">pubmed:23709169</idno>
<idno type="pmid">23709169</idno>
<idno type="doi">10.1007/s11274-013-1384-3</idno>
<idno type="wicri:Area/Main/Corpus">002580</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">002580</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Isolation and identification of phytate-degrading rhizobacteria with activity of improving growth of poplar and Masson pine.</title>
<author>
<name sortKey="Li, Gui E" sort="Li, Gui E" uniqKey="Li G" first="Gui-E" last="Li">Gui-E Li</name>
<affiliation>
<nlm:affiliation>Institute of Forest Protection, College of Forest Resources and Environment, Nanjing Forestry University, Nanjing, China.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Wu, Xiao Qin" sort="Wu, Xiao Qin" uniqKey="Wu X" first="Xiao-Qin" last="Wu">Xiao-Qin Wu</name>
</author>
<author>
<name sortKey="Ye, Jian Ren" sort="Ye, Jian Ren" uniqKey="Ye J" first="Jian-Ren" last="Ye">Jian-Ren Ye</name>
</author>
<author>
<name sortKey="Hou, Liang" sort="Hou, Liang" uniqKey="Hou L" first="Liang" last="Hou">Liang Hou</name>
</author>
<author>
<name sortKey="Zhou, Ai Dong" sort="Zhou, Ai Dong" uniqKey="Zhou A" first="Ai-Dong" last="Zhou">Ai-Dong Zhou</name>
</author>
<author>
<name sortKey="Zhao, Liu" sort="Zhao, Liu" uniqKey="Zhao L" first="Liu" last="Zhao">Liu Zhao</name>
</author>
</analytic>
<series>
<title level="j">World journal of microbiology & biotechnology</title>
<idno type="eISSN">1573-0972</idno>
<imprint>
<date when="2013" type="published">2013</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>6-Phytase (genetics)</term>
<term>6-Phytase (metabolism)</term>
<term>Bacterial Proteins (genetics)</term>
<term>Bacterial Proteins (metabolism)</term>
<term>China (MeSH)</term>
<term>DNA, Bacterial (genetics)</term>
<term>Ecosystem (MeSH)</term>
<term>Phylogeny (MeSH)</term>
<term>Phytic Acid (metabolism)</term>
<term>Pinus (growth & development)</term>
<term>Pinus (microbiology)</term>
<term>Populus (growth & development)</term>
<term>Populus (microbiology)</term>
<term>Pseudomonas fluorescens (classification)</term>
<term>Pseudomonas fluorescens (genetics)</term>
<term>Pseudomonas fluorescens (isolation & purification)</term>
<term>Pseudomonas fluorescens (metabolism)</term>
<term>RNA, Ribosomal, 16S (genetics)</term>
<term>Rahnella (classification)</term>
<term>Rahnella (genetics)</term>
<term>Rahnella (isolation & purification)</term>
<term>Rahnella (metabolism)</term>
<term>Rhizosphere (MeSH)</term>
<term>Soil (chemistry)</term>
<term>Soil (parasitology)</term>
<term>Soil Microbiology (MeSH)</term>
<term>Symbiosis (MeSH)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="chemistry" xml:lang="en">
<term>Soil</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="genetics" xml:lang="en">
<term>6-Phytase</term>
<term>Bacterial Proteins</term>
<term>DNA, Bacterial</term>
<term>RNA, Ribosomal, 16S</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="metabolism" xml:lang="en">
<term>6-Phytase</term>
<term>Bacterial Proteins</term>
<term>Phytic Acid</term>
</keywords>
<keywords scheme="MESH" qualifier="classification" xml:lang="en">
<term>Pseudomonas fluorescens</term>
<term>Rahnella</term>
</keywords>
<keywords scheme="MESH" qualifier="genetics" xml:lang="en">
<term>Pseudomonas fluorescens</term>
<term>Rahnella</term>
</keywords>
<keywords scheme="MESH" qualifier="growth & development" xml:lang="en">
<term>Pinus</term>
<term>Populus</term>
</keywords>
<keywords scheme="MESH" qualifier="isolation & purification" xml:lang="en">
<term>Pseudomonas fluorescens</term>
<term>Rahnella</term>
</keywords>
<keywords scheme="MESH" qualifier="metabolism" xml:lang="en">
<term>Pseudomonas fluorescens</term>
<term>Rahnella</term>
</keywords>
<keywords scheme="MESH" qualifier="microbiology" xml:lang="en">
<term>Pinus</term>
<term>Populus</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="parasitology" xml:lang="en">
<term>Soil</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>China</term>
<term>Ecosystem</term>
<term>Phylogeny</term>
<term>Rhizosphere</term>
<term>Soil Microbiology</term>
<term>Symbiosis</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">A number of soil microorganisms can convert insoluble forms of phosphorus (P) to an accessible form to increase plant yields. Phytate is such a large kind of insoluble organic phosphorus that plants cannot absorb directly in soil, so the objectives of this study were to isolate, screen phytate-degrading rhizobacteria (PDRB), and to select potential microbial inocula that could increase the P uptake by plants. In this study, a total of 24 soil samples were collected from natural habitats of eight poplar and pine planting areas from the eastern to southern China. 17 PDRB strains were preliminarily screened from the rhizosphere soil of poplars and pines by the visible decolorization in the phytate selective medium. The highest ratio of the total diameter (colony + halo zone) to the colony diameter of the isolates was JZ-GX1, 3.85. Afterward, 17 PDRB strains were further determined for their abilities to degrade sodium phytate based on the amount of liberated inorganic P in liquid phytate specific medium. The results showed that the phytase ability of the three highest PDRB strains: JZ-GX1, JZ-DZ1 and JZ-ZJ1 were up to 2.58, 2.36 and 2.24 U/mL, respectively, much better than most of the bacteria reported in previous studies. In the soil-plant experiment, compared to CK, the best three strains of PDRB all could significantly promote growth of poplar and Masson pine under container growing. The three efficient PDRB strains were identified as follow: JZ-GX1, Rahnella aquatilis, both JZ-DZ1 and JZ-ZJ1 being autofluorescent, Pseudomonas fluorescens, by 16S rDNA gene sequencing technology, Biolog Identification System and biological characterization. The present study suggests that the three screened PDRB strains would have great potential application as biological fertilizers in the future.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">23709169</PMID>
<DateCompleted>
<Year>2014</Year>
<Month>05</Month>
<Day>01</Day>
</DateCompleted>
<DateRevised>
<Year>2018</Year>
<Month>11</Month>
<Day>13</Day>
</DateRevised>
<Article PubModel="Print-Electronic">
<Journal>
<ISSN IssnType="Electronic">1573-0972</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>29</Volume>
<Issue>11</Issue>
<PubDate>
<Year>2013</Year>
<Month>Nov</Month>
</PubDate>
</JournalIssue>
<Title>World journal of microbiology & biotechnology</Title>
<ISOAbbreviation>World J Microbiol Biotechnol</ISOAbbreviation>
</Journal>
<ArticleTitle>Isolation and identification of phytate-degrading rhizobacteria with activity of improving growth of poplar and Masson pine.</ArticleTitle>
<Pagination>
<MedlinePgn>2181-93</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1007/s11274-013-1384-3</ELocationID>
<Abstract>
<AbstractText>A number of soil microorganisms can convert insoluble forms of phosphorus (P) to an accessible form to increase plant yields. Phytate is such a large kind of insoluble organic phosphorus that plants cannot absorb directly in soil, so the objectives of this study were to isolate, screen phytate-degrading rhizobacteria (PDRB), and to select potential microbial inocula that could increase the P uptake by plants. In this study, a total of 24 soil samples were collected from natural habitats of eight poplar and pine planting areas from the eastern to southern China. 17 PDRB strains were preliminarily screened from the rhizosphere soil of poplars and pines by the visible decolorization in the phytate selective medium. The highest ratio of the total diameter (colony + halo zone) to the colony diameter of the isolates was JZ-GX1, 3.85. Afterward, 17 PDRB strains were further determined for their abilities to degrade sodium phytate based on the amount of liberated inorganic P in liquid phytate specific medium. The results showed that the phytase ability of the three highest PDRB strains: JZ-GX1, JZ-DZ1 and JZ-ZJ1 were up to 2.58, 2.36 and 2.24 U/mL, respectively, much better than most of the bacteria reported in previous studies. In the soil-plant experiment, compared to CK, the best three strains of PDRB all could significantly promote growth of poplar and Masson pine under container growing. The three efficient PDRB strains were identified as follow: JZ-GX1, Rahnella aquatilis, both JZ-DZ1 and JZ-ZJ1 being autofluorescent, Pseudomonas fluorescens, by 16S rDNA gene sequencing technology, Biolog Identification System and biological characterization. The present study suggests that the three screened PDRB strains would have great potential application as biological fertilizers in the future.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Li</LastName>
<ForeName>Gui-E</ForeName>
<Initials>GE</Initials>
<AffiliationInfo>
<Affiliation>Institute of Forest Protection, College of Forest Resources and Environment, Nanjing Forestry University, Nanjing, China.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Wu</LastName>
<ForeName>Xiao-Qin</ForeName>
<Initials>XQ</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Ye</LastName>
<ForeName>Jian-Ren</ForeName>
<Initials>JR</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Hou</LastName>
<ForeName>Liang</ForeName>
<Initials>L</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Zhou</LastName>
<ForeName>Ai-Dong</ForeName>
<Initials>AD</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Zhao</LastName>
<ForeName>Liu</ForeName>
<Initials>L</Initials>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D013485">Research Support, Non-U.S. Gov't</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2013</Year>
<Month>05</Month>
<Day>25</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>Germany</Country>
<MedlineTA>World J Microbiol Biotechnol</MedlineTA>
<NlmUniqueID>9012472</NlmUniqueID>
<ISSNLinking>0959-3993</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D001426">Bacterial Proteins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D004269">DNA, Bacterial</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D012336">RNA, Ribosomal, 16S</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D012987">Soil</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>7IGF0S7R8I</RegistryNumber>
<NameOfSubstance UI="D010833">Phytic Acid</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 3.1.3.26</RegistryNumber>
<NameOfSubstance UI="D010832">6-Phytase</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D010832" MajorTopicYN="N">6-Phytase</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D001426" MajorTopicYN="N">Bacterial Proteins</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D002681" MajorTopicYN="N">China</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D004269" MajorTopicYN="N">DNA, Bacterial</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D017753" MajorTopicYN="N">Ecosystem</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D010802" MajorTopicYN="N">Phylogeny</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D010833" MajorTopicYN="N">Phytic Acid</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D028223" MajorTopicYN="N">Pinus</DescriptorName>
<QualifierName UI="Q000254" MajorTopicYN="Y">growth & development</QualifierName>
<QualifierName UI="Q000382" MajorTopicYN="N">microbiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D032107" MajorTopicYN="N">Populus</DescriptorName>
<QualifierName UI="Q000254" MajorTopicYN="Y">growth & development</QualifierName>
<QualifierName UI="Q000382" MajorTopicYN="N">microbiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D011551" MajorTopicYN="N">Pseudomonas fluorescens</DescriptorName>
<QualifierName UI="Q000145" MajorTopicYN="N">classification</QualifierName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000302" MajorTopicYN="Y">isolation & purification</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D012336" MajorTopicYN="N">RNA, Ribosomal, 16S</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D020638" MajorTopicYN="N">Rahnella</DescriptorName>
<QualifierName UI="Q000145" MajorTopicYN="N">classification</QualifierName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000302" MajorTopicYN="Y">isolation & purification</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D058441" MajorTopicYN="N">Rhizosphere</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D012987" MajorTopicYN="N">Soil</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="N">chemistry</QualifierName>
<QualifierName UI="Q000469" MajorTopicYN="N">parasitology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D012988" MajorTopicYN="N">Soil Microbiology</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D013559" MajorTopicYN="N">Symbiosis</DescriptorName>
</MeshHeading>
</MeshHeadingList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2013</Year>
<Month>03</Month>
<Day>15</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2013</Year>
<Month>05</Month>
<Day>20</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2013</Year>
<Month>5</Month>
<Day>28</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2013</Year>
<Month>5</Month>
<Day>28</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2014</Year>
<Month>5</Month>
<Day>3</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">23709169</ArticleId>
<ArticleId IdType="doi">10.1007/s11274-013-1384-3</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>Int J Food Microbiol. 2003 Nov 1;87(3):259-70</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14527798</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Can J Microbiol. 1997 Jun;43(6):509-16</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9226870</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Can J Microbiol. 2000 Jan;46(1):59-71</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10696472</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Anal Biochem. 1987 Jan;160(1):47-56</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">2952030</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>FEMS Microbiol Ecol. 2011 Jan;75(1):163-72</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21073489</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Appl Environ Microbiol. 2005 Sep;71(9):4951-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16151072</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2001 Oct;127(2):390-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11598215</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Trends Plant Sci. 2010 Sep;15(9):507-14</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20542720</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biotechnol Adv. 1999 Oct;17(4-5):319-39</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14538133</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biosci Bioeng. 2001;92(2):154-60</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16233076</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biotechnol Lett. 2003 Aug;25(15):1231-4</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14514072</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Microbiology. 1998 Jun;144 ( Pt 6):1565-73</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9639927</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Ind Microbiol Biotechnol. 2007 Jan;34(1):91-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16967265</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biosci Bioeng. 2002;94(5):419-25</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16233328</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Microbiol Biotechnol. 2010 Nov;20(11):1491-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21124052</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Protein Chem. 2001 May;20(4):287-92</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11594462</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Environ Microbiol. 2005 Mar;7(3):396-404</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15683400</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Lab Clin Med. 1954 Aug;44(2):301-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">13184240</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>World J Microbiol Biotechnol. 2007 Dec;23(12):1653-60</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27517819</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Bacteriol. 2012 Dec;194(23):6646-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23144397</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Appl Environ Microbiol. 2000 Nov;66(11):5035-42</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11055961</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Appl Microbiol Biotechnol. 2004 Jul;65(1):110-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14727093</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/PoplarV1/Data/Main/Corpus
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 002580 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Corpus/biblio.hfd -nk 002580 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    PoplarV1
   |flux=    Main
   |étape=   Corpus
   |type=    RBID
   |clé=     pubmed:23709169
   |texte=   Isolation and identification of phytate-degrading rhizobacteria with activity of improving growth of poplar and Masson pine.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Corpus/RBID.i   -Sk "pubmed:23709169" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Corpus/biblio.hfd   \
       | NlmPubMed2Wicri -a PoplarV1 

Wicri

This area was generated with Dilib version V0.6.37.
Data generation: Wed Nov 18 12:07:19 2020. Site generation: Wed Nov 18 12:16:31 2020