Serveur d'exploration sur le peuplier

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

SND1 transcription factor-directed quantitative functional hierarchical genetic regulatory network in wood formation in Populus trichocarpa.

Identifieur interne : 002395 ( Main/Corpus ); précédent : 002394; suivant : 002396

SND1 transcription factor-directed quantitative functional hierarchical genetic regulatory network in wood formation in Populus trichocarpa.

Auteurs : Ying-Chung Lin ; Wei Li ; Ying-Hsuan Sun ; Sapna Kumari ; Hairong Wei ; Quanzi Li ; Sermsawat Tunlaya-Anukit ; Ronald R. Sederoff ; Vincent L. Chiang

Source :

RBID : pubmed:24280390

English descriptors

Abstract

Wood is an essential renewable raw material for industrial products and energy. However, knowledge of the genetic regulation of wood formation is limited. We developed a genome-wide high-throughput system for the discovery and validation of specific transcription factor (TF)-directed hierarchical gene regulatory networks (hGRNs) in wood formation. This system depends on a new robust procedure for isolation and transfection of Populus trichocarpa stem differentiating xylem protoplasts. We overexpressed Secondary Wall-Associated NAC Domain 1s (Ptr-SND1-B1), a TF gene affecting wood formation, in these protoplasts and identified differentially expressed genes by RNA sequencing. Direct Ptr-SND1-B1-DNA interactions were then inferred by integration of time-course RNA sequencing data and top-down Graphical Gaussian Modeling-based algorithms. These Ptr-SND1-B1-DNA interactions were verified to function in differentiating xylem by anti-PtrSND1-B1 antibody-based chromatin immunoprecipitation (97% accuracy) and in stable transgenic P. trichocarpa (90% accuracy). In this way, we established a Ptr-SND1-B1-directed quantitative hGRN involving 76 direct targets, including eight TF and 61 enzyme-coding genes previously unidentified as targets. The network can be extended to the third layer from the second-layer TFs by computation or by overexpression of a second-layer TF to identify a new group of direct targets (third layer). This approach would allow the sequential establishment, one two-layered hGRN at a time, of all layers involved in a more comprehensive hGRN. Our approach may be particularly useful to study hGRNs in complex processes in plant species resistant to stable genetic transformation and where mutants are unavailable.

DOI: 10.1105/tpc.113.117697
PubMed: 24280390
PubMed Central: PMC3875721

Links to Exploration step

pubmed:24280390

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">SND1 transcription factor-directed quantitative functional hierarchical genetic regulatory network in wood formation in Populus trichocarpa.</title>
<author>
<name sortKey="Lin, Ying Chung" sort="Lin, Ying Chung" uniqKey="Lin Y" first="Ying-Chung" last="Lin">Ying-Chung Lin</name>
<affiliation>
<nlm:affiliation>Forest Biotechnology Group, Department of Forestry and Environmental Resources, North Carolina State University, Raleigh, North Carolina 27695.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Li, Wei" sort="Li, Wei" uniqKey="Li W" first="Wei" last="Li">Wei Li</name>
</author>
<author>
<name sortKey="Sun, Ying Hsuan" sort="Sun, Ying Hsuan" uniqKey="Sun Y" first="Ying-Hsuan" last="Sun">Ying-Hsuan Sun</name>
</author>
<author>
<name sortKey="Kumari, Sapna" sort="Kumari, Sapna" uniqKey="Kumari S" first="Sapna" last="Kumari">Sapna Kumari</name>
</author>
<author>
<name sortKey="Wei, Hairong" sort="Wei, Hairong" uniqKey="Wei H" first="Hairong" last="Wei">Hairong Wei</name>
</author>
<author>
<name sortKey="Li, Quanzi" sort="Li, Quanzi" uniqKey="Li Q" first="Quanzi" last="Li">Quanzi Li</name>
</author>
<author>
<name sortKey="Tunlaya Anukit, Sermsawat" sort="Tunlaya Anukit, Sermsawat" uniqKey="Tunlaya Anukit S" first="Sermsawat" last="Tunlaya-Anukit">Sermsawat Tunlaya-Anukit</name>
</author>
<author>
<name sortKey="Sederoff, Ronald R" sort="Sederoff, Ronald R" uniqKey="Sederoff R" first="Ronald R" last="Sederoff">Ronald R. Sederoff</name>
</author>
<author>
<name sortKey="Chiang, Vincent L" sort="Chiang, Vincent L" uniqKey="Chiang V" first="Vincent L" last="Chiang">Vincent L. Chiang</name>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2013">2013</date>
<idno type="RBID">pubmed:24280390</idno>
<idno type="pmid">24280390</idno>
<idno type="doi">10.1105/tpc.113.117697</idno>
<idno type="pmc">PMC3875721</idno>
<idno type="wicri:Area/Main/Corpus">002395</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">002395</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">SND1 transcription factor-directed quantitative functional hierarchical genetic regulatory network in wood formation in Populus trichocarpa.</title>
<author>
<name sortKey="Lin, Ying Chung" sort="Lin, Ying Chung" uniqKey="Lin Y" first="Ying-Chung" last="Lin">Ying-Chung Lin</name>
<affiliation>
<nlm:affiliation>Forest Biotechnology Group, Department of Forestry and Environmental Resources, North Carolina State University, Raleigh, North Carolina 27695.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Li, Wei" sort="Li, Wei" uniqKey="Li W" first="Wei" last="Li">Wei Li</name>
</author>
<author>
<name sortKey="Sun, Ying Hsuan" sort="Sun, Ying Hsuan" uniqKey="Sun Y" first="Ying-Hsuan" last="Sun">Ying-Hsuan Sun</name>
</author>
<author>
<name sortKey="Kumari, Sapna" sort="Kumari, Sapna" uniqKey="Kumari S" first="Sapna" last="Kumari">Sapna Kumari</name>
</author>
<author>
<name sortKey="Wei, Hairong" sort="Wei, Hairong" uniqKey="Wei H" first="Hairong" last="Wei">Hairong Wei</name>
</author>
<author>
<name sortKey="Li, Quanzi" sort="Li, Quanzi" uniqKey="Li Q" first="Quanzi" last="Li">Quanzi Li</name>
</author>
<author>
<name sortKey="Tunlaya Anukit, Sermsawat" sort="Tunlaya Anukit, Sermsawat" uniqKey="Tunlaya Anukit S" first="Sermsawat" last="Tunlaya-Anukit">Sermsawat Tunlaya-Anukit</name>
</author>
<author>
<name sortKey="Sederoff, Ronald R" sort="Sederoff, Ronald R" uniqKey="Sederoff R" first="Ronald R" last="Sederoff">Ronald R. Sederoff</name>
</author>
<author>
<name sortKey="Chiang, Vincent L" sort="Chiang, Vincent L" uniqKey="Chiang V" first="Vincent L" last="Chiang">Vincent L. Chiang</name>
</author>
</analytic>
<series>
<title level="j">The Plant cell</title>
<idno type="eISSN">1532-298X</idno>
<imprint>
<date when="2013" type="published">2013</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Algorithms (MeSH)</term>
<term>Cell Wall (genetics)</term>
<term>Chromatin Immunoprecipitation (MeSH)</term>
<term>Gene Expression Regulation, Plant (MeSH)</term>
<term>Gene Ontology (MeSH)</term>
<term>Gene Regulatory Networks (MeSH)</term>
<term>High-Throughput Nucleotide Sequencing (MeSH)</term>
<term>Models, Genetic (MeSH)</term>
<term>Plant Proteins (genetics)</term>
<term>Plant Proteins (metabolism)</term>
<term>Plants, Genetically Modified (MeSH)</term>
<term>Polymerase Chain Reaction (methods)</term>
<term>Populus (genetics)</term>
<term>Populus (metabolism)</term>
<term>Protoplasts (MeSH)</term>
<term>Reproducibility of Results (MeSH)</term>
<term>Transcription Factors (genetics)</term>
<term>Transcription Factors (metabolism)</term>
<term>Transfection (MeSH)</term>
<term>Wood (genetics)</term>
<term>Wood (metabolism)</term>
<term>Xylem (cytology)</term>
<term>Xylem (genetics)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="genetics" xml:lang="en">
<term>Plant Proteins</term>
<term>Transcription Factors</term>
</keywords>
<keywords scheme="MESH" qualifier="cytology" xml:lang="en">
<term>Xylem</term>
</keywords>
<keywords scheme="MESH" qualifier="genetics" xml:lang="en">
<term>Cell Wall</term>
<term>Populus</term>
<term>Wood</term>
<term>Xylem</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="metabolism" xml:lang="en">
<term>Plant Proteins</term>
<term>Populus</term>
<term>Transcription Factors</term>
<term>Wood</term>
</keywords>
<keywords scheme="MESH" qualifier="methods" xml:lang="en">
<term>Polymerase Chain Reaction</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Algorithms</term>
<term>Chromatin Immunoprecipitation</term>
<term>Gene Expression Regulation, Plant</term>
<term>Gene Ontology</term>
<term>Gene Regulatory Networks</term>
<term>High-Throughput Nucleotide Sequencing</term>
<term>Models, Genetic</term>
<term>Plants, Genetically Modified</term>
<term>Protoplasts</term>
<term>Reproducibility of Results</term>
<term>Transfection</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Wood is an essential renewable raw material for industrial products and energy. However, knowledge of the genetic regulation of wood formation is limited. We developed a genome-wide high-throughput system for the discovery and validation of specific transcription factor (TF)-directed hierarchical gene regulatory networks (hGRNs) in wood formation. This system depends on a new robust procedure for isolation and transfection of Populus trichocarpa stem differentiating xylem protoplasts. We overexpressed Secondary Wall-Associated NAC Domain 1s (Ptr-SND1-B1), a TF gene affecting wood formation, in these protoplasts and identified differentially expressed genes by RNA sequencing. Direct Ptr-SND1-B1-DNA interactions were then inferred by integration of time-course RNA sequencing data and top-down Graphical Gaussian Modeling-based algorithms. These Ptr-SND1-B1-DNA interactions were verified to function in differentiating xylem by anti-PtrSND1-B1 antibody-based chromatin immunoprecipitation (97% accuracy) and in stable transgenic P. trichocarpa (90% accuracy). In this way, we established a Ptr-SND1-B1-directed quantitative hGRN involving 76 direct targets, including eight TF and 61 enzyme-coding genes previously unidentified as targets. The network can be extended to the third layer from the second-layer TFs by computation or by overexpression of a second-layer TF to identify a new group of direct targets (third layer). This approach would allow the sequential establishment, one two-layered hGRN at a time, of all layers involved in a more comprehensive hGRN. Our approach may be particularly useful to study hGRNs in complex processes in plant species resistant to stable genetic transformation and where mutants are unavailable.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">24280390</PMID>
<DateCompleted>
<Year>2014</Year>
<Month>10</Month>
<Day>23</Day>
</DateCompleted>
<DateRevised>
<Year>2018</Year>
<Month>11</Month>
<Day>13</Day>
</DateRevised>
<Article PubModel="Print-Electronic">
<Journal>
<ISSN IssnType="Electronic">1532-298X</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>25</Volume>
<Issue>11</Issue>
<PubDate>
<Year>2013</Year>
<Month>Nov</Month>
</PubDate>
</JournalIssue>
<Title>The Plant cell</Title>
<ISOAbbreviation>Plant Cell</ISOAbbreviation>
</Journal>
<ArticleTitle>SND1 transcription factor-directed quantitative functional hierarchical genetic regulatory network in wood formation in Populus trichocarpa.</ArticleTitle>
<Pagination>
<MedlinePgn>4324-41</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1105/tpc.113.117697</ELocationID>
<Abstract>
<AbstractText>Wood is an essential renewable raw material for industrial products and energy. However, knowledge of the genetic regulation of wood formation is limited. We developed a genome-wide high-throughput system for the discovery and validation of specific transcription factor (TF)-directed hierarchical gene regulatory networks (hGRNs) in wood formation. This system depends on a new robust procedure for isolation and transfection of Populus trichocarpa stem differentiating xylem protoplasts. We overexpressed Secondary Wall-Associated NAC Domain 1s (Ptr-SND1-B1), a TF gene affecting wood formation, in these protoplasts and identified differentially expressed genes by RNA sequencing. Direct Ptr-SND1-B1-DNA interactions were then inferred by integration of time-course RNA sequencing data and top-down Graphical Gaussian Modeling-based algorithms. These Ptr-SND1-B1-DNA interactions were verified to function in differentiating xylem by anti-PtrSND1-B1 antibody-based chromatin immunoprecipitation (97% accuracy) and in stable transgenic P. trichocarpa (90% accuracy). In this way, we established a Ptr-SND1-B1-directed quantitative hGRN involving 76 direct targets, including eight TF and 61 enzyme-coding genes previously unidentified as targets. The network can be extended to the third layer from the second-layer TFs by computation or by overexpression of a second-layer TF to identify a new group of direct targets (third layer). This approach would allow the sequential establishment, one two-layered hGRN at a time, of all layers involved in a more comprehensive hGRN. Our approach may be particularly useful to study hGRNs in complex processes in plant species resistant to stable genetic transformation and where mutants are unavailable.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Lin</LastName>
<ForeName>Ying-Chung</ForeName>
<Initials>YC</Initials>
<AffiliationInfo>
<Affiliation>Forest Biotechnology Group, Department of Forestry and Environmental Resources, North Carolina State University, Raleigh, North Carolina 27695.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Li</LastName>
<ForeName>Wei</ForeName>
<Initials>W</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Sun</LastName>
<ForeName>Ying-Hsuan</ForeName>
<Initials>YH</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Kumari</LastName>
<ForeName>Sapna</ForeName>
<Initials>S</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Wei</LastName>
<ForeName>Hairong</ForeName>
<Initials>H</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Li</LastName>
<ForeName>Quanzi</ForeName>
<Initials>Q</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Tunlaya-Anukit</LastName>
<ForeName>Sermsawat</ForeName>
<Initials>S</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Sederoff</LastName>
<ForeName>Ronald R</ForeName>
<Initials>RR</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Chiang</LastName>
<ForeName>Vincent L</ForeName>
<Initials>VL</Initials>
</Author>
</AuthorList>
<Language>eng</Language>
<DataBankList CompleteYN="Y">
<DataBank>
<DataBankName>GEO</DataBankName>
<AccessionNumberList>
<AccessionNumber>GSE49911</AccessionNumber>
</AccessionNumberList>
</DataBank>
</DataBankList>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D013485">Research Support, Non-U.S. Gov't</PublicationType>
<PublicationType UI="D013486">Research Support, U.S. Gov't, Non-P.H.S.</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2013</Year>
<Month>11</Month>
<Day>26</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>United States</Country>
<MedlineTA>Plant Cell</MedlineTA>
<NlmUniqueID>9208688</NlmUniqueID>
<ISSNLinking>1040-4651</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D010940">Plant Proteins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D014157">Transcription Factors</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<CommentsCorrectionsList>
<CommentsCorrections RefType="CommentIn">
<RefSource>Plant Cell. 2013 Nov;25(11):4282</RefSource>
<PMID Version="1">24285792</PMID>
</CommentsCorrections>
</CommentsCorrectionsList>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D000465" MajorTopicYN="N">Algorithms</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D002473" MajorTopicYN="N">Cell Wall</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D047369" MajorTopicYN="N">Chromatin Immunoprecipitation</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D018506" MajorTopicYN="N">Gene Expression Regulation, Plant</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D063990" MajorTopicYN="N">Gene Ontology</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D053263" MajorTopicYN="Y">Gene Regulatory Networks</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D059014" MajorTopicYN="N">High-Throughput Nucleotide Sequencing</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D008957" MajorTopicYN="N">Models, Genetic</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D010940" MajorTopicYN="N">Plant Proteins</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="Y">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D030821" MajorTopicYN="N">Plants, Genetically Modified</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D016133" MajorTopicYN="N">Polymerase Chain Reaction</DescriptorName>
<QualifierName UI="Q000379" MajorTopicYN="N">methods</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D032107" MajorTopicYN="N">Populus</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="Y">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D011523" MajorTopicYN="N">Protoplasts</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D015203" MajorTopicYN="N">Reproducibility of Results</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D014157" MajorTopicYN="N">Transcription Factors</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D014162" MajorTopicYN="N">Transfection</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D014934" MajorTopicYN="N">Wood</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="Y">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D052584" MajorTopicYN="N">Xylem</DescriptorName>
<QualifierName UI="Q000166" MajorTopicYN="N">cytology</QualifierName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
</MeshHeading>
</MeshHeadingList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="entrez">
<Year>2013</Year>
<Month>11</Month>
<Day>28</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2013</Year>
<Month>11</Month>
<Day>28</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2014</Year>
<Month>10</Month>
<Day>24</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">24280390</ArticleId>
<ArticleId IdType="pii">tpc.113.117697</ArticleId>
<ArticleId IdType="doi">10.1105/tpc.113.117697</ArticleId>
<ArticleId IdType="pmc">PMC3875721</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>Science. 2010 Dec 24;330(6012):1775-87</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21177976</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant J. 2006 Jan;45(2):144-65</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16367961</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Rev Genet. 2007 Feb;8(2):93-103</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17230196</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Bioinformatics. 2010 Jan 1;26(1):139-40</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19910308</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Protoc. 2007;2(7):1565-72</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17585298</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Opin Biotechnol. 2000 Jun;11(3):298-302</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10851143</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>EMBO Rep. 2004 Mar;5(3):297-303</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15083810</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant J. 2013 Jan;73(1):26-36</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26011122</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell Physiol. 2006 Nov;47(11):1582-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17018558</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Methods. 2009 Nov 24;5:16</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19930690</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Opin Plant Biol. 2010 Apr;13(2):126-31</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20036612</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Rev Genet. 2009 Sep;10(9):605-16</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19668247</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant J. 2011 Dec;68(6):1104-14</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21883551</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Rev Genet. 2011 Jan;12(1):7-18</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21116306</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Bioinformatics. 2009 May 1;25(9):1105-11</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19289445</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Annu Rev Genomics Hum Genet. 2006;7:81-102</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16722805</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2001 Dec;127(4):1466-75</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11743090</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2013 Jun 25;110(26):10848-53</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23754401</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2009 Dec 3;462(7273):660-4</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19924127</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Methods Mol Biol. 2007;354:1-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17172739</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant J. 2007 Sep;51(6):955-65</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17683474</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2008 Mar 28;319(5871):1785-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18369135</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2012 Apr 12;484(7393):242-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22437497</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Plant. 2010 Nov;3(6):1087-103</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20935069</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2009 Mar 13;323(5920):1481-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19286557</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Mol Biol. 2010 Nov;74(4-5):367-80</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20803312</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biotechnol Adv. 2005 Mar;23(2):131-71</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15694124</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant J. 2011 Aug;67(3):499-512</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21649762</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Biol Evol. 2003 Sep;20(9):1377-419</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12777501</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2012 Sep 4;109(36):14699-704</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22915581</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2010 Apr 13;107(15):6841-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20351254</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Biol. 1996 Mar 1;6(3):325-30</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8805250</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genes Dev. 2002 Dec 1;16(23):3017-33</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12464632</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell. 1988 Jun 17;53(6):937-47</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">2454748</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS Comput Biol. 2011 Nov;7(11):e1002190</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22125477</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Syst Biol. 2009;5:294</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19690563</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2003 Jul 10;424(6945):147-51</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12853946</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2011 Mar;23(3):1124-37</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21447792</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2011 Dec 27;108(52):21253-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22160716</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Protoc. 2010 Mar;5(3):457-72</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20203663</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2010 Dec 24;330(6012):1787-97</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21177974</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant J. 1994 Mar;5(3):421-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8180625</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2012 Oct;24(10):3859-75</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23110892</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS Biol. 2009 Apr 21;7(4):e1000090</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19385720</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2001 Feb 22;409(6823):1060-3</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11234017</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Methods. 2011 Sep 30;7(1):30</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21961694</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genome Res. 2011 Feb;21(2):245-54</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21177963</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genes Dev. 2000 Dec 1;14(23):3024-36</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11114891</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2006 Nov;18(11):3158-70</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17114348</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2013 Jul;25(7):2444-63</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23903317</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genes Dev. 2005 Aug 15;19(16):1855-60</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16103214</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Mol Biol. 2012 Mar;78(4-5):489-501</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22271306</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS Genet. 2011 Aug;7(8):e1002243</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21876682</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2011 Jun;156(2):474-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21454800</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Biotechnol. 2007 Oct;37(2):169-80</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17914178</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2011 Nov;157(3):1452-68</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21908685</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 2011 Jul;39(Web Server issue):W307-15</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21646343</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Opin Struct Biol. 2001 Feb;11(1):26-32</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11179888</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biotechniques. 2005 Oct;39(4):519-25</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16235564</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS One. 2012;7(9):e44908</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23028673</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Planta. 1976 Jan;128(3):213-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24430749</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2003 Dec 12;302(5652):1956-60</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14671301</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2009 Feb;149(2):1141-53</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19028881</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2006 Oct 3;103(40):14724-31</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17003135</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2000 Jun 1;405(6786):590-3</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10850721</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS Genet. 2012;8(5):e1002728</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22615585</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant J. 2006 Jul;47(1):152-62</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16824183</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2012 Apr 6;336(6077):75-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22403178</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>BMC Plant Biol. 2010;10:145</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20630103</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2000 Dec 15;290(5499):2105-10</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11118137</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2009 Sep;21(9):2563-77</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19767455</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Opin Plant Biol. 2010 Jun;13(3):299-304</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20381410</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Methods. 2012 May 04;8(1):14</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22559320</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/PoplarV1/Data/Main/Corpus
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 002395 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Corpus/biblio.hfd -nk 002395 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    PoplarV1
   |flux=    Main
   |étape=   Corpus
   |type=    RBID
   |clé=     pubmed:24280390
   |texte=   SND1 transcription factor-directed quantitative functional hierarchical genetic regulatory network in wood formation in Populus trichocarpa.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Corpus/RBID.i   -Sk "pubmed:24280390" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Corpus/biblio.hfd   \
       | NlmPubMed2Wicri -a PoplarV1 

Wicri

This area was generated with Dilib version V0.6.37.
Data generation: Wed Nov 18 12:07:19 2020. Site generation: Wed Nov 18 12:16:31 2020