Serveur d'exploration sur le peuplier

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Atomic force microscope controlled topographical imaging and proximal probe thermal desorption/ionization mass spectrometry imaging.

Identifieur interne : 002354 ( Main/Corpus ); précédent : 002353; suivant : 002355

Atomic force microscope controlled topographical imaging and proximal probe thermal desorption/ionization mass spectrometry imaging.

Auteurs : Olga S. Ovchinnikova ; Kevin Kjoller ; Gregory B. Hurst ; Dale A. Pelletier ; Gary J. Van Berkel

Source :

RBID : pubmed:24377265

English descriptors

Abstract

This paper reports on the development of a hybrid atmospheric pressure atomic force microscopy/mass spectrometry imaging system utilizing nanothermal analysis probes for thermal desorption surface sampling with subsequent atmospheric pressure chemical ionization and mass analysis. The basic instrumental setup and the general operation of the system were discussed, and optimized performance metrics were presented. The ability to correlate topographic images of a surface with atomic force microscopy and a mass spectral chemical image of the same surface, utilizing the same probe without moving the sample from the system, was demonstrated. Co-registered mass spectral chemical images and atomic force microscopy topographical images were obtained from inked patterns on paper as well as from a living bacterial colony on an agar gel. Spatial resolution of the topography images based on pixel size (0.2 μm × 0.8 μm) was better than the resolution of the mass spectral images (2.5 μm × 2.0 μm), which were limited by current mass spectral data acquisition rate and system detection levels.

DOI: 10.1021/ac4026576
PubMed: 24377265

Links to Exploration step

pubmed:24377265

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Atomic force microscope controlled topographical imaging and proximal probe thermal desorption/ionization mass spectrometry imaging.</title>
<author>
<name sortKey="Ovchinnikova, Olga S" sort="Ovchinnikova, Olga S" uniqKey="Ovchinnikova O" first="Olga S" last="Ovchinnikova">Olga S. Ovchinnikova</name>
<affiliation>
<nlm:affiliation>Organic and Biological Mass Spectrometry Group, Chemical Sciences Division, Oak Ridge National Laboratory , Oak Ridge, Tennessee 37831-6131.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Kjoller, Kevin" sort="Kjoller, Kevin" uniqKey="Kjoller K" first="Kevin" last="Kjoller">Kevin Kjoller</name>
</author>
<author>
<name sortKey="Hurst, Gregory B" sort="Hurst, Gregory B" uniqKey="Hurst G" first="Gregory B" last="Hurst">Gregory B. Hurst</name>
</author>
<author>
<name sortKey="Pelletier, Dale A" sort="Pelletier, Dale A" uniqKey="Pelletier D" first="Dale A" last="Pelletier">Dale A. Pelletier</name>
</author>
<author>
<name sortKey="Van Berkel, Gary J" sort="Van Berkel, Gary J" uniqKey="Van Berkel G" first="Gary J" last="Van Berkel">Gary J. Van Berkel</name>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2014">2014</date>
<idno type="RBID">pubmed:24377265</idno>
<idno type="pmid">24377265</idno>
<idno type="doi">10.1021/ac4026576</idno>
<idno type="wicri:Area/Main/Corpus">002354</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">002354</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Atomic force microscope controlled topographical imaging and proximal probe thermal desorption/ionization mass spectrometry imaging.</title>
<author>
<name sortKey="Ovchinnikova, Olga S" sort="Ovchinnikova, Olga S" uniqKey="Ovchinnikova O" first="Olga S" last="Ovchinnikova">Olga S. Ovchinnikova</name>
<affiliation>
<nlm:affiliation>Organic and Biological Mass Spectrometry Group, Chemical Sciences Division, Oak Ridge National Laboratory , Oak Ridge, Tennessee 37831-6131.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Kjoller, Kevin" sort="Kjoller, Kevin" uniqKey="Kjoller K" first="Kevin" last="Kjoller">Kevin Kjoller</name>
</author>
<author>
<name sortKey="Hurst, Gregory B" sort="Hurst, Gregory B" uniqKey="Hurst G" first="Gregory B" last="Hurst">Gregory B. Hurst</name>
</author>
<author>
<name sortKey="Pelletier, Dale A" sort="Pelletier, Dale A" uniqKey="Pelletier D" first="Dale A" last="Pelletier">Dale A. Pelletier</name>
</author>
<author>
<name sortKey="Van Berkel, Gary J" sort="Van Berkel, Gary J" uniqKey="Van Berkel G" first="Gary J" last="Van Berkel">Gary J. Van Berkel</name>
</author>
</analytic>
<series>
<title level="j">Analytical chemistry</title>
<idno type="eISSN">1520-6882</idno>
<imprint>
<date when="2014" type="published">2014</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Agar (MeSH)</term>
<term>Atmospheric Pressure (MeSH)</term>
<term>Hot Temperature (MeSH)</term>
<term>Image Processing, Computer-Assisted (MeSH)</term>
<term>Ink (MeSH)</term>
<term>Microscopy, Atomic Force (instrumentation)</term>
<term>Microscopy, Atomic Force (methods)</term>
<term>Phenazines (analysis)</term>
<term>Plant Roots (microbiology)</term>
<term>Populus (microbiology)</term>
<term>Printing (MeSH)</term>
<term>Pseudomonas (chemistry)</term>
<term>Pseudomonas (metabolism)</term>
<term>Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization (instrumentation)</term>
<term>Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization (methods)</term>
<term>Surface Properties (MeSH)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="analysis" xml:lang="en">
<term>Phenazines</term>
</keywords>
<keywords scheme="MESH" type="chemical" xml:lang="en">
<term>Agar</term>
</keywords>
<keywords scheme="MESH" qualifier="chemistry" xml:lang="en">
<term>Pseudomonas</term>
</keywords>
<keywords scheme="MESH" qualifier="instrumentation" xml:lang="en">
<term>Microscopy, Atomic Force</term>
<term>Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization</term>
</keywords>
<keywords scheme="MESH" qualifier="metabolism" xml:lang="en">
<term>Pseudomonas</term>
</keywords>
<keywords scheme="MESH" qualifier="methods" xml:lang="en">
<term>Microscopy, Atomic Force</term>
<term>Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization</term>
</keywords>
<keywords scheme="MESH" qualifier="microbiology" xml:lang="en">
<term>Plant Roots</term>
<term>Populus</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Atmospheric Pressure</term>
<term>Hot Temperature</term>
<term>Image Processing, Computer-Assisted</term>
<term>Ink</term>
<term>Printing</term>
<term>Surface Properties</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">This paper reports on the development of a hybrid atmospheric pressure atomic force microscopy/mass spectrometry imaging system utilizing nanothermal analysis probes for thermal desorption surface sampling with subsequent atmospheric pressure chemical ionization and mass analysis. The basic instrumental setup and the general operation of the system were discussed, and optimized performance metrics were presented. The ability to correlate topographic images of a surface with atomic force microscopy and a mass spectral chemical image of the same surface, utilizing the same probe without moving the sample from the system, was demonstrated. Co-registered mass spectral chemical images and atomic force microscopy topographical images were obtained from inked patterns on paper as well as from a living bacterial colony on an agar gel. Spatial resolution of the topography images based on pixel size (0.2 μm × 0.8 μm) was better than the resolution of the mass spectral images (2.5 μm × 2.0 μm), which were limited by current mass spectral data acquisition rate and system detection levels. </div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">24377265</PMID>
<DateCompleted>
<Year>2014</Year>
<Month>07</Month>
<Day>17</Day>
</DateCompleted>
<DateRevised>
<Year>2014</Year>
<Month>01</Month>
<Day>22</Day>
</DateRevised>
<Article PubModel="Print-Electronic">
<Journal>
<ISSN IssnType="Electronic">1520-6882</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>86</Volume>
<Issue>2</Issue>
<PubDate>
<Year>2014</Year>
<Month>Jan</Month>
<Day>21</Day>
</PubDate>
</JournalIssue>
<Title>Analytical chemistry</Title>
<ISOAbbreviation>Anal Chem</ISOAbbreviation>
</Journal>
<ArticleTitle>Atomic force microscope controlled topographical imaging and proximal probe thermal desorption/ionization mass spectrometry imaging.</ArticleTitle>
<Pagination>
<MedlinePgn>1083-90</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1021/ac4026576</ELocationID>
<Abstract>
<AbstractText>This paper reports on the development of a hybrid atmospheric pressure atomic force microscopy/mass spectrometry imaging system utilizing nanothermal analysis probes for thermal desorption surface sampling with subsequent atmospheric pressure chemical ionization and mass analysis. The basic instrumental setup and the general operation of the system were discussed, and optimized performance metrics were presented. The ability to correlate topographic images of a surface with atomic force microscopy and a mass spectral chemical image of the same surface, utilizing the same probe without moving the sample from the system, was demonstrated. Co-registered mass spectral chemical images and atomic force microscopy topographical images were obtained from inked patterns on paper as well as from a living bacterial colony on an agar gel. Spatial resolution of the topography images based on pixel size (0.2 μm × 0.8 μm) was better than the resolution of the mass spectral images (2.5 μm × 2.0 μm), which were limited by current mass spectral data acquisition rate and system detection levels. </AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Ovchinnikova</LastName>
<ForeName>Olga S</ForeName>
<Initials>OS</Initials>
<AffiliationInfo>
<Affiliation>Organic and Biological Mass Spectrometry Group, Chemical Sciences Division, Oak Ridge National Laboratory , Oak Ridge, Tennessee 37831-6131.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Kjoller</LastName>
<ForeName>Kevin</ForeName>
<Initials>K</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Hurst</LastName>
<ForeName>Gregory B</ForeName>
<Initials>GB</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Pelletier</LastName>
<ForeName>Dale A</ForeName>
<Initials>DA</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Van Berkel</LastName>
<ForeName>Gary J</ForeName>
<Initials>GJ</Initials>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D013486">Research Support, U.S. Gov't, Non-P.H.S.</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2013</Year>
<Month>12</Month>
<Day>30</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>United States</Country>
<MedlineTA>Anal Chem</MedlineTA>
<NlmUniqueID>0370536</NlmUniqueID>
<ISSNLinking>0003-2700</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D010619">Phenazines</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="C420923">phenazine-1-carboxamide</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>9002-18-0</RegistryNumber>
<NameOfSubstance UI="D000362">Agar</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D000362" MajorTopicYN="N">Agar</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D001274" MajorTopicYN="N">Atmospheric Pressure</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D006358" MajorTopicYN="N">Hot Temperature</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D007091" MajorTopicYN="N">Image Processing, Computer-Assisted</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D007281" MajorTopicYN="N">Ink</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D018625" MajorTopicYN="N">Microscopy, Atomic Force</DescriptorName>
<QualifierName UI="Q000295" MajorTopicYN="N">instrumentation</QualifierName>
<QualifierName UI="Q000379" MajorTopicYN="Y">methods</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D010619" MajorTopicYN="N">Phenazines</DescriptorName>
<QualifierName UI="Q000032" MajorTopicYN="N">analysis</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D018517" MajorTopicYN="N">Plant Roots</DescriptorName>
<QualifierName UI="Q000382" MajorTopicYN="N">microbiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D032107" MajorTopicYN="N">Populus</DescriptorName>
<QualifierName UI="Q000382" MajorTopicYN="N">microbiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D011327" MajorTopicYN="N">Printing</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D011549" MajorTopicYN="N">Pseudomonas</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="N">chemistry</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D019032" MajorTopicYN="N">Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization</DescriptorName>
<QualifierName UI="Q000295" MajorTopicYN="N">instrumentation</QualifierName>
<QualifierName UI="Q000379" MajorTopicYN="Y">methods</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D013499" MajorTopicYN="N">Surface Properties</DescriptorName>
</MeshHeading>
</MeshHeadingList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="entrez">
<Year>2014</Year>
<Month>1</Month>
<Day>1</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2014</Year>
<Month>1</Month>
<Day>1</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2014</Year>
<Month>7</Month>
<Day>18</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">24377265</ArticleId>
<ArticleId IdType="doi">10.1021/ac4026576</ArticleId>
</ArticleIdList>
</PubmedData>
</pubmed>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/PoplarV1/Data/Main/Corpus
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 002354 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Corpus/biblio.hfd -nk 002354 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    PoplarV1
   |flux=    Main
   |étape=   Corpus
   |type=    RBID
   |clé=     pubmed:24377265
   |texte=   Atomic force microscope controlled topographical imaging and proximal probe thermal desorption/ionization mass spectrometry imaging.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Corpus/RBID.i   -Sk "pubmed:24377265" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Corpus/biblio.hfd   \
       | NlmPubMed2Wicri -a PoplarV1 

Wicri

This area was generated with Dilib version V0.6.37.
Data generation: Wed Nov 18 12:07:19 2020. Site generation: Wed Nov 18 12:16:31 2020