Serveur d'exploration sur le peuplier

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Epigenetic regulation of bud dormancy events in perennial plants.

Identifieur interne : 002139 ( Main/Corpus ); précédent : 002138; suivant : 002140

Epigenetic regulation of bud dormancy events in perennial plants.

Auteurs : Gabino Ríos ; Carmen Leida ; Ana Conejero ; María Luisa Badenes

Source :

RBID : pubmed:24917873

Abstract

Release of bud dormancy in perennial plants resembles vernalization in Arabidopsis thaliana and cereals. In both cases, a certain period of chilling is required for accomplishing the reproductive phase, and several transcription factors with the MADS-box domain perform a central regulatory role in these processes. The expression of DORMANCY-ASSOCIATED MADS-box (DAM)-related genes has been found to be up-regulated in dormant buds of numerous plant species, such as poplar, raspberry, leafy spurge, blackcurrant, Japanese apricot, and peach. Moreover, functional evidence suggests the involvement of DAM genes in the regulation of seasonal dormancy in peach. Recent findings highlight the presence of genome-wide epigenetic modifications related to dormancy events, and more specifically the epigenetic regulation of DAM-related genes in a similar way to FLOWERING LOCUS C, a key integrator of vernalization effectors on flowering initiation in Arabidopsis. We revise the most relevant molecular and genomic contributions in the field of bud dormancy, and discuss the increasing evidence for chromatin modification involvement in the epigenetic regulation of seasonal dormancy cycles in perennial plants.

DOI: 10.3389/fpls.2014.00247
PubMed: 24917873
PubMed Central: PMC4042555

Links to Exploration step

pubmed:24917873

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Epigenetic regulation of bud dormancy events in perennial plants.</title>
<author>
<name sortKey="Rios, Gabino" sort="Rios, Gabino" uniqKey="Rios G" first="Gabino" last="Ríos">Gabino Ríos</name>
<affiliation>
<nlm:affiliation>Instituto Valenciano de Investigaciones Agrarias Moncada, Valencia, Spain.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Leida, Carmen" sort="Leida, Carmen" uniqKey="Leida C" first="Carmen" last="Leida">Carmen Leida</name>
<affiliation>
<nlm:affiliation>Research and Innovation Center, Fondazione Edmund Mach, San Michele all'Adige Italy.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Conejero, Ana" sort="Conejero, Ana" uniqKey="Conejero A" first="Ana" last="Conejero">Ana Conejero</name>
<affiliation>
<nlm:affiliation>Instituto Valenciano de Investigaciones Agrarias Moncada, Valencia, Spain.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Badenes, Maria Luisa" sort="Badenes, Maria Luisa" uniqKey="Badenes M" first="María Luisa" last="Badenes">María Luisa Badenes</name>
<affiliation>
<nlm:affiliation>Instituto Valenciano de Investigaciones Agrarias Moncada, Valencia, Spain.</nlm:affiliation>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2014">2014</date>
<idno type="RBID">pubmed:24917873</idno>
<idno type="pmid">24917873</idno>
<idno type="doi">10.3389/fpls.2014.00247</idno>
<idno type="pmc">PMC4042555</idno>
<idno type="wicri:Area/Main/Corpus">002139</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">002139</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Epigenetic regulation of bud dormancy events in perennial plants.</title>
<author>
<name sortKey="Rios, Gabino" sort="Rios, Gabino" uniqKey="Rios G" first="Gabino" last="Ríos">Gabino Ríos</name>
<affiliation>
<nlm:affiliation>Instituto Valenciano de Investigaciones Agrarias Moncada, Valencia, Spain.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Leida, Carmen" sort="Leida, Carmen" uniqKey="Leida C" first="Carmen" last="Leida">Carmen Leida</name>
<affiliation>
<nlm:affiliation>Research and Innovation Center, Fondazione Edmund Mach, San Michele all'Adige Italy.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Conejero, Ana" sort="Conejero, Ana" uniqKey="Conejero A" first="Ana" last="Conejero">Ana Conejero</name>
<affiliation>
<nlm:affiliation>Instituto Valenciano de Investigaciones Agrarias Moncada, Valencia, Spain.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Badenes, Maria Luisa" sort="Badenes, Maria Luisa" uniqKey="Badenes M" first="María Luisa" last="Badenes">María Luisa Badenes</name>
<affiliation>
<nlm:affiliation>Instituto Valenciano de Investigaciones Agrarias Moncada, Valencia, Spain.</nlm:affiliation>
</affiliation>
</author>
</analytic>
<series>
<title level="j">Frontiers in plant science</title>
<idno type="ISSN">1664-462X</idno>
<imprint>
<date when="2014" type="published">2014</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass></textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Release of bud dormancy in perennial plants resembles vernalization in Arabidopsis thaliana and cereals. In both cases, a certain period of chilling is required for accomplishing the reproductive phase, and several transcription factors with the MADS-box domain perform a central regulatory role in these processes. The expression of DORMANCY-ASSOCIATED MADS-box (DAM)-related genes has been found to be up-regulated in dormant buds of numerous plant species, such as poplar, raspberry, leafy spurge, blackcurrant, Japanese apricot, and peach. Moreover, functional evidence suggests the involvement of DAM genes in the regulation of seasonal dormancy in peach. Recent findings highlight the presence of genome-wide epigenetic modifications related to dormancy events, and more specifically the epigenetic regulation of DAM-related genes in a similar way to FLOWERING LOCUS C, a key integrator of vernalization effectors on flowering initiation in Arabidopsis. We revise the most relevant molecular and genomic contributions in the field of bud dormancy, and discuss the increasing evidence for chromatin modification involvement in the epigenetic regulation of seasonal dormancy cycles in perennial plants. </div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="PubMed-not-MEDLINE" Owner="NLM">
<PMID Version="1">24917873</PMID>
<DateCompleted>
<Year>2014</Year>
<Month>06</Month>
<Day>24</Day>
</DateCompleted>
<DateRevised>
<Year>2020</Year>
<Month>09</Month>
<Day>30</Day>
</DateRevised>
<Article PubModel="Electronic-eCollection">
<Journal>
<ISSN IssnType="Print">1664-462X</ISSN>
<JournalIssue CitedMedium="Print">
<Volume>5</Volume>
<PubDate>
<Year>2014</Year>
</PubDate>
</JournalIssue>
<Title>Frontiers in plant science</Title>
<ISOAbbreviation>Front Plant Sci</ISOAbbreviation>
</Journal>
<ArticleTitle>Epigenetic regulation of bud dormancy events in perennial plants.</ArticleTitle>
<Pagination>
<MedlinePgn>247</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.3389/fpls.2014.00247</ELocationID>
<Abstract>
<AbstractText>Release of bud dormancy in perennial plants resembles vernalization in Arabidopsis thaliana and cereals. In both cases, a certain period of chilling is required for accomplishing the reproductive phase, and several transcription factors with the MADS-box domain perform a central regulatory role in these processes. The expression of DORMANCY-ASSOCIATED MADS-box (DAM)-related genes has been found to be up-regulated in dormant buds of numerous plant species, such as poplar, raspberry, leafy spurge, blackcurrant, Japanese apricot, and peach. Moreover, functional evidence suggests the involvement of DAM genes in the regulation of seasonal dormancy in peach. Recent findings highlight the presence of genome-wide epigenetic modifications related to dormancy events, and more specifically the epigenetic regulation of DAM-related genes in a similar way to FLOWERING LOCUS C, a key integrator of vernalization effectors on flowering initiation in Arabidopsis. We revise the most relevant molecular and genomic contributions in the field of bud dormancy, and discuss the increasing evidence for chromatin modification involvement in the epigenetic regulation of seasonal dormancy cycles in perennial plants. </AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Ríos</LastName>
<ForeName>Gabino</ForeName>
<Initials>G</Initials>
<AffiliationInfo>
<Affiliation>Instituto Valenciano de Investigaciones Agrarias Moncada, Valencia, Spain.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Leida</LastName>
<ForeName>Carmen</ForeName>
<Initials>C</Initials>
<AffiliationInfo>
<Affiliation>Research and Innovation Center, Fondazione Edmund Mach, San Michele all'Adige Italy.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Conejero</LastName>
<ForeName>Ana</ForeName>
<Initials>A</Initials>
<AffiliationInfo>
<Affiliation>Instituto Valenciano de Investigaciones Agrarias Moncada, Valencia, Spain.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Badenes</LastName>
<ForeName>María Luisa</ForeName>
<Initials>ML</Initials>
<AffiliationInfo>
<Affiliation>Instituto Valenciano de Investigaciones Agrarias Moncada, Valencia, Spain.</Affiliation>
</AffiliationInfo>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D016454">Review</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2014</Year>
<Month>06</Month>
<Day>03</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>Switzerland</Country>
<MedlineTA>Front Plant Sci</MedlineTA>
<NlmUniqueID>101568200</NlmUniqueID>
<ISSNLinking>1664-462X</ISSNLinking>
</MedlineJournalInfo>
<KeywordList Owner="NOTNLM">
<Keyword MajorTopicYN="N">DAM gene</Keyword>
<Keyword MajorTopicYN="N">bud dormancy</Keyword>
<Keyword MajorTopicYN="N">chilling</Keyword>
<Keyword MajorTopicYN="N">chromatin</Keyword>
<Keyword MajorTopicYN="N">histone modifications</Keyword>
</KeywordList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2014</Year>
<Month>03</Month>
<Day>20</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2014</Year>
<Month>05</Month>
<Day>14</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2014</Year>
<Month>6</Month>
<Day>12</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2014</Year>
<Month>6</Month>
<Day>12</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2014</Year>
<Month>6</Month>
<Day>12</Day>
<Hour>6</Hour>
<Minute>1</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>epublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">24917873</ArticleId>
<ArticleId IdType="doi">10.3389/fpls.2014.00247</ArticleId>
<ArticleId IdType="pmc">PMC4042555</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>J Exp Bot. 2011 Jun;62(10):3481-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21378115</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>BMC Plant Biol. 2010 Sep 14;10:202</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20840772</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Mol Biol. 2010 May;73(1-2):157-67</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20143130</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2001 Nov 20;98(24):14156-61</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11698668</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2006 May 19;312(5776):1040-3</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16675663</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Plant Physiol. 2009 Sep 1;166(13):1360-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19376609</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2010 Dec 21;107(51):22151-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21115833</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Planta. 2008 Apr;227(5):1001-11</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18185941</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2011 Jun 28;108(26):10756-61</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21653885</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2011 Sep;157(1):485-97</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21795580</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Genet. 2008 Dec;40(12):1489-92</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18997783</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 1920 Jul;6(7):434-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16576515</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 1999 Mar;11(3):407-16</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10072400</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2009 May 19;106(20):8386-91</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19416817</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Hered. 2004 Sep-Oct;95(5):436-44</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15388771</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell Environ. 2012 Oct;35(10):1707-28</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22670814</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Mol Biol. 2013 Oct;83(3):247-64</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23756818</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 1999 Nov 23;96(24):13839-44</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10570159</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>BMC Plant Biol. 2012 Oct 05;12:181</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23035802</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Exp Bot. 2009;60(12):3521-30</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19553369</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Tree Physiol. 2013 Jun;33(6):654-67</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23761324</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>BMC Genomics. 2012 Sep 15;13:481</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22978558</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Wiley Interdiscip Rev RNA. 2014 May-Jun;5(3):347-59</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24357620</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2005 Oct;139(2):770-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16183837</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>BMC Genomics. 2012 Dec 12;13:700</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23234335</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Sci. 2011 Mar;180(3):447-53</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21421391</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2007 Feb;19(2):433-44</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17329563</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2011 Jan 7;331(6013):36-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21212342</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS One. 2008;3(10):e3404</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18852898</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2005 Dec;17(12):3301-10</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16258034</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell Physiol. 2013 Jul;54(7):1132-51</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23624675</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>BMC Plant Biol. 2009 Jun 27;9:81</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19558704</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2000 Mar 28;97(7):3753-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10716723</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Mol Biol. 2013 Apr;81(6):577-93</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23436173</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2009 Dec 10;462(7274):799-802</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20010688</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Philos Trans R Soc Lond B Biol Sci. 2010 Oct 12;365(1555):3149-60</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20819809</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2007 Aug;19(8):2370-90</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17693531</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genome. 2009 Oct;52(10):819-28</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19935906</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Sci. 2011 Jan;180(1):132-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21421355</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Trends Plant Sci. 2003 Nov;8(11):534-40</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14607098</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Mol Biol. 2003 Feb;51(3):437-47</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12602873</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>New Phytol. 2012 Jan;193(1):67-80</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21899556</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Trends Plant Sci. 2007 May;12(5):217-23</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17416545</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Cell Sci. 2012 Aug 15;125(Pt 16):3723-31</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22935652</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Trends Plant Sci. 2007 Aug;12(8):352-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17629542</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2009 Dec;151(4):2110-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19837818</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS Genet. 2011 Mar;7(3):e1002014</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21423668</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Exp Bot. 2007;58(5):1035-45</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17244630</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>New Phytol. 2010 Sep;187(4):1154-69</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20561211</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>BMC Plant Biol. 2010 Feb 09;10:25</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20144228</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Exp Bot. 2014 Feb;65(2):365-80</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24474808</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>New Phytol. 2010 Mar;185(4):917-30</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20028471</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Mol Biol. 2010 May;73(1-2):169-79</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20066557</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Exp Bot. 2012 Jan;63(2):797-807</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22071267</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Tree Physiol. 2010 May;30(5):655-66</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20231169</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2012 May;159(1):418-32</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22452853</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS One. 2012;7(7):e40715</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22859952</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Mol Biol. 2010 May;73(1-2):37-47</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20213333</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>BMC Plant Biol. 2014 Feb 22;14:52</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24559033</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Ann Bot. 2011 Sep;108(3):485-98</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21803738</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Trends Plant Sci. 2012 Sep;17(9):556-62</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22658650</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>New Phytol. 2011 Jan;189(1):106-21</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21039557</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2002 Aug;14(8):1885-901</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12172029</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>BMC Genomics. 2008 Nov 12;9:536</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19014493</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS One. 2012;7(5):e35777</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22590512</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Trends Plant Sci. 2011 Aug;16(8):412-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21640632</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2004 Jan 8;427(6970):164-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14712277</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Exp Bot. 2007;58(15-16):4047-60</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18039739</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2011 Jan 7;331(6013):76-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21127216</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Funct Integr Genomics. 2009 Feb;9(1):81-96</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18633655</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Theor Appl Genet. 2004 Aug;109(4):884-97</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15168024</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell Environ. 2011 Mar;34(3):480-500</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21118421</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/PoplarV1/Data/Main/Corpus
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 002139 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Corpus/biblio.hfd -nk 002139 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    PoplarV1
   |flux=    Main
   |étape=   Corpus
   |type=    RBID
   |clé=     pubmed:24917873
   |texte=   Epigenetic regulation of bud dormancy events in perennial plants.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Corpus/RBID.i   -Sk "pubmed:24917873" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Corpus/biblio.hfd   \
       | NlmPubMed2Wicri -a PoplarV1 

Wicri

This area was generated with Dilib version V0.6.37.
Data generation: Wed Nov 18 12:07:19 2020. Site generation: Wed Nov 18 12:16:31 2020