Serveur d'exploration sur le peuplier

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Genome-wide identification of novel long non-coding RNAs in Populus tomentosa tension wood, opposite wood and normal wood xylem by RNA-seq.

Identifieur interne : 001F97 ( Main/Corpus ); précédent : 001F96; suivant : 001F98

Genome-wide identification of novel long non-coding RNAs in Populus tomentosa tension wood, opposite wood and normal wood xylem by RNA-seq.

Auteurs : Jinhui Chen ; Mingyang Quan ; Deqiang Zhang

Source :

RBID : pubmed:25230698

English descriptors

Abstract

Increasing evidence shows that long non-coding RNAs (lncRNAs) function as important regulatory factors during plant development, but few reports have examined lncRNAs in trees. Here, we report our genome-scale identification and characterization of lncRNAs differentially expressed in the xylem of tension wood, opposite wood and normal wood in Populus tomentosa, by high-throughput RNA sequencing. We identified 1,377 putative lncRNAs by computational analysis, and expression and structure analyses showed that the lncRNAs had lower expression levels and shorter lengths than protein-coding transcripts in Populus. Of the 776 differently expressed (log2FC ≥1 or ≤-1, FDR ≤0.01) lncRNAs, 389 could potentially target 1,151 genes via trans-regulatory effects. Functional annotation of these target genes demonstrated that they are involved in fundamental processes, and in specific mechanisms such as response to stimuli. We also identified 16 target genes involved in wood formation, including cellulose and lignin biosynthesis, suggesting a potential role for lncRNAs in wood formation. In addition, three lncRNAs harbor precursors of four miRNAs, and 25 were potentially targeted by 44 miRNAs where a negative expression relationship between them was detected by qRT-PCR. Thus, a network of interactions among the lncRNAs, miRNAs and mRNAs was constructed, indicating widespread regulatory interactions between non-coding RNAs and mRNAs. Lastly, qRT-PCR validation confirmed the differential expression of these lncRNAs, and revealed that they have tissue-specific expression in P. tomentosa. This study presents the first global identification of lncRNAs and their potential functions in wood formation, providing a starting point for detailed dissection of the functions of lncRNAs in Populus.

DOI: 10.1007/s00425-014-2168-1
PubMed: 25230698

Links to Exploration step

pubmed:25230698

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Genome-wide identification of novel long non-coding RNAs in Populus tomentosa tension wood, opposite wood and normal wood xylem by RNA-seq.</title>
<author>
<name sortKey="Chen, Jinhui" sort="Chen, Jinhui" uniqKey="Chen J" first="Jinhui" last="Chen">Jinhui Chen</name>
<affiliation>
<nlm:affiliation>National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Technology, Beijing Forestry University, No. 35, Qinghua East Road, Beijing, 100083, People's Republic of China.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Quan, Mingyang" sort="Quan, Mingyang" uniqKey="Quan M" first="Mingyang" last="Quan">Mingyang Quan</name>
</author>
<author>
<name sortKey="Zhang, Deqiang" sort="Zhang, Deqiang" uniqKey="Zhang D" first="Deqiang" last="Zhang">Deqiang Zhang</name>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2015">2015</date>
<idno type="RBID">pubmed:25230698</idno>
<idno type="pmid">25230698</idno>
<idno type="doi">10.1007/s00425-014-2168-1</idno>
<idno type="wicri:Area/Main/Corpus">001F97</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">001F97</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Genome-wide identification of novel long non-coding RNAs in Populus tomentosa tension wood, opposite wood and normal wood xylem by RNA-seq.</title>
<author>
<name sortKey="Chen, Jinhui" sort="Chen, Jinhui" uniqKey="Chen J" first="Jinhui" last="Chen">Jinhui Chen</name>
<affiliation>
<nlm:affiliation>National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Technology, Beijing Forestry University, No. 35, Qinghua East Road, Beijing, 100083, People's Republic of China.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Quan, Mingyang" sort="Quan, Mingyang" uniqKey="Quan M" first="Mingyang" last="Quan">Mingyang Quan</name>
</author>
<author>
<name sortKey="Zhang, Deqiang" sort="Zhang, Deqiang" uniqKey="Zhang D" first="Deqiang" last="Zhang">Deqiang Zhang</name>
</author>
</analytic>
<series>
<title level="j">Planta</title>
<idno type="eISSN">1432-2048</idno>
<imprint>
<date when="2015" type="published">2015</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Base Sequence (MeSH)</term>
<term>Gene Expression Profiling (MeSH)</term>
<term>Gene Expression Regulation, Plant (MeSH)</term>
<term>Gene Ontology (MeSH)</term>
<term>Gene Regulatory Networks (MeSH)</term>
<term>Genome, Plant (MeSH)</term>
<term>High-Throughput Nucleotide Sequencing (methods)</term>
<term>Molecular Sequence Data (MeSH)</term>
<term>Nucleic Acid Conformation (MeSH)</term>
<term>Populus (genetics)</term>
<term>RNA, Long Noncoding (chemistry)</term>
<term>RNA, Long Noncoding (genetics)</term>
<term>Reverse Transcriptase Polymerase Chain Reaction (MeSH)</term>
<term>Sequence Homology, Nucleic Acid (MeSH)</term>
<term>Wood (genetics)</term>
<term>Xylem (genetics)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="chemistry" xml:lang="en">
<term>RNA, Long Noncoding</term>
</keywords>
<keywords scheme="MESH" qualifier="genetics" xml:lang="en">
<term>Populus</term>
<term>RNA, Long Noncoding</term>
<term>Wood</term>
<term>Xylem</term>
</keywords>
<keywords scheme="MESH" qualifier="methods" xml:lang="en">
<term>High-Throughput Nucleotide Sequencing</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Base Sequence</term>
<term>Gene Expression Profiling</term>
<term>Gene Expression Regulation, Plant</term>
<term>Gene Ontology</term>
<term>Gene Regulatory Networks</term>
<term>Genome, Plant</term>
<term>Molecular Sequence Data</term>
<term>Nucleic Acid Conformation</term>
<term>Reverse Transcriptase Polymerase Chain Reaction</term>
<term>Sequence Homology, Nucleic Acid</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Increasing evidence shows that long non-coding RNAs (lncRNAs) function as important regulatory factors during plant development, but few reports have examined lncRNAs in trees. Here, we report our genome-scale identification and characterization of lncRNAs differentially expressed in the xylem of tension wood, opposite wood and normal wood in Populus tomentosa, by high-throughput RNA sequencing. We identified 1,377 putative lncRNAs by computational analysis, and expression and structure analyses showed that the lncRNAs had lower expression levels and shorter lengths than protein-coding transcripts in Populus. Of the 776 differently expressed (log2FC ≥1 or ≤-1, FDR ≤0.01) lncRNAs, 389 could potentially target 1,151 genes via trans-regulatory effects. Functional annotation of these target genes demonstrated that they are involved in fundamental processes, and in specific mechanisms such as response to stimuli. We also identified 16 target genes involved in wood formation, including cellulose and lignin biosynthesis, suggesting a potential role for lncRNAs in wood formation. In addition, three lncRNAs harbor precursors of four miRNAs, and 25 were potentially targeted by 44 miRNAs where a negative expression relationship between them was detected by qRT-PCR. Thus, a network of interactions among the lncRNAs, miRNAs and mRNAs was constructed, indicating widespread regulatory interactions between non-coding RNAs and mRNAs. Lastly, qRT-PCR validation confirmed the differential expression of these lncRNAs, and revealed that they have tissue-specific expression in P. tomentosa. This study presents the first global identification of lncRNAs and their potential functions in wood formation, providing a starting point for detailed dissection of the functions of lncRNAs in Populus.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">25230698</PMID>
<DateCompleted>
<Year>2016</Year>
<Month>01</Month>
<Day>15</Day>
</DateCompleted>
<DateRevised>
<Year>2018</Year>
<Month>11</Month>
<Day>13</Day>
</DateRevised>
<Article PubModel="Print-Electronic">
<Journal>
<ISSN IssnType="Electronic">1432-2048</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>241</Volume>
<Issue>1</Issue>
<PubDate>
<Year>2015</Year>
<Month>Jan</Month>
</PubDate>
</JournalIssue>
<Title>Planta</Title>
<ISOAbbreviation>Planta</ISOAbbreviation>
</Journal>
<ArticleTitle>Genome-wide identification of novel long non-coding RNAs in Populus tomentosa tension wood, opposite wood and normal wood xylem by RNA-seq.</ArticleTitle>
<Pagination>
<MedlinePgn>125-43</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1007/s00425-014-2168-1</ELocationID>
<Abstract>
<AbstractText>Increasing evidence shows that long non-coding RNAs (lncRNAs) function as important regulatory factors during plant development, but few reports have examined lncRNAs in trees. Here, we report our genome-scale identification and characterization of lncRNAs differentially expressed in the xylem of tension wood, opposite wood and normal wood in Populus tomentosa, by high-throughput RNA sequencing. We identified 1,377 putative lncRNAs by computational analysis, and expression and structure analyses showed that the lncRNAs had lower expression levels and shorter lengths than protein-coding transcripts in Populus. Of the 776 differently expressed (log2FC ≥1 or ≤-1, FDR ≤0.01) lncRNAs, 389 could potentially target 1,151 genes via trans-regulatory effects. Functional annotation of these target genes demonstrated that they are involved in fundamental processes, and in specific mechanisms such as response to stimuli. We also identified 16 target genes involved in wood formation, including cellulose and lignin biosynthesis, suggesting a potential role for lncRNAs in wood formation. In addition, three lncRNAs harbor precursors of four miRNAs, and 25 were potentially targeted by 44 miRNAs where a negative expression relationship between them was detected by qRT-PCR. Thus, a network of interactions among the lncRNAs, miRNAs and mRNAs was constructed, indicating widespread regulatory interactions between non-coding RNAs and mRNAs. Lastly, qRT-PCR validation confirmed the differential expression of these lncRNAs, and revealed that they have tissue-specific expression in P. tomentosa. This study presents the first global identification of lncRNAs and their potential functions in wood formation, providing a starting point for detailed dissection of the functions of lncRNAs in Populus.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Chen</LastName>
<ForeName>Jinhui</ForeName>
<Initials>J</Initials>
<AffiliationInfo>
<Affiliation>National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Technology, Beijing Forestry University, No. 35, Qinghua East Road, Beijing, 100083, People's Republic of China.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Quan</LastName>
<ForeName>Mingyang</ForeName>
<Initials>M</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Zhang</LastName>
<ForeName>Deqiang</ForeName>
<Initials>D</Initials>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D013485">Research Support, Non-U.S. Gov't</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2014</Year>
<Month>09</Month>
<Day>18</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>Germany</Country>
<MedlineTA>Planta</MedlineTA>
<NlmUniqueID>1250576</NlmUniqueID>
<ISSNLinking>0032-0935</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D062085">RNA, Long Noncoding</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D001483" MajorTopicYN="N">Base Sequence</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D020869" MajorTopicYN="N">Gene Expression Profiling</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D018506" MajorTopicYN="N">Gene Expression Regulation, Plant</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D063990" MajorTopicYN="N">Gene Ontology</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D053263" MajorTopicYN="N">Gene Regulatory Networks</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D018745" MajorTopicYN="Y">Genome, Plant</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D059014" MajorTopicYN="N">High-Throughput Nucleotide Sequencing</DescriptorName>
<QualifierName UI="Q000379" MajorTopicYN="Y">methods</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D008969" MajorTopicYN="N">Molecular Sequence Data</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D009690" MajorTopicYN="N">Nucleic Acid Conformation</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D032107" MajorTopicYN="N">Populus</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="Y">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D062085" MajorTopicYN="N">RNA, Long Noncoding</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="N">chemistry</QualifierName>
<QualifierName UI="Q000235" MajorTopicYN="Y">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D020133" MajorTopicYN="N">Reverse Transcriptase Polymerase Chain Reaction</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D012689" MajorTopicYN="N">Sequence Homology, Nucleic Acid</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D014934" MajorTopicYN="N">Wood</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="Y">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D052584" MajorTopicYN="N">Xylem</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="Y">genetics</QualifierName>
</MeshHeading>
</MeshHeadingList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2014</Year>
<Month>08</Month>
<Day>04</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2014</Year>
<Month>09</Month>
<Day>07</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2014</Year>
<Month>9</Month>
<Day>19</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2014</Year>
<Month>9</Month>
<Day>19</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2016</Year>
<Month>1</Month>
<Day>16</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">25230698</ArticleId>
<ArticleId IdType="doi">10.1007/s00425-014-2168-1</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>J Pathol. 2010 Jan;220(2):126-39</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19882673</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Rev Mol Cell Biol. 2006 Aug;7(8):612-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16723972</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 2010 Jul;38(Web Server issue):W64-70</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20435677</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Methods. 2012 Nov;9(11):1069-76</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23132118</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Int J Oncol. 2012 Jun;40(6):2004-12</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22446686</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Neurochem Res. 1992 Jun;17(6):591-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">1603265</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant J. 2006 Jan;45(2):144-65</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16367961</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>BMC Bioinformatics. 2012 Dec 13;13:331</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23237380</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>BMC Genomics. 2012 Dec 22;13:721</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23259405</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2012 Jan;24(1):66-79</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22253226</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant J. 2008 Jul;55(1):131-51</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18363789</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Bioinformatics. 2008 Nov 15;24(22):2657-63</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18434344</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Genet Genomics. 2010 Aug;284(2):105-19</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20577761</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2013 Jun 25;110(26):10848-53</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23754401</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Cancer. 2011 Apr 13;10:38</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21489289</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Opin Plant Biol. 2008 Jun;11(3):293-300</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18434240</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Biotechnol. 2010 May;28(5):511-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20436464</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2012 Feb 14;109(7):2654-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22308482</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant J. 2005 Nov;44(3):494-504</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16236158</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 2014 Jan;42(Database issue):D1182-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24174544</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Mol Biol. 2013 Oct 9;425(19):3723-30</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23178169</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 2011 Jul;39(Web Server issue):W155-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21622958</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2009 Jan;149(1):370-83</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18971431</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Exp Bot. 2011 Oct;62(14):5161-77</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21765162</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2000 Oct;124(2):563-78</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11027707</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 1999 Sep;121(1):215-24</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10482677</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS One. 2013;8(2):e53823</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23405074</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Methods. 2008 Jan;44(1):31-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18158130</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2006 Sep 15;313(5793):1596-604</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16973872</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Planta. 2004 Jun;219(2):338-45</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15067547</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS One. 2012;7(8):e43047</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22916204</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biol Direct. 2012 Aug 07;7:25</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22871084</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2007 Jun 8;316(5830):1484-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17510325</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genome Res. 2012 Mar;22(3):577-91</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22110045</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2005 Aug;17(8):2186-203</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15994906</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Protoc. 2012 Mar 01;7(3):562-78</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22383036</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Bioinformatics. 2011 Sep 1;27(17):2325-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21697122</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2001 Jan;13(1):73-88</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11158530</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2008 Dec;20(12):3186-90</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19074682</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2008 Nov;148(3):1238-53</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18768911</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS One. 2012;7(3):e33034</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22442676</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell Death Differ. 2013 Nov;20(11):1558-68</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23933812</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Ann Bot. 2012 Sep;110(4):887-95</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22843341</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell. 2009 Feb 20;136(4):629-41</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19239885</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>RNA. 2007 Mar;13(3):313-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17237358</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Neurosci. 2009 Aug;12(8):1020-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19620975</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cold Spring Harb Perspect Biol. 2011 Jan 01;3(1):a003756</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20573714</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>New Phytol. 2009 Jun;182(4):1013-25</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19383103</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Rev Genet. 2009 Mar;10(3):155-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19188922</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2010 Sep;22(9):3093-104</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20841425</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2013 Feb 19;110(8):2876-81</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23382218</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/PoplarV1/Data/Main/Corpus
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 001F97 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Corpus/biblio.hfd -nk 001F97 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    PoplarV1
   |flux=    Main
   |étape=   Corpus
   |type=    RBID
   |clé=     pubmed:25230698
   |texte=   Genome-wide identification of novel long non-coding RNAs in Populus tomentosa tension wood, opposite wood and normal wood xylem by RNA-seq.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Corpus/RBID.i   -Sk "pubmed:25230698" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Corpus/biblio.hfd   \
       | NlmPubMed2Wicri -a PoplarV1 

Wicri

This area was generated with Dilib version V0.6.37.
Data generation: Wed Nov 18 12:07:19 2020. Site generation: Wed Nov 18 12:16:31 2020