Serveur d'exploration sur le peuplier

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Major Chromosomal Rearrangements Distinguish Willow and Poplar After the Ancestral "Salicoid" Genome Duplication.

Identifieur interne : 001733 ( Main/Corpus ); précédent : 001732; suivant : 001734

Major Chromosomal Rearrangements Distinguish Willow and Poplar After the Ancestral "Salicoid" Genome Duplication.

Auteurs : Jing Hou ; Ning Ye ; Zhongyuan Dong ; Mengzhu Lu ; Laigeng Li ; Tongming Yin

Source :

RBID : pubmed:27352946

English descriptors

Abstract

Populus (poplar) and Salix (willow) are sister genera in the Salicaceae family. In both lineages extant species are predominantly diploid. Genome analysis previously revealed that the two lineages originated from a common tetraploid ancestor. In this study, we conducted a syntenic comparison of the corresponding 19 chromosome members of the poplar and willow genomes. Our observations revealed that almost every chromosomal segment had a parallel paralogous segment elsewhere in the genomes, and the two lineages shared a similar syntenic pinwheel pattern for most of the chromosomes, which indicated that the two lineages diverged after the genome reorganization in the common progenitor. The pinwheel patterns showed distinct differences for two chromosome pairs in each lineage. Further analysis detected two major interchromosomal rearrangements that distinguished the karyotypes of willow and poplar. Chromosome I of willow was a conjunction of poplar chromosome XVI and the lower portion of poplar chromosome I, whereas willow chromosome XVI corresponded to the upper portion of poplar chromosome I. Scientists have suggested that Populus is evolutionarily more primitive than Salix. Therefore, we propose that, after the "salicoid" duplication event, fission and fusion of the ancestral chromosomes first give rise to the diploid progenitor of extant Populus species. During the evolutionary process, fission and fusion of poplar chromosomes I and XVI subsequently give rise to the progenitor of extant Salix species. This study contributes to an improved understanding of genome divergence after ancient genome duplication in closely related lineages of higher plants.

DOI: 10.1093/gbe/evw127
PubMed: 27352946
PubMed Central: PMC4943198

Links to Exploration step

pubmed:27352946

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Major Chromosomal Rearrangements Distinguish Willow and Poplar After the Ancestral "Salicoid" Genome Duplication.</title>
<author>
<name sortKey="Hou, Jing" sort="Hou, Jing" uniqKey="Hou J" first="Jing" last="Hou">Jing Hou</name>
<affiliation>
<nlm:affiliation>Co-Innovation Center for Sustainable Forestry in Southern China, College of Forestry, Nanjing Forestry University, Nanjing, China.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Ye, Ning" sort="Ye, Ning" uniqKey="Ye N" first="Ning" last="Ye">Ning Ye</name>
<affiliation>
<nlm:affiliation>Co-Innovation Center for Sustainable Forestry in Southern China, College of Forestry, Nanjing Forestry University, Nanjing, China.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Dong, Zhongyuan" sort="Dong, Zhongyuan" uniqKey="Dong Z" first="Zhongyuan" last="Dong">Zhongyuan Dong</name>
<affiliation>
<nlm:affiliation>Co-Innovation Center for Sustainable Forestry in Southern China, College of Forestry, Nanjing Forestry University, Nanjing, China.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Lu, Mengzhu" sort="Lu, Mengzhu" uniqKey="Lu M" first="Mengzhu" last="Lu">Mengzhu Lu</name>
<affiliation>
<nlm:affiliation>State Key Laboratory of Tree Genetics and Breeding, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, China.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Li, Laigeng" sort="Li, Laigeng" uniqKey="Li L" first="Laigeng" last="Li">Laigeng Li</name>
<affiliation>
<nlm:affiliation>National Key Laboratory of Plant Molecular Genetics, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Yin, Tongming" sort="Yin, Tongming" uniqKey="Yin T" first="Tongming" last="Yin">Tongming Yin</name>
<affiliation>
<nlm:affiliation>Co-Innovation Center for Sustainable Forestry in Southern China, College of Forestry, Nanjing Forestry University, Nanjing, China tmyin@njfu.com.cn.</nlm:affiliation>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2016">2016</date>
<idno type="RBID">pubmed:27352946</idno>
<idno type="pmid">27352946</idno>
<idno type="doi">10.1093/gbe/evw127</idno>
<idno type="pmc">PMC4943198</idno>
<idno type="wicri:Area/Main/Corpus">001733</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">001733</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Major Chromosomal Rearrangements Distinguish Willow and Poplar After the Ancestral "Salicoid" Genome Duplication.</title>
<author>
<name sortKey="Hou, Jing" sort="Hou, Jing" uniqKey="Hou J" first="Jing" last="Hou">Jing Hou</name>
<affiliation>
<nlm:affiliation>Co-Innovation Center for Sustainable Forestry in Southern China, College of Forestry, Nanjing Forestry University, Nanjing, China.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Ye, Ning" sort="Ye, Ning" uniqKey="Ye N" first="Ning" last="Ye">Ning Ye</name>
<affiliation>
<nlm:affiliation>Co-Innovation Center for Sustainable Forestry in Southern China, College of Forestry, Nanjing Forestry University, Nanjing, China.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Dong, Zhongyuan" sort="Dong, Zhongyuan" uniqKey="Dong Z" first="Zhongyuan" last="Dong">Zhongyuan Dong</name>
<affiliation>
<nlm:affiliation>Co-Innovation Center for Sustainable Forestry in Southern China, College of Forestry, Nanjing Forestry University, Nanjing, China.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Lu, Mengzhu" sort="Lu, Mengzhu" uniqKey="Lu M" first="Mengzhu" last="Lu">Mengzhu Lu</name>
<affiliation>
<nlm:affiliation>State Key Laboratory of Tree Genetics and Breeding, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, China.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Li, Laigeng" sort="Li, Laigeng" uniqKey="Li L" first="Laigeng" last="Li">Laigeng Li</name>
<affiliation>
<nlm:affiliation>National Key Laboratory of Plant Molecular Genetics, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Yin, Tongming" sort="Yin, Tongming" uniqKey="Yin T" first="Tongming" last="Yin">Tongming Yin</name>
<affiliation>
<nlm:affiliation>Co-Innovation Center for Sustainable Forestry in Southern China, College of Forestry, Nanjing Forestry University, Nanjing, China tmyin@njfu.com.cn.</nlm:affiliation>
</affiliation>
</author>
</analytic>
<series>
<title level="j">Genome biology and evolution</title>
<idno type="eISSN">1759-6653</idno>
<imprint>
<date when="2016" type="published">2016</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Chromosome Aberrations (MeSH)</term>
<term>Chromosomes, Plant (genetics)</term>
<term>Diploidy (MeSH)</term>
<term>Genome, Plant (MeSH)</term>
<term>Polyploidy (MeSH)</term>
<term>Populus (genetics)</term>
<term>Salix (genetics)</term>
</keywords>
<keywords scheme="MESH" qualifier="genetics" xml:lang="en">
<term>Chromosomes, Plant</term>
<term>Populus</term>
<term>Salix</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Chromosome Aberrations</term>
<term>Diploidy</term>
<term>Genome, Plant</term>
<term>Polyploidy</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Populus (poplar) and Salix (willow) are sister genera in the Salicaceae family. In both lineages extant species are predominantly diploid. Genome analysis previously revealed that the two lineages originated from a common tetraploid ancestor. In this study, we conducted a syntenic comparison of the corresponding 19 chromosome members of the poplar and willow genomes. Our observations revealed that almost every chromosomal segment had a parallel paralogous segment elsewhere in the genomes, and the two lineages shared a similar syntenic pinwheel pattern for most of the chromosomes, which indicated that the two lineages diverged after the genome reorganization in the common progenitor. The pinwheel patterns showed distinct differences for two chromosome pairs in each lineage. Further analysis detected two major interchromosomal rearrangements that distinguished the karyotypes of willow and poplar. Chromosome I of willow was a conjunction of poplar chromosome XVI and the lower portion of poplar chromosome I, whereas willow chromosome XVI corresponded to the upper portion of poplar chromosome I. Scientists have suggested that Populus is evolutionarily more primitive than Salix. Therefore, we propose that, after the "salicoid" duplication event, fission and fusion of the ancestral chromosomes first give rise to the diploid progenitor of extant Populus species. During the evolutionary process, fission and fusion of poplar chromosomes I and XVI subsequently give rise to the progenitor of extant Salix species. This study contributes to an improved understanding of genome divergence after ancient genome duplication in closely related lineages of higher plants.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">27352946</PMID>
<DateCompleted>
<Year>2017</Year>
<Month>03</Month>
<Day>06</Day>
</DateCompleted>
<DateRevised>
<Year>2018</Year>
<Month>11</Month>
<Day>13</Day>
</DateRevised>
<Article PubModel="Electronic">
<Journal>
<ISSN IssnType="Electronic">1759-6653</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>8</Volume>
<Issue>6</Issue>
<PubDate>
<Year>2016</Year>
<Month>06</Month>
<Day>27</Day>
</PubDate>
</JournalIssue>
<Title>Genome biology and evolution</Title>
<ISOAbbreviation>Genome Biol Evol</ISOAbbreviation>
</Journal>
<ArticleTitle>Major Chromosomal Rearrangements Distinguish Willow and Poplar After the Ancestral "Salicoid" Genome Duplication.</ArticleTitle>
<Pagination>
<MedlinePgn>1868-75</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1093/gbe/evw127</ELocationID>
<Abstract>
<AbstractText>Populus (poplar) and Salix (willow) are sister genera in the Salicaceae family. In both lineages extant species are predominantly diploid. Genome analysis previously revealed that the two lineages originated from a common tetraploid ancestor. In this study, we conducted a syntenic comparison of the corresponding 19 chromosome members of the poplar and willow genomes. Our observations revealed that almost every chromosomal segment had a parallel paralogous segment elsewhere in the genomes, and the two lineages shared a similar syntenic pinwheel pattern for most of the chromosomes, which indicated that the two lineages diverged after the genome reorganization in the common progenitor. The pinwheel patterns showed distinct differences for two chromosome pairs in each lineage. Further analysis detected two major interchromosomal rearrangements that distinguished the karyotypes of willow and poplar. Chromosome I of willow was a conjunction of poplar chromosome XVI and the lower portion of poplar chromosome I, whereas willow chromosome XVI corresponded to the upper portion of poplar chromosome I. Scientists have suggested that Populus is evolutionarily more primitive than Salix. Therefore, we propose that, after the "salicoid" duplication event, fission and fusion of the ancestral chromosomes first give rise to the diploid progenitor of extant Populus species. During the evolutionary process, fission and fusion of poplar chromosomes I and XVI subsequently give rise to the progenitor of extant Salix species. This study contributes to an improved understanding of genome divergence after ancient genome duplication in closely related lineages of higher plants.</AbstractText>
<CopyrightInformation>© The Author(s) 2016. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution.</CopyrightInformation>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Hou</LastName>
<ForeName>Jing</ForeName>
<Initials>J</Initials>
<AffiliationInfo>
<Affiliation>Co-Innovation Center for Sustainable Forestry in Southern China, College of Forestry, Nanjing Forestry University, Nanjing, China.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Ye</LastName>
<ForeName>Ning</ForeName>
<Initials>N</Initials>
<AffiliationInfo>
<Affiliation>Co-Innovation Center for Sustainable Forestry in Southern China, College of Forestry, Nanjing Forestry University, Nanjing, China.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Dong</LastName>
<ForeName>Zhongyuan</ForeName>
<Initials>Z</Initials>
<AffiliationInfo>
<Affiliation>Co-Innovation Center for Sustainable Forestry in Southern China, College of Forestry, Nanjing Forestry University, Nanjing, China.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Lu</LastName>
<ForeName>Mengzhu</ForeName>
<Initials>M</Initials>
<AffiliationInfo>
<Affiliation>State Key Laboratory of Tree Genetics and Breeding, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, China.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Li</LastName>
<ForeName>Laigeng</ForeName>
<Initials>L</Initials>
<AffiliationInfo>
<Affiliation>National Key Laboratory of Plant Molecular Genetics, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Yin</LastName>
<ForeName>Tongming</ForeName>
<Initials>T</Initials>
<AffiliationInfo>
<Affiliation>Co-Innovation Center for Sustainable Forestry in Southern China, College of Forestry, Nanjing Forestry University, Nanjing, China tmyin@njfu.com.cn.</Affiliation>
</AffiliationInfo>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2016</Year>
<Month>06</Month>
<Day>27</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>England</Country>
<MedlineTA>Genome Biol Evol</MedlineTA>
<NlmUniqueID>101509707</NlmUniqueID>
<ISSNLinking>1759-6653</ISSNLinking>
</MedlineJournalInfo>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D002869" MajorTopicYN="N">Chromosome Aberrations</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D032461" MajorTopicYN="N">Chromosomes, Plant</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="Y">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D004171" MajorTopicYN="N">Diploidy</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D018745" MajorTopicYN="N">Genome, Plant</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D011123" MajorTopicYN="Y">Polyploidy</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D032107" MajorTopicYN="N">Populus</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="Y">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D032108" MajorTopicYN="N">Salix</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="Y">genetics</QualifierName>
</MeshHeading>
</MeshHeadingList>
<KeywordList Owner="NOTNLM">
<Keyword MajorTopicYN="N">Populus</Keyword>
<Keyword MajorTopicYN="N">Salix</Keyword>
<Keyword MajorTopicYN="N">chromosomal rearrangement</Keyword>
<Keyword MajorTopicYN="N">genome divergence</Keyword>
<Keyword MajorTopicYN="N">genome duplication</Keyword>
</KeywordList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="entrez">
<Year>2016</Year>
<Month>6</Month>
<Day>30</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2016</Year>
<Month>6</Month>
<Day>30</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2017</Year>
<Month>3</Month>
<Day>7</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>epublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">27352946</ArticleId>
<ArticleId IdType="pii">evw127</ArticleId>
<ArticleId IdType="doi">10.1093/gbe/evw127</ArticleId>
<ArticleId IdType="pmc">PMC4943198</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>BMC Genomics. 2010 Feb 23;11:129</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20178595</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genomics Proteomics Bioinformatics. 2010 Mar;8(1):77-80</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20451164</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genome Res. 2008 Dec;18(12):1944-54</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18832442</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2002 Oct 15;99(21):13627-32</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12374856</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genome Res. 2006 Jun;16(6):738-49</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16702410</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Biol Evol. 2015 Jan;32(1):193-210</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25349287</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genomics. 1987 Oct;1(2):174-81</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">3692487</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Trends Ecol Evol. 2005 Nov;20(11):591-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16701441</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Ann N Y Acad Sci. 2008;1133:3-25</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18559813</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2006 Mar 28;103(13):5224-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16549785</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genome Res. 2003 Feb;13(2):137-44</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12566392</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Theor Appl Genet. 2007 Aug;115(4):489-99</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17619853</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2006 Oct 3;103(40):14959-64</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17003129</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2013 May;25(5):1541-54</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23653472</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biomed Res Int. 2016;2016:7823429</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27006949</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>New Phytol. 2009 Jan;181(2):498-503</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19121044</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell Res. 2014 Oct;24(10):1274-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24980958</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2009 Sep 15;106(37):15780-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19717446</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2006 Sep 15;313(5793):1596-604</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16973872</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Heredity (Edinb). 2015 Jun;114(6):575-83</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25649501</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Sci Rep. 2015 Mar 13;5:9076</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25766834</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2006 Jun;18(6):1348-59</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16632643</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Genet. 2010 Oct;42(10):833-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20802477</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genome Res. 2008 Mar;18(3):422-30</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18256239</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 2012 Apr;40(7):e49</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22217600</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2007 Sep 27;449(7161):463-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17721507</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Commun. 2014 May 23;5:3930</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24852848</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/PoplarV1/Data/Main/Corpus
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 001733 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Corpus/biblio.hfd -nk 001733 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    PoplarV1
   |flux=    Main
   |étape=   Corpus
   |type=    RBID
   |clé=     pubmed:27352946
   |texte=   Major Chromosomal Rearrangements Distinguish Willow and Poplar After the Ancestral "Salicoid" Genome Duplication.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Corpus/RBID.i   -Sk "pubmed:27352946" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Corpus/biblio.hfd   \
       | NlmPubMed2Wicri -a PoplarV1 

Wicri

This area was generated with Dilib version V0.6.37.
Data generation: Wed Nov 18 12:07:19 2020. Site generation: Wed Nov 18 12:16:31 2020