Serveur d'exploration sur le peuplier

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Plant Community Chemical Composition Influences Trembling Aspen (Populus tremuloides) Intake by Sheep.

Identifieur interne : 001229 ( Main/Corpus ); précédent : 001228; suivant : 001230

Plant Community Chemical Composition Influences Trembling Aspen (Populus tremuloides) Intake by Sheep.

Auteurs : Kristen Y. Heroy ; Samuel B. St Clair ; Elizabeth A. Burritt ; Juan J. Villalba

Source :

RBID : pubmed:28744731

English descriptors

Abstract

Nutrients and plant secondary compounds in aspen (Populus tremuloides) may interact with nutrients in the surrounding vegetation to influence aspen use by herbivores. Thus, this study aimed to determine aspen intake and preference by sheep in response to supplementary nutrients or plant secondary compounds (PSC) present in aspen trees. Thirty-two lambs were randomly assigned to one of four molasses-based supplementary feeds to a basal diet of tall fescue hay (N = 8) during three experiments. The supplements were as follows: (1) high-protein (60% canola meal), (2) a PSC (6% quebracho tannins), (3) 25% aspen bark, and (4) control (100% molasses). Supplements were fed from 0700 to 0900, then lambs were fed fresh aspen leaves collected from stands containing high (Experiment 1, 2) or low (Experiment 3) concentrations of phenolic glycosides (PG). In Experiment 2, lambs were simultaneously offered aspen, a forb (Lathyrus pauciflorus), and a grass (Bromus inermis) collected from the aspen understory. Animals supplemented with high protein or tannins showed greater intake of aspen leaves than animals supplemented with bark or the control diet (P < 0.05), likely because some condensed tannins have a positive effect on protein nutrition and protein aids in PSC detoxification. Overall, animals supplemented with bark showed the lowest aspen intake, suggesting PSC in bark and aspen leaves had additive inhibitory effects on intake. In summary, these results suggest that not only the concentration but also the types and proportions of nutrients and chemical defenses available in the plant community influence aspen use by herbivores.

DOI: 10.1007/s10886-017-0872-6
PubMed: 28744731

Links to Exploration step

pubmed:28744731

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Plant Community Chemical Composition Influences Trembling Aspen (Populus tremuloides) Intake by Sheep.</title>
<author>
<name sortKey="Heroy, Kristen Y" sort="Heroy, Kristen Y" uniqKey="Heroy K" first="Kristen Y" last="Heroy">Kristen Y. Heroy</name>
<affiliation>
<nlm:affiliation>Department of Wildland Resources, Utah State University, Logan, 84322-5230, USA. Kristen.heroy@aggiemail.usu.edu.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="St Clair, Samuel B" sort="St Clair, Samuel B" uniqKey="St Clair S" first="Samuel B" last="St Clair">Samuel B. St Clair</name>
<affiliation>
<nlm:affiliation>Department of Plant & Wildlife Sciences, Brigham Young University, Provo, UT, 84602, USA.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Burritt, Elizabeth A" sort="Burritt, Elizabeth A" uniqKey="Burritt E" first="Elizabeth A" last="Burritt">Elizabeth A. Burritt</name>
<affiliation>
<nlm:affiliation>Department of Wildland Resources, Utah State University, Logan, 84322-5230, USA.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Villalba, Juan J" sort="Villalba, Juan J" uniqKey="Villalba J" first="Juan J" last="Villalba">Juan J. Villalba</name>
<affiliation>
<nlm:affiliation>Department of Wildland Resources, Utah State University, Logan, 84322-5230, USA.</nlm:affiliation>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2017">2017</date>
<idno type="RBID">pubmed:28744731</idno>
<idno type="pmid">28744731</idno>
<idno type="doi">10.1007/s10886-017-0872-6</idno>
<idno type="wicri:Area/Main/Corpus">001229</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">001229</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Plant Community Chemical Composition Influences Trembling Aspen (Populus tremuloides) Intake by Sheep.</title>
<author>
<name sortKey="Heroy, Kristen Y" sort="Heroy, Kristen Y" uniqKey="Heroy K" first="Kristen Y" last="Heroy">Kristen Y. Heroy</name>
<affiliation>
<nlm:affiliation>Department of Wildland Resources, Utah State University, Logan, 84322-5230, USA. Kristen.heroy@aggiemail.usu.edu.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="St Clair, Samuel B" sort="St Clair, Samuel B" uniqKey="St Clair S" first="Samuel B" last="St Clair">Samuel B. St Clair</name>
<affiliation>
<nlm:affiliation>Department of Plant & Wildlife Sciences, Brigham Young University, Provo, UT, 84602, USA.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Burritt, Elizabeth A" sort="Burritt, Elizabeth A" uniqKey="Burritt E" first="Elizabeth A" last="Burritt">Elizabeth A. Burritt</name>
<affiliation>
<nlm:affiliation>Department of Wildland Resources, Utah State University, Logan, 84322-5230, USA.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Villalba, Juan J" sort="Villalba, Juan J" uniqKey="Villalba J" first="Juan J" last="Villalba">Juan J. Villalba</name>
<affiliation>
<nlm:affiliation>Department of Wildland Resources, Utah State University, Logan, 84322-5230, USA.</nlm:affiliation>
</affiliation>
</author>
</analytic>
<series>
<title level="j">Journal of chemical ecology</title>
<idno type="eISSN">1573-1561</idno>
<imprint>
<date when="2017" type="published">2017</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Animals (MeSH)</term>
<term>Chromatography, High Pressure Liquid (MeSH)</term>
<term>Diet (MeSH)</term>
<term>Glycosides (analysis)</term>
<term>Glycosides (pharmacology)</term>
<term>Herbivory (drug effects)</term>
<term>Plant Bark (chemistry)</term>
<term>Plant Bark (metabolism)</term>
<term>Plant Leaves (chemistry)</term>
<term>Plant Leaves (metabolism)</term>
<term>Plant Proteins (pharmacology)</term>
<term>Populus (chemistry)</term>
<term>Populus (metabolism)</term>
<term>Sheep (MeSH)</term>
<term>Spectrophotometry (MeSH)</term>
<term>Tannins (analysis)</term>
<term>Tannins (pharmacology)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="analysis" xml:lang="en">
<term>Glycosides</term>
<term>Tannins</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="pharmacology" xml:lang="en">
<term>Glycosides</term>
<term>Plant Proteins</term>
<term>Tannins</term>
</keywords>
<keywords scheme="MESH" qualifier="chemistry" xml:lang="en">
<term>Plant Bark</term>
<term>Plant Leaves</term>
<term>Populus</term>
</keywords>
<keywords scheme="MESH" qualifier="drug effects" xml:lang="en">
<term>Herbivory</term>
</keywords>
<keywords scheme="MESH" qualifier="metabolism" xml:lang="en">
<term>Plant Bark</term>
<term>Plant Leaves</term>
<term>Populus</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Animals</term>
<term>Chromatography, High Pressure Liquid</term>
<term>Diet</term>
<term>Sheep</term>
<term>Spectrophotometry</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Nutrients and plant secondary compounds in aspen (Populus tremuloides) may interact with nutrients in the surrounding vegetation to influence aspen use by herbivores. Thus, this study aimed to determine aspen intake and preference by sheep in response to supplementary nutrients or plant secondary compounds (PSC) present in aspen trees. Thirty-two lambs were randomly assigned to one of four molasses-based supplementary feeds to a basal diet of tall fescue hay (N = 8) during three experiments. The supplements were as follows: (1) high-protein (60% canola meal), (2) a PSC (6% quebracho tannins), (3) 25% aspen bark, and (4) control (100% molasses). Supplements were fed from 0700 to 0900, then lambs were fed fresh aspen leaves collected from stands containing high (Experiment 1, 2) or low (Experiment 3) concentrations of phenolic glycosides (PG). In Experiment 2, lambs were simultaneously offered aspen, a forb (Lathyrus pauciflorus), and a grass (Bromus inermis) collected from the aspen understory. Animals supplemented with high protein or tannins showed greater intake of aspen leaves than animals supplemented with bark or the control diet (P < 0.05), likely because some condensed tannins have a positive effect on protein nutrition and protein aids in PSC detoxification. Overall, animals supplemented with bark showed the lowest aspen intake, suggesting PSC in bark and aspen leaves had additive inhibitory effects on intake. In summary, these results suggest that not only the concentration but also the types and proportions of nutrients and chemical defenses available in the plant community influence aspen use by herbivores.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">28744731</PMID>
<DateCompleted>
<Year>2017</Year>
<Month>12</Month>
<Day>29</Day>
</DateCompleted>
<DateRevised>
<Year>2018</Year>
<Month>11</Month>
<Day>13</Day>
</DateRevised>
<Article PubModel="Print-Electronic">
<Journal>
<ISSN IssnType="Electronic">1573-1561</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>43</Volume>
<Issue>8</Issue>
<PubDate>
<Year>2017</Year>
<Month>Aug</Month>
</PubDate>
</JournalIssue>
<Title>Journal of chemical ecology</Title>
<ISOAbbreviation>J Chem Ecol</ISOAbbreviation>
</Journal>
<ArticleTitle>Plant Community Chemical Composition Influences Trembling Aspen (Populus tremuloides) Intake by Sheep.</ArticleTitle>
<Pagination>
<MedlinePgn>817-830</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1007/s10886-017-0872-6</ELocationID>
<Abstract>
<AbstractText>Nutrients and plant secondary compounds in aspen (Populus tremuloides) may interact with nutrients in the surrounding vegetation to influence aspen use by herbivores. Thus, this study aimed to determine aspen intake and preference by sheep in response to supplementary nutrients or plant secondary compounds (PSC) present in aspen trees. Thirty-two lambs were randomly assigned to one of four molasses-based supplementary feeds to a basal diet of tall fescue hay (N = 8) during three experiments. The supplements were as follows: (1) high-protein (60% canola meal), (2) a PSC (6% quebracho tannins), (3) 25% aspen bark, and (4) control (100% molasses). Supplements were fed from 0700 to 0900, then lambs were fed fresh aspen leaves collected from stands containing high (Experiment 1, 2) or low (Experiment 3) concentrations of phenolic glycosides (PG). In Experiment 2, lambs were simultaneously offered aspen, a forb (Lathyrus pauciflorus), and a grass (Bromus inermis) collected from the aspen understory. Animals supplemented with high protein or tannins showed greater intake of aspen leaves than animals supplemented with bark or the control diet (P < 0.05), likely because some condensed tannins have a positive effect on protein nutrition and protein aids in PSC detoxification. Overall, animals supplemented with bark showed the lowest aspen intake, suggesting PSC in bark and aspen leaves had additive inhibitory effects on intake. In summary, these results suggest that not only the concentration but also the types and proportions of nutrients and chemical defenses available in the plant community influence aspen use by herbivores.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Heroy</LastName>
<ForeName>Kristen Y</ForeName>
<Initials>KY</Initials>
<AffiliationInfo>
<Affiliation>Department of Wildland Resources, Utah State University, Logan, 84322-5230, USA. Kristen.heroy@aggiemail.usu.edu.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>St Clair</LastName>
<ForeName>Samuel B</ForeName>
<Initials>SB</Initials>
<AffiliationInfo>
<Affiliation>Department of Plant & Wildlife Sciences, Brigham Young University, Provo, UT, 84602, USA.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Burritt</LastName>
<ForeName>Elizabeth A</ForeName>
<Initials>EA</Initials>
<AffiliationInfo>
<Affiliation>Department of Wildland Resources, Utah State University, Logan, 84322-5230, USA.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Villalba</LastName>
<ForeName>Juan J</ForeName>
<Initials>JJ</Initials>
<AffiliationInfo>
<Affiliation>Department of Wildland Resources, Utah State University, Logan, 84322-5230, USA.</Affiliation>
</AffiliationInfo>
</Author>
</AuthorList>
<Language>eng</Language>
<GrantList CompleteYN="Y">
<Grant>
<GrantID>1068</GrantID>
<Agency>Utah State Agricultural Research Experiment Station</Agency>
<Country></Country>
</Grant>
</GrantList>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2017</Year>
<Month>07</Month>
<Day>25</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>United States</Country>
<MedlineTA>J Chem Ecol</MedlineTA>
<NlmUniqueID>7505563</NlmUniqueID>
<ISSNLinking>0098-0331</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D006027">Glycosides</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D010940">Plant Proteins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D013634">Tannins</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D000818" MajorTopicYN="N">Animals</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D002851" MajorTopicYN="N">Chromatography, High Pressure Liquid</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D004032" MajorTopicYN="Y">Diet</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D006027" MajorTopicYN="N">Glycosides</DescriptorName>
<QualifierName UI="Q000032" MajorTopicYN="N">analysis</QualifierName>
<QualifierName UI="Q000494" MajorTopicYN="N">pharmacology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D060434" MajorTopicYN="N">Herbivory</DescriptorName>
<QualifierName UI="Q000187" MajorTopicYN="N">drug effects</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D024301" MajorTopicYN="N">Plant Bark</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="N">chemistry</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D018515" MajorTopicYN="N">Plant Leaves</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="N">chemistry</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D010940" MajorTopicYN="N">Plant Proteins</DescriptorName>
<QualifierName UI="Q000494" MajorTopicYN="N">pharmacology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D032107" MajorTopicYN="N">Populus</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="Y">chemistry</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D012756" MajorTopicYN="N">Sheep</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D013053" MajorTopicYN="N">Spectrophotometry</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D013634" MajorTopicYN="N">Tannins</DescriptorName>
<QualifierName UI="Q000032" MajorTopicYN="N">analysis</QualifierName>
<QualifierName UI="Q000494" MajorTopicYN="N">pharmacology</QualifierName>
</MeshHeading>
</MeshHeadingList>
<KeywordList Owner="NOTNLM">
<Keyword MajorTopicYN="N">Condensed tannins</Keyword>
<Keyword MajorTopicYN="N">Diet selection</Keyword>
<Keyword MajorTopicYN="N">Foraging</Keyword>
<Keyword MajorTopicYN="N">Herbivory</Keyword>
<Keyword MajorTopicYN="N">Ovis aries</Keyword>
<Keyword MajorTopicYN="N">Phenolic glycosides</Keyword>
<Keyword MajorTopicYN="N">Preference</Keyword>
</KeywordList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2017</Year>
<Month>05</Month>
<Day>17</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2017</Year>
<Month>07</Month>
<Day>18</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="revised">
<Year>2017</Year>
<Month>06</Month>
<Day>24</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2017</Year>
<Month>7</Month>
<Day>27</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2017</Year>
<Month>12</Month>
<Day>30</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2017</Year>
<Month>7</Month>
<Day>27</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">28744731</ArticleId>
<ArticleId IdType="doi">10.1007/s10886-017-0872-6</ArticleId>
<ArticleId IdType="pii">10.1007/s10886-017-0872-6</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>J Anim Sci. 1999 Feb;77(2):378-87</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10100667</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Phytochemistry. 2011 Sep;72(13):1497-509</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21376356</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Comp Physiol B. 2000 May;170(3):185-92</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10841258</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Anim Sci. 2002 Dec;80(12):3154-64</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12542156</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Chem Ecol. 1995 Jun;21(6):693-719</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24234313</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Anim Sci. 2004 Nov;82(11):3230-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15542469</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Chem Ecol. 2005 Jan;31(1):123-38</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15839485</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Ecology. 2006 Aug;87(8):2103-12</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16937649</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Chem Ecol. 2006 Jul;32(7):1415-29</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16724272</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Anim Sci. 2008 Mar;86(3):738-47</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18073279</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Ecol Lett. 2014 Oct;17(10):1238-46</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25040855</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Oecologia. 1987 Nov;74(1):144-148</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28310428</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Agric Food Chem. 1980 Sep-Oct;28(5):947-52</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">7462522</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Chem Ecol. 2014 Oct;40(10):1135-45</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25284606</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Anim Sci. 1996 Dec;74(12):3052-62</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8994920</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Oecologia. 1991 May;86(3):408-413</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28312929</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Dairy Sci. 1991 Oct;74(10):3583-97</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">1660498</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Can J Microbiol. 1998 Sep;44(9):905-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9851029</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 1976 Jul 2;193(4247):24-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17793989</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PeerJ. 2014 Jul 15;2:e491</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25083352</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Anim Sci. 1995 May;73(5):1516-28</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">7665384</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/PoplarV1/Data/Main/Corpus
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 001229 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Corpus/biblio.hfd -nk 001229 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    PoplarV1
   |flux=    Main
   |étape=   Corpus
   |type=    RBID
   |clé=     pubmed:28744731
   |texte=   Plant Community Chemical Composition Influences Trembling Aspen (Populus tremuloides) Intake by Sheep.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Corpus/RBID.i   -Sk "pubmed:28744731" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Corpus/biblio.hfd   \
       | NlmPubMed2Wicri -a PoplarV1 

Wicri

This area was generated with Dilib version V0.6.37.
Data generation: Wed Nov 18 12:07:19 2020. Site generation: Wed Nov 18 12:16:31 2020