Serveur d'exploration sur le peuplier

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Identification and expression of CAMTA genes in Populus trichocarpa under biotic and abiotic stress.

Identifieur interne : 001028 ( Main/Corpus ); précédent : 001027; suivant : 001029

Identification and expression of CAMTA genes in Populus trichocarpa under biotic and abiotic stress.

Auteurs : Ming Wei ; Xuemei Xu ; Chenghao Li

Source :

RBID : pubmed:29263356

English descriptors

Abstract

The calmodulin-binding transcription activators (CAMTAs) transcription factor family plays an important role in normal plant growth and development, as well as in biotic and abiotic stress resistance. In this study, we identified seven CAMTA genes across the whole genome of Populus trichocarpa and analyzed the expression patterns of PtCAMTAs in the root and leaf tissues. Promoter cis-element analysis indicated that most CAMTA genes contained stress- or phytohormone-related cis-elements. Quantitative real-time reverse transcription-PCR (qRT-PCR) indicated indicated that PtCAMTAs were induced by mannitol, NaCl, cold stress, pathogenic infection with A. alternata, and phytohormone treatments with abscisic acid, salicylic acid, and methyl jasmonate. We analyzed the expression of homologous genes between P. trichocarpa and P. ussuriensis and alternative splicing forms of PtCAMTA genes under cold stress. We also performed a network interaction analysis for PtCAMTA proteins to predict their interactions and associations. The results of the present study serve as a basis for future functional studies on the Populus CAMTA family.

DOI: 10.1038/s41598-017-18219-8
PubMed: 29263356
PubMed Central: PMC5738416

Links to Exploration step

pubmed:29263356

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Identification and expression of CAMTA genes in Populus trichocarpa under biotic and abiotic stress.</title>
<author>
<name sortKey="Wei, Ming" sort="Wei, Ming" uniqKey="Wei M" first="Ming" last="Wei">Ming Wei</name>
<affiliation>
<nlm:affiliation>State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, 26 Hexing Road, Harbin, 150040, China.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Xu, Xuemei" sort="Xu, Xuemei" uniqKey="Xu X" first="Xuemei" last="Xu">Xuemei Xu</name>
<affiliation>
<nlm:affiliation>Library of Northeast Forestry University, 26 Hexing Road, Harbin, 150040, China.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Li, Chenghao" sort="Li, Chenghao" uniqKey="Li C" first="Chenghao" last="Li">Chenghao Li</name>
<affiliation>
<nlm:affiliation>State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, 26 Hexing Road, Harbin, 150040, China. chli0@163.com.</nlm:affiliation>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2017">2017</date>
<idno type="RBID">pubmed:29263356</idno>
<idno type="pmid">29263356</idno>
<idno type="doi">10.1038/s41598-017-18219-8</idno>
<idno type="pmc">PMC5738416</idno>
<idno type="wicri:Area/Main/Corpus">001028</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">001028</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Identification and expression of CAMTA genes in Populus trichocarpa under biotic and abiotic stress.</title>
<author>
<name sortKey="Wei, Ming" sort="Wei, Ming" uniqKey="Wei M" first="Ming" last="Wei">Ming Wei</name>
<affiliation>
<nlm:affiliation>State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, 26 Hexing Road, Harbin, 150040, China.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Xu, Xuemei" sort="Xu, Xuemei" uniqKey="Xu X" first="Xuemei" last="Xu">Xuemei Xu</name>
<affiliation>
<nlm:affiliation>Library of Northeast Forestry University, 26 Hexing Road, Harbin, 150040, China.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Li, Chenghao" sort="Li, Chenghao" uniqKey="Li C" first="Chenghao" last="Li">Chenghao Li</name>
<affiliation>
<nlm:affiliation>State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, 26 Hexing Road, Harbin, 150040, China. chli0@163.com.</nlm:affiliation>
</affiliation>
</author>
</analytic>
<series>
<title level="j">Scientific reports</title>
<idno type="eISSN">2045-2322</idno>
<imprint>
<date when="2017" type="published">2017</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Alternaria (pathogenicity)</term>
<term>Alternariosis (microbiology)</term>
<term>Calmodulin-Binding Proteins (genetics)</term>
<term>Calmodulin-Binding Proteins (metabolism)</term>
<term>Diuretics, Osmotic (toxicity)</term>
<term>Gene Expression Profiling (MeSH)</term>
<term>Gene Expression Regulation, Plant (MeSH)</term>
<term>Mannitol (toxicity)</term>
<term>Plant Growth Regulators (toxicity)</term>
<term>Plant Leaves (drug effects)</term>
<term>Plant Leaves (genetics)</term>
<term>Plant Leaves (microbiology)</term>
<term>Plant Proteins (genetics)</term>
<term>Plant Proteins (metabolism)</term>
<term>Populus (drug effects)</term>
<term>Populus (genetics)</term>
<term>Populus (microbiology)</term>
<term>Promoter Regions, Genetic (MeSH)</term>
<term>Sodium Chloride (toxicity)</term>
<term>Stress, Physiological (MeSH)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="genetics" xml:lang="en">
<term>Calmodulin-Binding Proteins</term>
<term>Plant Proteins</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="metabolism" xml:lang="en">
<term>Calmodulin-Binding Proteins</term>
<term>Plant Proteins</term>
</keywords>
<keywords scheme="MESH" qualifier="drug effects" xml:lang="en">
<term>Plant Leaves</term>
<term>Populus</term>
</keywords>
<keywords scheme="MESH" qualifier="genetics" xml:lang="en">
<term>Plant Leaves</term>
<term>Populus</term>
</keywords>
<keywords scheme="MESH" qualifier="microbiology" xml:lang="en">
<term>Alternariosis</term>
<term>Plant Leaves</term>
<term>Populus</term>
</keywords>
<keywords scheme="MESH" qualifier="pathogenicity" xml:lang="en">
<term>Alternaria</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="toxicity" xml:lang="en">
<term>Diuretics, Osmotic</term>
<term>Mannitol</term>
<term>Plant Growth Regulators</term>
<term>Sodium Chloride</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Gene Expression Profiling</term>
<term>Gene Expression Regulation, Plant</term>
<term>Promoter Regions, Genetic</term>
<term>Stress, Physiological</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">The calmodulin-binding transcription activators (CAMTAs) transcription factor family plays an important role in normal plant growth and development, as well as in biotic and abiotic stress resistance. In this study, we identified seven CAMTA genes across the whole genome of Populus trichocarpa and analyzed the expression patterns of PtCAMTAs in the root and leaf tissues. Promoter cis-element analysis indicated that most CAMTA genes contained stress- or phytohormone-related cis-elements. Quantitative real-time reverse transcription-PCR (qRT-PCR) indicated indicated that PtCAMTAs were induced by mannitol, NaCl, cold stress, pathogenic infection with A. alternata, and phytohormone treatments with abscisic acid, salicylic acid, and methyl jasmonate. We analyzed the expression of homologous genes between P. trichocarpa and P. ussuriensis and alternative splicing forms of PtCAMTA genes under cold stress. We also performed a network interaction analysis for PtCAMTA proteins to predict their interactions and associations. The results of the present study serve as a basis for future functional studies on the Populus CAMTA family.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">29263356</PMID>
<DateCompleted>
<Year>2019</Year>
<Month>08</Month>
<Day>21</Day>
</DateCompleted>
<DateRevised>
<Year>2019</Year>
<Month>08</Month>
<Day>21</Day>
</DateRevised>
<Article PubModel="Electronic">
<Journal>
<ISSN IssnType="Electronic">2045-2322</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>7</Volume>
<Issue>1</Issue>
<PubDate>
<Year>2017</Year>
<Month>12</Month>
<Day>20</Day>
</PubDate>
</JournalIssue>
<Title>Scientific reports</Title>
<ISOAbbreviation>Sci Rep</ISOAbbreviation>
</Journal>
<ArticleTitle>Identification and expression of CAMTA genes in Populus trichocarpa under biotic and abiotic stress.</ArticleTitle>
<Pagination>
<MedlinePgn>17910</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1038/s41598-017-18219-8</ELocationID>
<Abstract>
<AbstractText>The calmodulin-binding transcription activators (CAMTAs) transcription factor family plays an important role in normal plant growth and development, as well as in biotic and abiotic stress resistance. In this study, we identified seven CAMTA genes across the whole genome of Populus trichocarpa and analyzed the expression patterns of PtCAMTAs in the root and leaf tissues. Promoter cis-element analysis indicated that most CAMTA genes contained stress- or phytohormone-related cis-elements. Quantitative real-time reverse transcription-PCR (qRT-PCR) indicated indicated that PtCAMTAs were induced by mannitol, NaCl, cold stress, pathogenic infection with A. alternata, and phytohormone treatments with abscisic acid, salicylic acid, and methyl jasmonate. We analyzed the expression of homologous genes between P. trichocarpa and P. ussuriensis and alternative splicing forms of PtCAMTA genes under cold stress. We also performed a network interaction analysis for PtCAMTA proteins to predict their interactions and associations. The results of the present study serve as a basis for future functional studies on the Populus CAMTA family.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Wei</LastName>
<ForeName>Ming</ForeName>
<Initials>M</Initials>
<AffiliationInfo>
<Affiliation>State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, 26 Hexing Road, Harbin, 150040, China.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Xu</LastName>
<ForeName>Xuemei</ForeName>
<Initials>X</Initials>
<AffiliationInfo>
<Affiliation>Library of Northeast Forestry University, 26 Hexing Road, Harbin, 150040, China.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Li</LastName>
<ForeName>Chenghao</ForeName>
<Initials>C</Initials>
<AffiliationInfo>
<Affiliation>State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, 26 Hexing Road, Harbin, 150040, China. chli0@163.com.</Affiliation>
</AffiliationInfo>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D013485">Research Support, Non-U.S. Gov't</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2017</Year>
<Month>12</Month>
<Day>20</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>England</Country>
<MedlineTA>Sci Rep</MedlineTA>
<NlmUniqueID>101563288</NlmUniqueID>
<ISSNLinking>2045-2322</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D002148">Calmodulin-Binding Proteins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D004234">Diuretics, Osmotic</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D010937">Plant Growth Regulators</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D010940">Plant Proteins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>3OWL53L36A</RegistryNumber>
<NameOfSubstance UI="D008353">Mannitol</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>451W47IQ8X</RegistryNumber>
<NameOfSubstance UI="D012965">Sodium Chloride</NameOfSubstance>
</Chemical>
</ChemicalList>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D000528" MajorTopicYN="N">Alternaria</DescriptorName>
<QualifierName UI="Q000472" MajorTopicYN="Y">pathogenicity</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D060487" MajorTopicYN="N">Alternariosis</DescriptorName>
<QualifierName UI="Q000382" MajorTopicYN="Y">microbiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D002148" MajorTopicYN="N">Calmodulin-Binding Proteins</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="Y">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D004234" MajorTopicYN="N">Diuretics, Osmotic</DescriptorName>
<QualifierName UI="Q000633" MajorTopicYN="N">toxicity</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D020869" MajorTopicYN="N">Gene Expression Profiling</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D018506" MajorTopicYN="Y">Gene Expression Regulation, Plant</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D008353" MajorTopicYN="N">Mannitol</DescriptorName>
<QualifierName UI="Q000633" MajorTopicYN="N">toxicity</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D010937" MajorTopicYN="N">Plant Growth Regulators</DescriptorName>
<QualifierName UI="Q000633" MajorTopicYN="N">toxicity</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D018515" MajorTopicYN="N">Plant Leaves</DescriptorName>
<QualifierName UI="Q000187" MajorTopicYN="N">drug effects</QualifierName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000382" MajorTopicYN="N">microbiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D010940" MajorTopicYN="N">Plant Proteins</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="Y">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D032107" MajorTopicYN="N">Populus</DescriptorName>
<QualifierName UI="Q000187" MajorTopicYN="N">drug effects</QualifierName>
<QualifierName UI="Q000235" MajorTopicYN="Y">genetics</QualifierName>
<QualifierName UI="Q000382" MajorTopicYN="N">microbiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D011401" MajorTopicYN="N">Promoter Regions, Genetic</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D012965" MajorTopicYN="N">Sodium Chloride</DescriptorName>
<QualifierName UI="Q000633" MajorTopicYN="N">toxicity</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D013312" MajorTopicYN="Y">Stress, Physiological</DescriptorName>
</MeshHeading>
</MeshHeadingList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2017</Year>
<Month>06</Month>
<Day>29</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2017</Year>
<Month>12</Month>
<Day>07</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2017</Year>
<Month>12</Month>
<Day>22</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2017</Year>
<Month>12</Month>
<Day>22</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2019</Year>
<Month>8</Month>
<Day>23</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>epublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">29263356</ArticleId>
<ArticleId IdType="doi">10.1038/s41598-017-18219-8</ArticleId>
<ArticleId IdType="pii">10.1038/s41598-017-18219-8</ArticleId>
<ArticleId IdType="pmc">PMC5738416</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>Plant Mol Biol. 2004 Mar;54(4):549-69</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15316289</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Front Plant Sci. 2016 May 04;7:581</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27200054</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS One. 2014 Feb 03;9(2):e87156</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24498296</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant J. 2011 Sep;67(6):1029-41</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21615571</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 2015 Jan;43(Database issue):D447-52</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25352553</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Opin Plant Biol. 2006 Aug;9(4):436-42</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16759898</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Methods Mol Biol. 1999;112:531-52</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10027275</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Bioinformatics. 2015 Apr 15;31(8):1296-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25504850</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2009 Feb 26;457(7233):1154-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19122675</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>BMC Genomics. 2013 Apr 02;14:216</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23547968</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Genet Genomics. 2011 Mar;285(3):245-60</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21290147</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2005 Dec 9;280(49):40820-31</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16192280</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 2002 Jan 1;30(1):325-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11752327</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2012 Apr;158(4):1847-59</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22345509</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2008 Dec;148(4):1938-52</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18931143</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 1997 Dec 15;25(24):4876-82</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9396791</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Annu Rev Plant Biol. 2006;57:781-803</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16669782</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genome Res. 2008 Sep;18(9):1381-92</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18669480</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Ecol. 2014 May;23(10):2486-99</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24750333</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2000 Dec 15;290(5499):2114-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11118139</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Front Plant Sci. 2015 Jun 19;6:459</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26150823</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant J. 2013 Aug;75(3):364-76</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23581962</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell Res. 2009 Feb;19(2):271-3</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19153597</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2009 Mar;21(3):972-84</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19270186</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Exp Bot. 2004 Jan;55(395):181-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14623901</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Ann Bot. 2002 Dec;90(6):681-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12451023</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2010 Oct 19;107(42):18220-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20921422</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Signal Behav. 2007 Jan;2(1):17-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19704800</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Int Conf Intell Syst Mol Biol. 1994;2:28-36</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">7584402</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>BMC Plant Biol. 2012 Feb 13;12:19</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22330838</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>BMC Plant Biol. 2015 Mar 04;15:73</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25849633</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Opin Plant Biol. 2015 Apr;24:125-35</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25835141</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2000 Nov 10;290(5494):1151-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11073452</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Exp Bot. 2008;59(11):2991-3007</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18552355</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>BMC Plant Biol. 2010 Jul 15;10:145</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20630103</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Front Plant Sci. 2016 Feb 29;7:177</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26973658</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell Environ. 2002 Feb;25(2):229-237</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11841666</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Rev Infect Dis. 1987 Jul-Aug;9(4):799-803</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">3326127</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Plant. 2009 Jan;2(1):13-21</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19529824</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Biotechnol. 2001 Oct;19(2):201-3</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11725489</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 2007 Jul;35(Web Server issue):W585-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17517783</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Front Plant Sci. 2015 Jul 28;6:576</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26284092</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2002 Nov 22;277(47):45049-58</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12218065</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/PoplarV1/Data/Main/Corpus
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 001028 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Corpus/biblio.hfd -nk 001028 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    PoplarV1
   |flux=    Main
   |étape=   Corpus
   |type=    RBID
   |clé=     pubmed:29263356
   |texte=   Identification and expression of CAMTA genes in Populus trichocarpa under biotic and abiotic stress.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Corpus/RBID.i   -Sk "pubmed:29263356" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Corpus/biblio.hfd   \
       | NlmPubMed2Wicri -a PoplarV1 

Wicri

This area was generated with Dilib version V0.6.37.
Data generation: Wed Nov 18 12:07:19 2020. Site generation: Wed Nov 18 12:16:31 2020