Serveur d'exploration sur le peuplier

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Functional analyses of PtRDM1 gene overexpression in poplars and evaluation of its effect on DNA methylation and response to salt stress.

Identifieur interne : 000F18 ( Main/Corpus ); précédent : 000F17; suivant : 000F19

Functional analyses of PtRDM1 gene overexpression in poplars and evaluation of its effect on DNA methylation and response to salt stress.

Auteurs : Ali Movahedi ; Jiaxin Zhang ; Weibo Sun ; Kourosh Mohammadi ; Amir Almasi Zadeh Yaghuti ; Hui Wei ; Xiaolong Wu ; Tongming Yin ; Qiang Zhuge

Source :

RBID : pubmed:29549759

English descriptors

Abstract

Epigenetic modification by DNA methylation is necessary for all cellular processes, including genetic expression events, DNA repair, genomic imprinting and regulation of tissue development. It occurs almost exclusively at the C5 position of symmetric CpG and asymmetric CpHpG and CpHpH sites in genomic DNA. The RNA-directed DNA methylation (RDM1) gene is crucial for heterochromatin and DNA methylation. We overexpressed PtRDM1 gene from Populus trichocarpa to amplify transcripts of orthologous RDM1 in 'Nanlin895' (P. deltoides × P. euramericana 'Nanlin895'). This overexpression resulted in increasing RDM1 transcript levels: by ∼150% at 0 mM NaCl treatment and by ∼300% at 60 mM NaCl treatment compared to WT (control) poplars. Genomic cytosine methylation was monitored within 5.8S rDNA and histone H3 loci by bisulfite sequencing. In total, transgenic poplars revealed more DNA methylation than WT plants. In our results, roots revealed more methylated CG contexts than stems and leaves whereas, histone H3 presented more DNA methylation than 5.8S rDNA in both WT and transgenic poplars. The NaCl stresses enhanced more DNA methylation in transgenic poplars than WT plants through histone H3 and 5.8 rDNA loci. Also, the overexpression of PtRDM1 resulted in hyper-methylation, which affected plant phenotype. Transgenic poplars revealed significantly more regeneration of roots than WT poplars via NaCl treatments. Our results proved that RDM1 protein enhanced the DNA methylation by chromatin remodeling (e.g. histone H3) more than repetitive DNA sequences (e.g. 5.8S rDNA).

DOI: 10.1016/j.plaphy.2018.03.011
PubMed: 29549759

Links to Exploration step

pubmed:29549759

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Functional analyses of PtRDM1 gene overexpression in poplars and evaluation of its effect on DNA methylation and response to salt stress.</title>
<author>
<name sortKey="Movahedi, Ali" sort="Movahedi, Ali" uniqKey="Movahedi A" first="Ali" last="Movahedi">Ali Movahedi</name>
<affiliation>
<nlm:affiliation>Co-Innovation Center for Sustainable Forestry in Southern China, Key Laboratory of Forest Genetics and Biotechnology, Ministry of Education, Nanjing Forestry University, Nanjing, 210037, China; Co-Innovation Center for Sustainable Forestry in Southern China, College of Forestry, Nanjing Forestry University, Nanjing 210037, China.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Zhang, Jiaxin" sort="Zhang, Jiaxin" uniqKey="Zhang J" first="Jiaxin" last="Zhang">Jiaxin Zhang</name>
<affiliation>
<nlm:affiliation>Co-Innovation Center for Sustainable Forestry in Southern China, Key Laboratory of Forest Genetics and Biotechnology, Ministry of Education, Nanjing Forestry University, Nanjing, 210037, China; Co-Innovation Center for Sustainable Forestry in Southern China, College of Forestry, Nanjing Forestry University, Nanjing 210037, China.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Sun, Weibo" sort="Sun, Weibo" uniqKey="Sun W" first="Weibo" last="Sun">Weibo Sun</name>
<affiliation>
<nlm:affiliation>Co-Innovation Center for Sustainable Forestry in Southern China, Key Laboratory of Forest Genetics and Biotechnology, Ministry of Education, Nanjing Forestry University, Nanjing, 210037, China.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Mohammadi, Kourosh" sort="Mohammadi, Kourosh" uniqKey="Mohammadi K" first="Kourosh" last="Mohammadi">Kourosh Mohammadi</name>
<affiliation>
<nlm:affiliation>Co-Innovation Center for Sustainable Forestry in Southern China, Key Laboratory of Forest Genetics and Biotechnology, Ministry of Education, Nanjing Forestry University, Nanjing, 210037, China.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Almasi Zadeh Yaghuti, Amir" sort="Almasi Zadeh Yaghuti, Amir" uniqKey="Almasi Zadeh Yaghuti A" first="Amir" last="Almasi Zadeh Yaghuti">Amir Almasi Zadeh Yaghuti</name>
<affiliation>
<nlm:affiliation>Co-Innovation Center for Sustainable Forestry in Southern China, Key Laboratory of Forest Genetics and Biotechnology, Ministry of Education, Nanjing Forestry University, Nanjing, 210037, China.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Wei, Hui" sort="Wei, Hui" uniqKey="Wei H" first="Hui" last="Wei">Hui Wei</name>
<affiliation>
<nlm:affiliation>Co-Innovation Center for Sustainable Forestry in Southern China, Key Laboratory of Forest Genetics and Biotechnology, Ministry of Education, Nanjing Forestry University, Nanjing, 210037, China.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Wu, Xiaolong" sort="Wu, Xiaolong" uniqKey="Wu X" first="Xiaolong" last="Wu">Xiaolong Wu</name>
<affiliation>
<nlm:affiliation>Co-Innovation Center for Sustainable Forestry in Southern China, Key Laboratory of Forest Genetics and Biotechnology, Ministry of Education, Nanjing Forestry University, Nanjing, 210037, China.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Yin, Tongming" sort="Yin, Tongming" uniqKey="Yin T" first="Tongming" last="Yin">Tongming Yin</name>
<affiliation>
<nlm:affiliation>Co-Innovation Center for Sustainable Forestry in Southern China, College of Forestry, Nanjing Forestry University, Nanjing 210037, China.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Zhuge, Qiang" sort="Zhuge, Qiang" uniqKey="Zhuge Q" first="Qiang" last="Zhuge">Qiang Zhuge</name>
<affiliation>
<nlm:affiliation>Co-Innovation Center for Sustainable Forestry in Southern China, Key Laboratory of Forest Genetics and Biotechnology, Ministry of Education, Nanjing Forestry University, Nanjing, 210037, China. Electronic address: qzhuge@njfu.edu.cn.</nlm:affiliation>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2018">2018</date>
<idno type="RBID">pubmed:29549759</idno>
<idno type="pmid">29549759</idno>
<idno type="doi">10.1016/j.plaphy.2018.03.011</idno>
<idno type="wicri:Area/Main/Corpus">000F18</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">000F18</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Functional analyses of PtRDM1 gene overexpression in poplars and evaluation of its effect on DNA methylation and response to salt stress.</title>
<author>
<name sortKey="Movahedi, Ali" sort="Movahedi, Ali" uniqKey="Movahedi A" first="Ali" last="Movahedi">Ali Movahedi</name>
<affiliation>
<nlm:affiliation>Co-Innovation Center for Sustainable Forestry in Southern China, Key Laboratory of Forest Genetics and Biotechnology, Ministry of Education, Nanjing Forestry University, Nanjing, 210037, China; Co-Innovation Center for Sustainable Forestry in Southern China, College of Forestry, Nanjing Forestry University, Nanjing 210037, China.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Zhang, Jiaxin" sort="Zhang, Jiaxin" uniqKey="Zhang J" first="Jiaxin" last="Zhang">Jiaxin Zhang</name>
<affiliation>
<nlm:affiliation>Co-Innovation Center for Sustainable Forestry in Southern China, Key Laboratory of Forest Genetics and Biotechnology, Ministry of Education, Nanjing Forestry University, Nanjing, 210037, China; Co-Innovation Center for Sustainable Forestry in Southern China, College of Forestry, Nanjing Forestry University, Nanjing 210037, China.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Sun, Weibo" sort="Sun, Weibo" uniqKey="Sun W" first="Weibo" last="Sun">Weibo Sun</name>
<affiliation>
<nlm:affiliation>Co-Innovation Center for Sustainable Forestry in Southern China, Key Laboratory of Forest Genetics and Biotechnology, Ministry of Education, Nanjing Forestry University, Nanjing, 210037, China.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Mohammadi, Kourosh" sort="Mohammadi, Kourosh" uniqKey="Mohammadi K" first="Kourosh" last="Mohammadi">Kourosh Mohammadi</name>
<affiliation>
<nlm:affiliation>Co-Innovation Center for Sustainable Forestry in Southern China, Key Laboratory of Forest Genetics and Biotechnology, Ministry of Education, Nanjing Forestry University, Nanjing, 210037, China.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Almasi Zadeh Yaghuti, Amir" sort="Almasi Zadeh Yaghuti, Amir" uniqKey="Almasi Zadeh Yaghuti A" first="Amir" last="Almasi Zadeh Yaghuti">Amir Almasi Zadeh Yaghuti</name>
<affiliation>
<nlm:affiliation>Co-Innovation Center for Sustainable Forestry in Southern China, Key Laboratory of Forest Genetics and Biotechnology, Ministry of Education, Nanjing Forestry University, Nanjing, 210037, China.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Wei, Hui" sort="Wei, Hui" uniqKey="Wei H" first="Hui" last="Wei">Hui Wei</name>
<affiliation>
<nlm:affiliation>Co-Innovation Center for Sustainable Forestry in Southern China, Key Laboratory of Forest Genetics and Biotechnology, Ministry of Education, Nanjing Forestry University, Nanjing, 210037, China.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Wu, Xiaolong" sort="Wu, Xiaolong" uniqKey="Wu X" first="Xiaolong" last="Wu">Xiaolong Wu</name>
<affiliation>
<nlm:affiliation>Co-Innovation Center for Sustainable Forestry in Southern China, Key Laboratory of Forest Genetics and Biotechnology, Ministry of Education, Nanjing Forestry University, Nanjing, 210037, China.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Yin, Tongming" sort="Yin, Tongming" uniqKey="Yin T" first="Tongming" last="Yin">Tongming Yin</name>
<affiliation>
<nlm:affiliation>Co-Innovation Center for Sustainable Forestry in Southern China, College of Forestry, Nanjing Forestry University, Nanjing 210037, China.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Zhuge, Qiang" sort="Zhuge, Qiang" uniqKey="Zhuge Q" first="Qiang" last="Zhuge">Qiang Zhuge</name>
<affiliation>
<nlm:affiliation>Co-Innovation Center for Sustainable Forestry in Southern China, Key Laboratory of Forest Genetics and Biotechnology, Ministry of Education, Nanjing Forestry University, Nanjing, 210037, China. Electronic address: qzhuge@njfu.edu.cn.</nlm:affiliation>
</affiliation>
</author>
</analytic>
<series>
<title level="j">Plant physiology and biochemistry : PPB</title>
<idno type="eISSN">1873-2690</idno>
<imprint>
<date when="2018" type="published">2018</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>DNA Methylation (drug effects)</term>
<term>DNA Modification Methylases (biosynthesis)</term>
<term>DNA Modification Methylases (genetics)</term>
<term>DNA, Plant (genetics)</term>
<term>DNA, Plant (metabolism)</term>
<term>Epigenesis, Genetic (drug effects)</term>
<term>Gene Expression Regulation, Enzymologic (drug effects)</term>
<term>Gene Expression Regulation, Plant (drug effects)</term>
<term>Plant Proteins (biosynthesis)</term>
<term>Plant Proteins (genetics)</term>
<term>Populus (genetics)</term>
<term>Populus (metabolism)</term>
<term>Sodium Chloride (pharmacology)</term>
<term>Stress, Physiological (drug effects)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="biosynthesis" xml:lang="en">
<term>DNA Modification Methylases</term>
<term>Plant Proteins</term>
</keywords>
<keywords scheme="MESH" qualifier="drug effects" xml:lang="en">
<term>DNA Methylation</term>
<term>Epigenesis, Genetic</term>
<term>Gene Expression Regulation, Enzymologic</term>
<term>Gene Expression Regulation, Plant</term>
<term>Stress, Physiological</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="genetics" xml:lang="en">
<term>DNA Modification Methylases</term>
<term>DNA, Plant</term>
<term>Plant Proteins</term>
<term>Populus</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="metabolism" xml:lang="en">
<term>DNA, Plant</term>
<term>Populus</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="pharmacology" xml:lang="en">
<term>Sodium Chloride</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Epigenetic modification by DNA methylation is necessary for all cellular processes, including genetic expression events, DNA repair, genomic imprinting and regulation of tissue development. It occurs almost exclusively at the C5 position of symmetric CpG and asymmetric CpHpG and CpHpH sites in genomic DNA. The RNA-directed DNA methylation (RDM1) gene is crucial for heterochromatin and DNA methylation. We overexpressed PtRDM1 gene from Populus trichocarpa to amplify transcripts of orthologous RDM1 in 'Nanlin895' (P. deltoides × P. euramericana 'Nanlin895'). This overexpression resulted in increasing RDM1 transcript levels: by ∼150% at 0 mM NaCl treatment and by ∼300% at 60 mM NaCl treatment compared to WT (control) poplars. Genomic cytosine methylation was monitored within 5.8S rDNA and histone H3 loci by bisulfite sequencing. In total, transgenic poplars revealed more DNA methylation than WT plants. In our results, roots revealed more methylated CG contexts than stems and leaves whereas, histone H3 presented more DNA methylation than 5.8S rDNA in both WT and transgenic poplars. The NaCl stresses enhanced more DNA methylation in transgenic poplars than WT plants through histone H3 and 5.8 rDNA loci. Also, the overexpression of PtRDM1 resulted in hyper-methylation, which affected plant phenotype. Transgenic poplars revealed significantly more regeneration of roots than WT poplars via NaCl treatments. Our results proved that RDM1 protein enhanced the DNA methylation by chromatin remodeling (e.g. histone H3) more than repetitive DNA sequences (e.g. 5.8S rDNA).</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">29549759</PMID>
<DateCompleted>
<Year>2018</Year>
<Month>07</Month>
<Day>26</Day>
</DateCompleted>
<DateRevised>
<Year>2020</Year>
<Month>09</Month>
<Day>30</Day>
</DateRevised>
<Article PubModel="Print-Electronic">
<Journal>
<ISSN IssnType="Electronic">1873-2690</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>127</Volume>
<PubDate>
<Year>2018</Year>
<Month>Jun</Month>
</PubDate>
</JournalIssue>
<Title>Plant physiology and biochemistry : PPB</Title>
<ISOAbbreviation>Plant Physiol Biochem</ISOAbbreviation>
</Journal>
<ArticleTitle>Functional analyses of PtRDM1 gene overexpression in poplars and evaluation of its effect on DNA methylation and response to salt stress.</ArticleTitle>
<Pagination>
<MedlinePgn>64-73</MedlinePgn>
</Pagination>
<ELocationID EIdType="pii" ValidYN="Y">S0981-9428(18)30126-8</ELocationID>
<ELocationID EIdType="doi" ValidYN="Y">10.1016/j.plaphy.2018.03.011</ELocationID>
<Abstract>
<AbstractText>Epigenetic modification by DNA methylation is necessary for all cellular processes, including genetic expression events, DNA repair, genomic imprinting and regulation of tissue development. It occurs almost exclusively at the C5 position of symmetric CpG and asymmetric CpHpG and CpHpH sites in genomic DNA. The RNA-directed DNA methylation (RDM1) gene is crucial for heterochromatin and DNA methylation. We overexpressed PtRDM1 gene from Populus trichocarpa to amplify transcripts of orthologous RDM1 in 'Nanlin895' (P. deltoides × P. euramericana 'Nanlin895'). This overexpression resulted in increasing RDM1 transcript levels: by ∼150% at 0 mM NaCl treatment and by ∼300% at 60 mM NaCl treatment compared to WT (control) poplars. Genomic cytosine methylation was monitored within 5.8S rDNA and histone H3 loci by bisulfite sequencing. In total, transgenic poplars revealed more DNA methylation than WT plants. In our results, roots revealed more methylated CG contexts than stems and leaves whereas, histone H3 presented more DNA methylation than 5.8S rDNA in both WT and transgenic poplars. The NaCl stresses enhanced more DNA methylation in transgenic poplars than WT plants through histone H3 and 5.8 rDNA loci. Also, the overexpression of PtRDM1 resulted in hyper-methylation, which affected plant phenotype. Transgenic poplars revealed significantly more regeneration of roots than WT poplars via NaCl treatments. Our results proved that RDM1 protein enhanced the DNA methylation by chromatin remodeling (e.g. histone H3) more than repetitive DNA sequences (e.g. 5.8S rDNA).</AbstractText>
<CopyrightInformation>Copyright © 2018 Elsevier Masson SAS. All rights reserved.</CopyrightInformation>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Movahedi</LastName>
<ForeName>Ali</ForeName>
<Initials>A</Initials>
<AffiliationInfo>
<Affiliation>Co-Innovation Center for Sustainable Forestry in Southern China, Key Laboratory of Forest Genetics and Biotechnology, Ministry of Education, Nanjing Forestry University, Nanjing, 210037, China; Co-Innovation Center for Sustainable Forestry in Southern China, College of Forestry, Nanjing Forestry University, Nanjing 210037, China.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Zhang</LastName>
<ForeName>Jiaxin</ForeName>
<Initials>J</Initials>
<AffiliationInfo>
<Affiliation>Co-Innovation Center for Sustainable Forestry in Southern China, Key Laboratory of Forest Genetics and Biotechnology, Ministry of Education, Nanjing Forestry University, Nanjing, 210037, China; Co-Innovation Center for Sustainable Forestry in Southern China, College of Forestry, Nanjing Forestry University, Nanjing 210037, China.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Sun</LastName>
<ForeName>Weibo</ForeName>
<Initials>W</Initials>
<AffiliationInfo>
<Affiliation>Co-Innovation Center for Sustainable Forestry in Southern China, Key Laboratory of Forest Genetics and Biotechnology, Ministry of Education, Nanjing Forestry University, Nanjing, 210037, China.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Mohammadi</LastName>
<ForeName>Kourosh</ForeName>
<Initials>K</Initials>
<AffiliationInfo>
<Affiliation>Co-Innovation Center for Sustainable Forestry in Southern China, Key Laboratory of Forest Genetics and Biotechnology, Ministry of Education, Nanjing Forestry University, Nanjing, 210037, China.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Almasi Zadeh Yaghuti</LastName>
<ForeName>Amir</ForeName>
<Initials>A</Initials>
<AffiliationInfo>
<Affiliation>Co-Innovation Center for Sustainable Forestry in Southern China, Key Laboratory of Forest Genetics and Biotechnology, Ministry of Education, Nanjing Forestry University, Nanjing, 210037, China.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Wei</LastName>
<ForeName>Hui</ForeName>
<Initials>H</Initials>
<AffiliationInfo>
<Affiliation>Co-Innovation Center for Sustainable Forestry in Southern China, Key Laboratory of Forest Genetics and Biotechnology, Ministry of Education, Nanjing Forestry University, Nanjing, 210037, China.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Wu</LastName>
<ForeName>Xiaolong</ForeName>
<Initials>X</Initials>
<AffiliationInfo>
<Affiliation>Co-Innovation Center for Sustainable Forestry in Southern China, Key Laboratory of Forest Genetics and Biotechnology, Ministry of Education, Nanjing Forestry University, Nanjing, 210037, China.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Yin</LastName>
<ForeName>Tongming</ForeName>
<Initials>T</Initials>
<AffiliationInfo>
<Affiliation>Co-Innovation Center for Sustainable Forestry in Southern China, College of Forestry, Nanjing Forestry University, Nanjing 210037, China.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Zhuge</LastName>
<ForeName>Qiang</ForeName>
<Initials>Q</Initials>
<AffiliationInfo>
<Affiliation>Co-Innovation Center for Sustainable Forestry in Southern China, Key Laboratory of Forest Genetics and Biotechnology, Ministry of Education, Nanjing Forestry University, Nanjing, 210037, China. Electronic address: qzhuge@njfu.edu.cn.</Affiliation>
</AffiliationInfo>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2018</Year>
<Month>03</Month>
<Day>10</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>France</Country>
<MedlineTA>Plant Physiol Biochem</MedlineTA>
<NlmUniqueID>9882449</NlmUniqueID>
<ISSNLinking>0981-9428</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D018744">DNA, Plant</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D010940">Plant Proteins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>451W47IQ8X</RegistryNumber>
<NameOfSubstance UI="D012965">Sodium Chloride</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 2.1.1.-</RegistryNumber>
<NameOfSubstance UI="D015254">DNA Modification Methylases</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D019175" MajorTopicYN="N">DNA Methylation</DescriptorName>
<QualifierName UI="Q000187" MajorTopicYN="Y">drug effects</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D015254" MajorTopicYN="Y">DNA Modification Methylases</DescriptorName>
<QualifierName UI="Q000096" MajorTopicYN="N">biosynthesis</QualifierName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D018744" MajorTopicYN="Y">DNA, Plant</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D044127" MajorTopicYN="N">Epigenesis, Genetic</DescriptorName>
<QualifierName UI="Q000187" MajorTopicYN="Y">drug effects</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D015971" MajorTopicYN="N">Gene Expression Regulation, Enzymologic</DescriptorName>
<QualifierName UI="Q000187" MajorTopicYN="Y">drug effects</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D018506" MajorTopicYN="N">Gene Expression Regulation, Plant</DescriptorName>
<QualifierName UI="Q000187" MajorTopicYN="Y">drug effects</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D010940" MajorTopicYN="Y">Plant Proteins</DescriptorName>
<QualifierName UI="Q000096" MajorTopicYN="N">biosynthesis</QualifierName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D032107" MajorTopicYN="Y">Populus</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D012965" MajorTopicYN="N">Sodium Chloride</DescriptorName>
<QualifierName UI="Q000494" MajorTopicYN="Y">pharmacology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D013312" MajorTopicYN="N">Stress, Physiological</DescriptorName>
<QualifierName UI="Q000187" MajorTopicYN="Y">drug effects</QualifierName>
</MeshHeading>
</MeshHeadingList>
<KeywordList Owner="NOTNLM">
<Keyword MajorTopicYN="N">DNA methylation</Keyword>
<Keyword MajorTopicYN="N">Poplar</Keyword>
<Keyword MajorTopicYN="N">PtRDM1</Keyword>
<Keyword MajorTopicYN="N">PtROS1</Keyword>
<Keyword MajorTopicYN="N">Salt stress</Keyword>
</KeywordList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2017</Year>
<Month>12</Month>
<Day>12</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="revised">
<Year>2018</Year>
<Month>02</Month>
<Day>20</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2018</Year>
<Month>03</Month>
<Day>09</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2018</Year>
<Month>3</Month>
<Day>20</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2018</Year>
<Month>7</Month>
<Day>27</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2018</Year>
<Month>3</Month>
<Day>18</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">29549759</ArticleId>
<ArticleId IdType="pii">S0981-9428(18)30126-8</ArticleId>
<ArticleId IdType="doi">10.1016/j.plaphy.2018.03.011</ArticleId>
</ArticleIdList>
</PubmedData>
</pubmed>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/PoplarV1/Data/Main/Corpus
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000F18 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Corpus/biblio.hfd -nk 000F18 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    PoplarV1
   |flux=    Main
   |étape=   Corpus
   |type=    RBID
   |clé=     pubmed:29549759
   |texte=   Functional analyses of PtRDM1 gene overexpression in poplars and evaluation of its effect on DNA methylation and response to salt stress.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Corpus/RBID.i   -Sk "pubmed:29549759" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Corpus/biblio.hfd   \
       | NlmPubMed2Wicri -a PoplarV1 

Wicri

This area was generated with Dilib version V0.6.37.
Data generation: Wed Nov 18 12:07:19 2020. Site generation: Wed Nov 18 12:16:31 2020