Serveur d'exploration sur le peuplier

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Metabolome and Lipidome Profiles of Populus × canescens Twig Tissues During Annual Growth Show Phospholipid-Linked Storage and Mobilization of C, N, and S.

Identifieur interne : 000C58 ( Main/Corpus ); précédent : 000C57; suivant : 000C59

Metabolome and Lipidome Profiles of Populus × canescens Twig Tissues During Annual Growth Show Phospholipid-Linked Storage and Mobilization of C, N, and S.

Auteurs : Mutsumi Watanabe ; Florian Netzer ; Takayuki Tohge ; Isabel Orf ; Yariv Brotman ; David Dubbert ; Alisdair R. Fernie ; Heinz Rennenberg ; Rainer Hoefgen ; Cornelia Herschbach

Source :

RBID : pubmed:30233628

Abstract

The temperate climax tree species Fagus sylvatica and the floodplain tree species Populus × canescens possess contrasting phosphorus (P) nutrition strategies. While F. sylvatica has been documented to display P storage and mobilization (Netzer et al., 2017), this was not observed for Populus × canescens (Netzer et al., 2018b). Nevertheless, changes in the abundance of organic bound P in gray poplar trees indicated adaptation of the P nutrition to different needs during annual growth. The present study aimed at characterizing seasonal changes in metabolite and lipid abundances in gray poplar and uncovering differences in metabolite requirement due to specific needs depending on the season. Seasonal variations in the abundance of (i) sugar-Ps and phospholipids, (ii) amino acids, (iii) sulfur compounds, and (iv) carbon metabolites were expected. It was hypothesized that seasonal changes in metabolite levels relate to N, S, and C storage and mobilization. Changes in organic metabolites binding Pi (Porg) are supposed to support these processes. Variation in triacylglycerols, in sugar-phosphates, in metabolites of the TCA cycle and in the amino acid abundance of poplar twig buds, leaves, bark, and wood were found to be linked to changes in metabolite abundances as well as to C, N, and S storage and mobilization processes. The observed changes support the view of a lack of any P storage in poplar. Yet, during dormancy, contents of phospholipids in twig bark and wood were highest probably due to frost-hardening and to its function in extra-plastidic membranes such as amyloplasts, oleosomes, and protein bodies. Consistent with this assumption, in spring sugar-Ps increased when phospholipids declined and poplar plants entering the vegetative growth period and, hence, metabolic activity increases. These results indicate that poplar trees adopt a policy of P nutrition without P storage and mobilization that is different from their N- and S-nutrition strategies.

DOI: 10.3389/fpls.2018.01292
PubMed: 30233628
PubMed Central: PMC6133996

Links to Exploration step

pubmed:30233628

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Metabolome and Lipidome Profiles of
<i>Populus</i>
×
<i>canescens</i>
Twig Tissues During Annual Growth Show Phospholipid-Linked Storage and Mobilization of C, N, and S.</title>
<author>
<name sortKey="Watanabe, Mutsumi" sort="Watanabe, Mutsumi" uniqKey="Watanabe M" first="Mutsumi" last="Watanabe">Mutsumi Watanabe</name>
<affiliation>
<nlm:affiliation>Max Planck Institute of Molecular Plant Physiology, Wissenschaftspark Potsdam-Golm, Potsdam, Germany.</nlm:affiliation>
</affiliation>
<affiliation>
<nlm:affiliation>NARA Institute of Science and Technology, Ikoma, Japan.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Netzer, Florian" sort="Netzer, Florian" uniqKey="Netzer F" first="Florian" last="Netzer">Florian Netzer</name>
<affiliation>
<nlm:affiliation>Chair of Tree Physiology, Institute of Forest Sciences, Albert Ludwigs University of Freiburg, Freiburg, Germany.</nlm:affiliation>
</affiliation>
<affiliation>
<nlm:affiliation>Chair of Ecosystem Physiology, Institute of Forest Sciences, Albert Ludwigs University of Freiburg, Freiburg, Germany.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Tohge, Takayuki" sort="Tohge, Takayuki" uniqKey="Tohge T" first="Takayuki" last="Tohge">Takayuki Tohge</name>
<affiliation>
<nlm:affiliation>Max Planck Institute of Molecular Plant Physiology, Wissenschaftspark Potsdam-Golm, Potsdam, Germany.</nlm:affiliation>
</affiliation>
<affiliation>
<nlm:affiliation>NARA Institute of Science and Technology, Ikoma, Japan.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Orf, Isabel" sort="Orf, Isabel" uniqKey="Orf I" first="Isabel" last="Orf">Isabel Orf</name>
<affiliation>
<nlm:affiliation>Max Planck Institute of Molecular Plant Physiology, Wissenschaftspark Potsdam-Golm, Potsdam, Germany.</nlm:affiliation>
</affiliation>
<affiliation>
<nlm:affiliation>Department of Life Sciences, Ben-Gurion University of the Negev, Beersheba, Israel.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Brotman, Yariv" sort="Brotman, Yariv" uniqKey="Brotman Y" first="Yariv" last="Brotman">Yariv Brotman</name>
<affiliation>
<nlm:affiliation>Department of Life Sciences, Ben-Gurion University of the Negev, Beersheba, Israel.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Dubbert, David" sort="Dubbert, David" uniqKey="Dubbert D" first="David" last="Dubbert">David Dubbert</name>
<affiliation>
<nlm:affiliation>Chair of Ecosystem Physiology, Institute of Forest Sciences, Albert Ludwigs University of Freiburg, Freiburg, Germany.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Fernie, Alisdair R" sort="Fernie, Alisdair R" uniqKey="Fernie A" first="Alisdair R" last="Fernie">Alisdair R. Fernie</name>
<affiliation>
<nlm:affiliation>Max Planck Institute of Molecular Plant Physiology, Wissenschaftspark Potsdam-Golm, Potsdam, Germany.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Rennenberg, Heinz" sort="Rennenberg, Heinz" uniqKey="Rennenberg H" first="Heinz" last="Rennenberg">Heinz Rennenberg</name>
<affiliation>
<nlm:affiliation>Chair of Tree Physiology, Institute of Forest Sciences, Albert Ludwigs University of Freiburg, Freiburg, Germany.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Hoefgen, Rainer" sort="Hoefgen, Rainer" uniqKey="Hoefgen R" first="Rainer" last="Hoefgen">Rainer Hoefgen</name>
<affiliation>
<nlm:affiliation>Max Planck Institute of Molecular Plant Physiology, Wissenschaftspark Potsdam-Golm, Potsdam, Germany.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Herschbach, Cornelia" sort="Herschbach, Cornelia" uniqKey="Herschbach C" first="Cornelia" last="Herschbach">Cornelia Herschbach</name>
<affiliation>
<nlm:affiliation>Chair of Tree Physiology, Institute of Forest Sciences, Albert Ludwigs University of Freiburg, Freiburg, Germany.</nlm:affiliation>
</affiliation>
<affiliation>
<nlm:affiliation>Chair of Ecosystem Physiology, Institute of Forest Sciences, Albert Ludwigs University of Freiburg, Freiburg, Germany.</nlm:affiliation>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2018">2018</date>
<idno type="RBID">pubmed:30233628</idno>
<idno type="pmid">30233628</idno>
<idno type="doi">10.3389/fpls.2018.01292</idno>
<idno type="pmc">PMC6133996</idno>
<idno type="wicri:Area/Main/Corpus">000C58</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">000C58</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Metabolome and Lipidome Profiles of
<i>Populus</i>
×
<i>canescens</i>
Twig Tissues During Annual Growth Show Phospholipid-Linked Storage and Mobilization of C, N, and S.</title>
<author>
<name sortKey="Watanabe, Mutsumi" sort="Watanabe, Mutsumi" uniqKey="Watanabe M" first="Mutsumi" last="Watanabe">Mutsumi Watanabe</name>
<affiliation>
<nlm:affiliation>Max Planck Institute of Molecular Plant Physiology, Wissenschaftspark Potsdam-Golm, Potsdam, Germany.</nlm:affiliation>
</affiliation>
<affiliation>
<nlm:affiliation>NARA Institute of Science and Technology, Ikoma, Japan.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Netzer, Florian" sort="Netzer, Florian" uniqKey="Netzer F" first="Florian" last="Netzer">Florian Netzer</name>
<affiliation>
<nlm:affiliation>Chair of Tree Physiology, Institute of Forest Sciences, Albert Ludwigs University of Freiburg, Freiburg, Germany.</nlm:affiliation>
</affiliation>
<affiliation>
<nlm:affiliation>Chair of Ecosystem Physiology, Institute of Forest Sciences, Albert Ludwigs University of Freiburg, Freiburg, Germany.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Tohge, Takayuki" sort="Tohge, Takayuki" uniqKey="Tohge T" first="Takayuki" last="Tohge">Takayuki Tohge</name>
<affiliation>
<nlm:affiliation>Max Planck Institute of Molecular Plant Physiology, Wissenschaftspark Potsdam-Golm, Potsdam, Germany.</nlm:affiliation>
</affiliation>
<affiliation>
<nlm:affiliation>NARA Institute of Science and Technology, Ikoma, Japan.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Orf, Isabel" sort="Orf, Isabel" uniqKey="Orf I" first="Isabel" last="Orf">Isabel Orf</name>
<affiliation>
<nlm:affiliation>Max Planck Institute of Molecular Plant Physiology, Wissenschaftspark Potsdam-Golm, Potsdam, Germany.</nlm:affiliation>
</affiliation>
<affiliation>
<nlm:affiliation>Department of Life Sciences, Ben-Gurion University of the Negev, Beersheba, Israel.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Brotman, Yariv" sort="Brotman, Yariv" uniqKey="Brotman Y" first="Yariv" last="Brotman">Yariv Brotman</name>
<affiliation>
<nlm:affiliation>Department of Life Sciences, Ben-Gurion University of the Negev, Beersheba, Israel.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Dubbert, David" sort="Dubbert, David" uniqKey="Dubbert D" first="David" last="Dubbert">David Dubbert</name>
<affiliation>
<nlm:affiliation>Chair of Ecosystem Physiology, Institute of Forest Sciences, Albert Ludwigs University of Freiburg, Freiburg, Germany.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Fernie, Alisdair R" sort="Fernie, Alisdair R" uniqKey="Fernie A" first="Alisdair R" last="Fernie">Alisdair R. Fernie</name>
<affiliation>
<nlm:affiliation>Max Planck Institute of Molecular Plant Physiology, Wissenschaftspark Potsdam-Golm, Potsdam, Germany.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Rennenberg, Heinz" sort="Rennenberg, Heinz" uniqKey="Rennenberg H" first="Heinz" last="Rennenberg">Heinz Rennenberg</name>
<affiliation>
<nlm:affiliation>Chair of Tree Physiology, Institute of Forest Sciences, Albert Ludwigs University of Freiburg, Freiburg, Germany.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Hoefgen, Rainer" sort="Hoefgen, Rainer" uniqKey="Hoefgen R" first="Rainer" last="Hoefgen">Rainer Hoefgen</name>
<affiliation>
<nlm:affiliation>Max Planck Institute of Molecular Plant Physiology, Wissenschaftspark Potsdam-Golm, Potsdam, Germany.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Herschbach, Cornelia" sort="Herschbach, Cornelia" uniqKey="Herschbach C" first="Cornelia" last="Herschbach">Cornelia Herschbach</name>
<affiliation>
<nlm:affiliation>Chair of Tree Physiology, Institute of Forest Sciences, Albert Ludwigs University of Freiburg, Freiburg, Germany.</nlm:affiliation>
</affiliation>
<affiliation>
<nlm:affiliation>Chair of Ecosystem Physiology, Institute of Forest Sciences, Albert Ludwigs University of Freiburg, Freiburg, Germany.</nlm:affiliation>
</affiliation>
</author>
</analytic>
<series>
<title level="j">Frontiers in plant science</title>
<idno type="ISSN">1664-462X</idno>
<imprint>
<date when="2018" type="published">2018</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass></textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">The temperate climax tree species
<i>Fagus sylvatica</i>
and the floodplain tree species
<i>Populus</i>
×
<i>canescens</i>
possess contrasting phosphorus (P) nutrition strategies. While
<i>F. sylvatica</i>
has been documented to display P storage and mobilization (Netzer et al., 2017), this was not observed for
<i>Populus</i>
×
<i>canescens</i>
(Netzer et al., 2018b). Nevertheless, changes in the abundance of organic bound P in gray poplar trees indicated adaptation of the P nutrition to different needs during annual growth. The present study aimed at characterizing seasonal changes in metabolite and lipid abundances in gray poplar and uncovering differences in metabolite requirement due to specific needs depending on the season. Seasonal variations in the abundance of (i) sugar-Ps and phospholipids, (ii) amino acids, (iii) sulfur compounds, and (iv) carbon metabolites were expected. It was hypothesized that seasonal changes in metabolite levels relate to N, S, and C storage and mobilization. Changes in organic metabolites binding P
<sub>i</sub>
(P
<sub>org</sub>
) are supposed to support these processes. Variation in triacylglycerols, in sugar-phosphates, in metabolites of the TCA cycle and in the amino acid abundance of poplar twig buds, leaves, bark, and wood were found to be linked to changes in metabolite abundances as well as to C, N, and S storage and mobilization processes. The observed changes support the view of a lack of any P storage in poplar. Yet, during dormancy, contents of phospholipids in twig bark and wood were highest probably due to frost-hardening and to its function in extra-plastidic membranes such as amyloplasts, oleosomes, and protein bodies. Consistent with this assumption, in spring sugar-Ps increased when phospholipids declined and poplar plants entering the vegetative growth period and, hence, metabolic activity increases. These results indicate that poplar trees adopt a policy of P nutrition without P storage and mobilization that is different from their N- and S-nutrition strategies.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="PubMed-not-MEDLINE" Owner="NLM">
<PMID Version="1">30233628</PMID>
<DateRevised>
<Year>2020</Year>
<Month>10</Month>
<Day>01</Day>
</DateRevised>
<Article PubModel="Electronic-eCollection">
<Journal>
<ISSN IssnType="Print">1664-462X</ISSN>
<JournalIssue CitedMedium="Print">
<Volume>9</Volume>
<PubDate>
<Year>2018</Year>
</PubDate>
</JournalIssue>
<Title>Frontiers in plant science</Title>
<ISOAbbreviation>Front Plant Sci</ISOAbbreviation>
</Journal>
<ArticleTitle>Metabolome and Lipidome Profiles of
<i>Populus</i>
×
<i>canescens</i>
Twig Tissues During Annual Growth Show Phospholipid-Linked Storage and Mobilization of C, N, and S.</ArticleTitle>
<Pagination>
<MedlinePgn>1292</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.3389/fpls.2018.01292</ELocationID>
<Abstract>
<AbstractText>The temperate climax tree species
<i>Fagus sylvatica</i>
and the floodplain tree species
<i>Populus</i>
×
<i>canescens</i>
possess contrasting phosphorus (P) nutrition strategies. While
<i>F. sylvatica</i>
has been documented to display P storage and mobilization (Netzer et al., 2017), this was not observed for
<i>Populus</i>
×
<i>canescens</i>
(Netzer et al., 2018b). Nevertheless, changes in the abundance of organic bound P in gray poplar trees indicated adaptation of the P nutrition to different needs during annual growth. The present study aimed at characterizing seasonal changes in metabolite and lipid abundances in gray poplar and uncovering differences in metabolite requirement due to specific needs depending on the season. Seasonal variations in the abundance of (i) sugar-Ps and phospholipids, (ii) amino acids, (iii) sulfur compounds, and (iv) carbon metabolites were expected. It was hypothesized that seasonal changes in metabolite levels relate to N, S, and C storage and mobilization. Changes in organic metabolites binding P
<sub>i</sub>
(P
<sub>org</sub>
) are supposed to support these processes. Variation in triacylglycerols, in sugar-phosphates, in metabolites of the TCA cycle and in the amino acid abundance of poplar twig buds, leaves, bark, and wood were found to be linked to changes in metabolite abundances as well as to C, N, and S storage and mobilization processes. The observed changes support the view of a lack of any P storage in poplar. Yet, during dormancy, contents of phospholipids in twig bark and wood were highest probably due to frost-hardening and to its function in extra-plastidic membranes such as amyloplasts, oleosomes, and protein bodies. Consistent with this assumption, in spring sugar-Ps increased when phospholipids declined and poplar plants entering the vegetative growth period and, hence, metabolic activity increases. These results indicate that poplar trees adopt a policy of P nutrition without P storage and mobilization that is different from their N- and S-nutrition strategies.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Watanabe</LastName>
<ForeName>Mutsumi</ForeName>
<Initials>M</Initials>
<AffiliationInfo>
<Affiliation>Max Planck Institute of Molecular Plant Physiology, Wissenschaftspark Potsdam-Golm, Potsdam, Germany.</Affiliation>
</AffiliationInfo>
<AffiliationInfo>
<Affiliation>NARA Institute of Science and Technology, Ikoma, Japan.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Netzer</LastName>
<ForeName>Florian</ForeName>
<Initials>F</Initials>
<AffiliationInfo>
<Affiliation>Chair of Tree Physiology, Institute of Forest Sciences, Albert Ludwigs University of Freiburg, Freiburg, Germany.</Affiliation>
</AffiliationInfo>
<AffiliationInfo>
<Affiliation>Chair of Ecosystem Physiology, Institute of Forest Sciences, Albert Ludwigs University of Freiburg, Freiburg, Germany.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Tohge</LastName>
<ForeName>Takayuki</ForeName>
<Initials>T</Initials>
<AffiliationInfo>
<Affiliation>Max Planck Institute of Molecular Plant Physiology, Wissenschaftspark Potsdam-Golm, Potsdam, Germany.</Affiliation>
</AffiliationInfo>
<AffiliationInfo>
<Affiliation>NARA Institute of Science and Technology, Ikoma, Japan.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Orf</LastName>
<ForeName>Isabel</ForeName>
<Initials>I</Initials>
<AffiliationInfo>
<Affiliation>Max Planck Institute of Molecular Plant Physiology, Wissenschaftspark Potsdam-Golm, Potsdam, Germany.</Affiliation>
</AffiliationInfo>
<AffiliationInfo>
<Affiliation>Department of Life Sciences, Ben-Gurion University of the Negev, Beersheba, Israel.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Brotman</LastName>
<ForeName>Yariv</ForeName>
<Initials>Y</Initials>
<AffiliationInfo>
<Affiliation>Department of Life Sciences, Ben-Gurion University of the Negev, Beersheba, Israel.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Dubbert</LastName>
<ForeName>David</ForeName>
<Initials>D</Initials>
<AffiliationInfo>
<Affiliation>Chair of Ecosystem Physiology, Institute of Forest Sciences, Albert Ludwigs University of Freiburg, Freiburg, Germany.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Fernie</LastName>
<ForeName>Alisdair R</ForeName>
<Initials>AR</Initials>
<AffiliationInfo>
<Affiliation>Max Planck Institute of Molecular Plant Physiology, Wissenschaftspark Potsdam-Golm, Potsdam, Germany.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Rennenberg</LastName>
<ForeName>Heinz</ForeName>
<Initials>H</Initials>
<AffiliationInfo>
<Affiliation>Chair of Tree Physiology, Institute of Forest Sciences, Albert Ludwigs University of Freiburg, Freiburg, Germany.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Hoefgen</LastName>
<ForeName>Rainer</ForeName>
<Initials>R</Initials>
<AffiliationInfo>
<Affiliation>Max Planck Institute of Molecular Plant Physiology, Wissenschaftspark Potsdam-Golm, Potsdam, Germany.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Herschbach</LastName>
<ForeName>Cornelia</ForeName>
<Initials>C</Initials>
<AffiliationInfo>
<Affiliation>Chair of Tree Physiology, Institute of Forest Sciences, Albert Ludwigs University of Freiburg, Freiburg, Germany.</Affiliation>
</AffiliationInfo>
<AffiliationInfo>
<Affiliation>Chair of Ecosystem Physiology, Institute of Forest Sciences, Albert Ludwigs University of Freiburg, Freiburg, Germany.</Affiliation>
</AffiliationInfo>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2018</Year>
<Month>09</Month>
<Day>05</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>Switzerland</Country>
<MedlineTA>Front Plant Sci</MedlineTA>
<NlmUniqueID>101568200</NlmUniqueID>
<ISSNLinking>1664-462X</ISSNLinking>
</MedlineJournalInfo>
<KeywordList Owner="NOTNLM">
<Keyword MajorTopicYN="N">Populus × canescens</Keyword>
<Keyword MajorTopicYN="N">annual growth cycle</Keyword>
<Keyword MajorTopicYN="N">nutrient mobilization</Keyword>
<Keyword MajorTopicYN="N">nutrient storage</Keyword>
<Keyword MajorTopicYN="N">phospholipids</Keyword>
</KeywordList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2018</Year>
<Month>05</Month>
<Day>28</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2018</Year>
<Month>08</Month>
<Day>16</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2018</Year>
<Month>9</Month>
<Day>21</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2018</Year>
<Month>9</Month>
<Day>21</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2018</Year>
<Month>9</Month>
<Day>21</Day>
<Hour>6</Hour>
<Minute>1</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>epublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">30233628</ArticleId>
<ArticleId IdType="doi">10.3389/fpls.2018.01292</ArticleId>
<ArticleId IdType="pmc">PMC6133996</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>Science. 2010 Oct 8;330(6001):226-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20798281</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell Mol Life Sci. 2006 Jun;63(12):1355-69</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16649142</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Front Plant Sci. 2018 May 16;9:657</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">29868101</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Annu Rev Plant Biol. 2008;59:115-42</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18444898</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Biol (Stuttg). 2010 Mar;12(2):275-91</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20398235</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Tree Physiol. 2018 Jan 1;38(1):1-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">29309680</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Tree Physiol. 1994 May;14(5):541-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14967689</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2012 Mar 13;109(11):4181-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22371578</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Physiol Plant. 2004 Feb;120(2):212-219</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15032855</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant J. 2012 Dec;72(6):972-82</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23061922</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochim Biophys Acta. 2014 Apr;1837(4):470-80</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24051056</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>FEBS J. 2016 Oct;283(19):3534-3555</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26991113</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Tree Physiol. 2010 Sep;30(9):1096-110</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20354193</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Opin Plant Biol. 2004 Jun;7(3):302-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15134751</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Hortic Res. 2014 Nov 26;1:14059</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26504555</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2005 May;138(1):304-18</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15834012</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>New Phytol. 2005 Jul;167(1):19-30</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15948826</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Tree Physiol. 2011 Feb;31(2):208-25</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21383024</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Plant. 2011 May;4(3):453-63</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21324969</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Chem Phys Lipids. 2001 May;111(1):37-57</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11438283</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Planta. 1988 Jan;173(1):31-4</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24226175</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2009 Apr;149(4):1982-91</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19201914</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2005 Dec;139(4):1635-48</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16299183</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochim Biophys Acta. 2005 Jul 15;1735(2):89-100</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15967713</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochim Biophys Acta. 2014 Jun;1838(6):1488-500</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24565795</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Plant Res. 2016 Jul;129(4):565-580</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27114097</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Mol Biol. 1991 Oct;17(4):669-78</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">1912491</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Tree Physiol. 2010 Sep;30(9):1083-95</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20551251</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Front Plant Sci. 2015 Jan 12;5:794</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25628637</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Planta. 1989 Jun;178(3):275-81</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24212893</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Ecology. 2015 Feb;96(2):373-80</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26240859</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Plant Physiol. 2005 May;162(5):603-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15940878</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biotechniques. 2003 Feb;34(2):374-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12613259</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genome Biol. 2004;5(4):R24</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15059257</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Methods Mol Biol. 2018;1744:339-358</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">29392679</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2007 Aug;19(8):2370-90</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17693531</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Exp Bot. 2007;58(15-16):4293-306</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18182432</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 1991 Jul;96(3):686-92</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16668243</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Tree Physiol. 2016 Jan;36(1):22-38</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26420793</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Mol Biol. 2010 Mar;72(4-5):499-517</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20087755</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Prog Lipid Res. 2017 Oct;68:12-25</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28778473</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Annu Rev Plant Biol. 2006;57:805-36</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16669783</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Lipid Res. 2012 Feb;53(2):215-26</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22045929</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Opin Plant Biol. 2012 Jun;15(3):315-21</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22366488</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochem J. 2015 May 15;468(1):73-85</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25716890</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Trends Plant Sci. 2007 May;12(5):217-23</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17416545</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Tree Physiol. 2002 Jul;22(10):717-24</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12091153</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>BMC Plant Biol. 2008 May 23;8:61</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18500984</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2013 Jul;162(3):1290-310</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23696093</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Tree Physiol. 2018 Jan 1;38(1):37-51</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">29182787</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Anal Biochem. 1976 May 7;72:248-54</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">942051</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Front Plant Sci. 2018 Jun 06;9:723</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">29928284</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS One. 2013 Dec 23;8(12):e83366</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24376694</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Trends Plant Sci. 2017 Dec;22(12):1027-1040</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28993119</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Tree Physiol. 2018 Jan 1;38(1):6-24</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">29077948</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Exp Bot. 2003 May;54(386):1389-97</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12709485</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Annu Rev Plant Biol. 2007;58:435-58</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17280524</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell Environ. 2014 Apr;37(4):1022-36</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24182190</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Tree Physiol. 2010 Sep;30(9):1047-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20696885</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell Environ. 2013 Jul;36(7):1285-95</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23278135</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2012 Nov;160(3):1515-29</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22992511</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/PoplarV1/Data/Main/Corpus
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000C58 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Corpus/biblio.hfd -nk 000C58 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    PoplarV1
   |flux=    Main
   |étape=   Corpus
   |type=    RBID
   |clé=     pubmed:30233628
   |texte=   Metabolome and Lipidome Profiles of Populus × canescens Twig Tissues During Annual Growth Show Phospholipid-Linked Storage and Mobilization of C, N, and S.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Corpus/RBID.i   -Sk "pubmed:30233628" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Corpus/biblio.hfd   \
       | NlmPubMed2Wicri -a PoplarV1 

Wicri

This area was generated with Dilib version V0.6.37.
Data generation: Wed Nov 18 12:07:19 2020. Site generation: Wed Nov 18 12:16:31 2020