Serveur d'exploration sur le peuplier

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Production of cellulosic butyrate and 3-hydroxybutyrate in engineered Escherichia coli.

Identifieur interne : 000917 ( Main/Corpus ); précédent : 000916; suivant : 000918

Production of cellulosic butyrate and 3-hydroxybutyrate in engineered Escherichia coli.

Auteurs : Dragan Miscevic ; Kajan Srirangan ; Teshager Kefale ; Daryoush Abedi ; Murray Moo-Young ; C Perry Chou

Source :

RBID : pubmed:31049621

English descriptors

Abstract

Being the most abundant renewable organic substance on Earth, lignocellulosic biomass has acted as an attractive and cost-effective feedstock for biobased production of value-added products. However, lignocellulosic biomass should be properly treated for its effective utilization during biotransformation. The current work aimed to demonstrate biobased production of butyrate and 3-hydroxybutyrate (3-HB) in engineered Escherichia coli using pretreated and detoxified aspen tree (Populus tremuloides) wood chips as the feedstock. Various bioprocessing and genetic/metabolic factors limiting the production of cellulosic butyrate and 3-HB were identified. With these developed bioprocessing strategies and strain engineering approaches, major carbons in the hydrolysate, including glucose, xylose, and even acetate, could be completely dissimilated during shake-flask cultivation with up to 1.68 g L-1 butyrate, 8.95 g L-1 3-HB, and minimal side metabolites (i.e., acetate and ethanol) being obtained. Our results highlight the importance of consolidating bioprocess and genetic engineering strategies for effective biobased production from lignocellulosic biomass.

DOI: 10.1007/s00253-019-09815-x
PubMed: 31049621

Links to Exploration step

pubmed:31049621

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Production of cellulosic butyrate and 3-hydroxybutyrate in engineered Escherichia coli.</title>
<author>
<name sortKey="Miscevic, Dragan" sort="Miscevic, Dragan" uniqKey="Miscevic D" first="Dragan" last="Miscevic">Dragan Miscevic</name>
<affiliation>
<nlm:affiliation>Department of Chemical Engineering, University of Waterloo, 200 University Avenue West, Waterloo, Ontario, N2L 3G1, Canada.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Srirangan, Kajan" sort="Srirangan, Kajan" uniqKey="Srirangan K" first="Kajan" last="Srirangan">Kajan Srirangan</name>
<affiliation>
<nlm:affiliation>Biotechnology Research Institute, National Research Council of Canada, Montreal, Quebec, H4P 2R2, Canada.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Kefale, Teshager" sort="Kefale, Teshager" uniqKey="Kefale T" first="Teshager" last="Kefale">Teshager Kefale</name>
<affiliation>
<nlm:affiliation>Department of Chemical Engineering, University of Waterloo, 200 University Avenue West, Waterloo, Ontario, N2L 3G1, Canada.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Abedi, Daryoush" sort="Abedi, Daryoush" uniqKey="Abedi D" first="Daryoush" last="Abedi">Daryoush Abedi</name>
<affiliation>
<nlm:affiliation>Department of Chemical Engineering, University of Waterloo, 200 University Avenue West, Waterloo, Ontario, N2L 3G1, Canada.</nlm:affiliation>
</affiliation>
<affiliation>
<nlm:affiliation>Department of Drug & Food Control, Tehran University of Medical Sciences, Tehran, Iran.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Moo Young, Murray" sort="Moo Young, Murray" uniqKey="Moo Young M" first="Murray" last="Moo-Young">Murray Moo-Young</name>
<affiliation>
<nlm:affiliation>Department of Chemical Engineering, University of Waterloo, 200 University Avenue West, Waterloo, Ontario, N2L 3G1, Canada.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Chou, C Perry" sort="Chou, C Perry" uniqKey="Chou C" first="C Perry" last="Chou">C Perry Chou</name>
<affiliation>
<nlm:affiliation>Department of Chemical Engineering, University of Waterloo, 200 University Avenue West, Waterloo, Ontario, N2L 3G1, Canada. cpchou@uwaterloo.ca.</nlm:affiliation>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2019">2019</date>
<idno type="RBID">pubmed:31049621</idno>
<idno type="pmid">31049621</idno>
<idno type="doi">10.1007/s00253-019-09815-x</idno>
<idno type="wicri:Area/Main/Corpus">000917</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">000917</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Production of cellulosic butyrate and 3-hydroxybutyrate in engineered Escherichia coli.</title>
<author>
<name sortKey="Miscevic, Dragan" sort="Miscevic, Dragan" uniqKey="Miscevic D" first="Dragan" last="Miscevic">Dragan Miscevic</name>
<affiliation>
<nlm:affiliation>Department of Chemical Engineering, University of Waterloo, 200 University Avenue West, Waterloo, Ontario, N2L 3G1, Canada.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Srirangan, Kajan" sort="Srirangan, Kajan" uniqKey="Srirangan K" first="Kajan" last="Srirangan">Kajan Srirangan</name>
<affiliation>
<nlm:affiliation>Biotechnology Research Institute, National Research Council of Canada, Montreal, Quebec, H4P 2R2, Canada.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Kefale, Teshager" sort="Kefale, Teshager" uniqKey="Kefale T" first="Teshager" last="Kefale">Teshager Kefale</name>
<affiliation>
<nlm:affiliation>Department of Chemical Engineering, University of Waterloo, 200 University Avenue West, Waterloo, Ontario, N2L 3G1, Canada.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Abedi, Daryoush" sort="Abedi, Daryoush" uniqKey="Abedi D" first="Daryoush" last="Abedi">Daryoush Abedi</name>
<affiliation>
<nlm:affiliation>Department of Chemical Engineering, University of Waterloo, 200 University Avenue West, Waterloo, Ontario, N2L 3G1, Canada.</nlm:affiliation>
</affiliation>
<affiliation>
<nlm:affiliation>Department of Drug & Food Control, Tehran University of Medical Sciences, Tehran, Iran.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Moo Young, Murray" sort="Moo Young, Murray" uniqKey="Moo Young M" first="Murray" last="Moo-Young">Murray Moo-Young</name>
<affiliation>
<nlm:affiliation>Department of Chemical Engineering, University of Waterloo, 200 University Avenue West, Waterloo, Ontario, N2L 3G1, Canada.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Chou, C Perry" sort="Chou, C Perry" uniqKey="Chou C" first="C Perry" last="Chou">C Perry Chou</name>
<affiliation>
<nlm:affiliation>Department of Chemical Engineering, University of Waterloo, 200 University Avenue West, Waterloo, Ontario, N2L 3G1, Canada. cpchou@uwaterloo.ca.</nlm:affiliation>
</affiliation>
</author>
</analytic>
<series>
<title level="j">Applied microbiology and biotechnology</title>
<idno type="eISSN">1432-0614</idno>
<imprint>
<date when="2019" type="published">2019</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>3-Hydroxybutyric Acid (biosynthesis)</term>
<term>Biomass (MeSH)</term>
<term>Biotransformation (MeSH)</term>
<term>Butyrates (metabolism)</term>
<term>Escherichia coli (genetics)</term>
<term>Escherichia coli (metabolism)</term>
<term>Ethanol (MeSH)</term>
<term>Fermentation (MeSH)</term>
<term>Glucose (MeSH)</term>
<term>Lignin (metabolism)</term>
<term>Metabolic Engineering (methods)</term>
<term>Metabolic Networks and Pathways (MeSH)</term>
<term>Populus (MeSH)</term>
<term>Xylose (MeSH)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="biosynthesis" xml:lang="en">
<term>3-Hydroxybutyric Acid</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="metabolism" xml:lang="en">
<term>Butyrates</term>
<term>Lignin</term>
</keywords>
<keywords scheme="MESH" qualifier="genetics" xml:lang="en">
<term>Escherichia coli</term>
</keywords>
<keywords scheme="MESH" qualifier="metabolism" xml:lang="en">
<term>Escherichia coli</term>
</keywords>
<keywords scheme="MESH" qualifier="methods" xml:lang="en">
<term>Metabolic Engineering</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Biomass</term>
<term>Biotransformation</term>
<term>Ethanol</term>
<term>Fermentation</term>
<term>Glucose</term>
<term>Metabolic Networks and Pathways</term>
<term>Populus</term>
<term>Xylose</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Being the most abundant renewable organic substance on Earth, lignocellulosic biomass has acted as an attractive and cost-effective feedstock for biobased production of value-added products. However, lignocellulosic biomass should be properly treated for its effective utilization during biotransformation. The current work aimed to demonstrate biobased production of butyrate and 3-hydroxybutyrate (3-HB) in engineered Escherichia coli using pretreated and detoxified aspen tree (Populus tremuloides) wood chips as the feedstock. Various bioprocessing and genetic/metabolic factors limiting the production of cellulosic butyrate and 3-HB were identified. With these developed bioprocessing strategies and strain engineering approaches, major carbons in the hydrolysate, including glucose, xylose, and even acetate, could be completely dissimilated during shake-flask cultivation with up to 1.68 g L
<sup>-1</sup>
butyrate, 8.95 g L
<sup>-1</sup>
3-HB, and minimal side metabolites (i.e., acetate and ethanol) being obtained. Our results highlight the importance of consolidating bioprocess and genetic engineering strategies for effective biobased production from lignocellulosic biomass.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">31049621</PMID>
<DateCompleted>
<Year>2019</Year>
<Month>10</Month>
<Day>31</Day>
</DateCompleted>
<DateRevised>
<Year>2019</Year>
<Month>10</Month>
<Day>31</Day>
</DateRevised>
<Article PubModel="Print-Electronic">
<Journal>
<ISSN IssnType="Electronic">1432-0614</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>103</Volume>
<Issue>13</Issue>
<PubDate>
<Year>2019</Year>
<Month>Jul</Month>
</PubDate>
</JournalIssue>
<Title>Applied microbiology and biotechnology</Title>
<ISOAbbreviation>Appl Microbiol Biotechnol</ISOAbbreviation>
</Journal>
<ArticleTitle>Production of cellulosic butyrate and 3-hydroxybutyrate in engineered Escherichia coli.</ArticleTitle>
<Pagination>
<MedlinePgn>5215-5230</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1007/s00253-019-09815-x</ELocationID>
<Abstract>
<AbstractText>Being the most abundant renewable organic substance on Earth, lignocellulosic biomass has acted as an attractive and cost-effective feedstock for biobased production of value-added products. However, lignocellulosic biomass should be properly treated for its effective utilization during biotransformation. The current work aimed to demonstrate biobased production of butyrate and 3-hydroxybutyrate (3-HB) in engineered Escherichia coli using pretreated and detoxified aspen tree (Populus tremuloides) wood chips as the feedstock. Various bioprocessing and genetic/metabolic factors limiting the production of cellulosic butyrate and 3-HB were identified. With these developed bioprocessing strategies and strain engineering approaches, major carbons in the hydrolysate, including glucose, xylose, and even acetate, could be completely dissimilated during shake-flask cultivation with up to 1.68 g L
<sup>-1</sup>
butyrate, 8.95 g L
<sup>-1</sup>
3-HB, and minimal side metabolites (i.e., acetate and ethanol) being obtained. Our results highlight the importance of consolidating bioprocess and genetic engineering strategies for effective biobased production from lignocellulosic biomass.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Miscevic</LastName>
<ForeName>Dragan</ForeName>
<Initials>D</Initials>
<AffiliationInfo>
<Affiliation>Department of Chemical Engineering, University of Waterloo, 200 University Avenue West, Waterloo, Ontario, N2L 3G1, Canada.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Srirangan</LastName>
<ForeName>Kajan</ForeName>
<Initials>K</Initials>
<AffiliationInfo>
<Affiliation>Biotechnology Research Institute, National Research Council of Canada, Montreal, Quebec, H4P 2R2, Canada.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Kefale</LastName>
<ForeName>Teshager</ForeName>
<Initials>T</Initials>
<AffiliationInfo>
<Affiliation>Department of Chemical Engineering, University of Waterloo, 200 University Avenue West, Waterloo, Ontario, N2L 3G1, Canada.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Abedi</LastName>
<ForeName>Daryoush</ForeName>
<Initials>D</Initials>
<AffiliationInfo>
<Affiliation>Department of Chemical Engineering, University of Waterloo, 200 University Avenue West, Waterloo, Ontario, N2L 3G1, Canada.</Affiliation>
</AffiliationInfo>
<AffiliationInfo>
<Affiliation>Department of Drug & Food Control, Tehran University of Medical Sciences, Tehran, Iran.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Moo-Young</LastName>
<ForeName>Murray</ForeName>
<Initials>M</Initials>
<AffiliationInfo>
<Affiliation>Department of Chemical Engineering, University of Waterloo, 200 University Avenue West, Waterloo, Ontario, N2L 3G1, Canada.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Chou</LastName>
<ForeName>C Perry</ForeName>
<Initials>CP</Initials>
<AffiliationInfo>
<Affiliation>Department of Chemical Engineering, University of Waterloo, 200 University Avenue West, Waterloo, Ontario, N2L 3G1, Canada. cpchou@uwaterloo.ca.</Affiliation>
</AffiliationInfo>
</Author>
</AuthorList>
<Language>eng</Language>
<GrantList CompleteYN="Y">
<Grant>
<GrantID>CRC 950-211471</GrantID>
<Agency>Natural Sciences and Engineering Research Council of Canada</Agency>
<Country></Country>
</Grant>
</GrantList>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2019</Year>
<Month>05</Month>
<Day>02</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>Germany</Country>
<MedlineTA>Appl Microbiol Biotechnol</MedlineTA>
<NlmUniqueID>8406612</NlmUniqueID>
<ISSNLinking>0175-7598</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D002087">Butyrates</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>11132-73-3</RegistryNumber>
<NameOfSubstance UI="C036909">lignocellulose</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>3K9958V90M</RegistryNumber>
<NameOfSubstance UI="D000431">Ethanol</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>9005-53-2</RegistryNumber>
<NameOfSubstance UI="D008031">Lignin</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>A1TA934AKO</RegistryNumber>
<NameOfSubstance UI="D014994">Xylose</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>IY9XDZ35W2</RegistryNumber>
<NameOfSubstance UI="D005947">Glucose</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>TZP1275679</RegistryNumber>
<NameOfSubstance UI="D020155">3-Hydroxybutyric Acid</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D020155" MajorTopicYN="N">3-Hydroxybutyric Acid</DescriptorName>
<QualifierName UI="Q000096" MajorTopicYN="Y">biosynthesis</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D018533" MajorTopicYN="N">Biomass</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D001711" MajorTopicYN="N">Biotransformation</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D002087" MajorTopicYN="N">Butyrates</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D004926" MajorTopicYN="N">Escherichia coli</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D000431" MajorTopicYN="N">Ethanol</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D005285" MajorTopicYN="N">Fermentation</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D005947" MajorTopicYN="N">Glucose</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D008031" MajorTopicYN="N">Lignin</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D060847" MajorTopicYN="N">Metabolic Engineering</DescriptorName>
<QualifierName UI="Q000379" MajorTopicYN="Y">methods</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D053858" MajorTopicYN="N">Metabolic Networks and Pathways</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D032107" MajorTopicYN="N">Populus</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D014994" MajorTopicYN="N">Xylose</DescriptorName>
</MeshHeading>
</MeshHeadingList>
<KeywordList Owner="NOTNLM">
<Keyword MajorTopicYN="N">3-Hydroxybutyrate</Keyword>
<Keyword MajorTopicYN="N">Butyrate</Keyword>
<Keyword MajorTopicYN="N">Detoxification</Keyword>
<Keyword MajorTopicYN="N">Escherichia coli</Keyword>
<Keyword MajorTopicYN="N">Lignocellulosic hydrolysate</Keyword>
<Keyword MajorTopicYN="N">Over-liming</Keyword>
</KeywordList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2018</Year>
<Month>11</Month>
<Day>07</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2019</Year>
<Month>03</Month>
<Day>31</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="revised">
<Year>2019</Year>
<Month>03</Month>
<Day>20</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2019</Year>
<Month>5</Month>
<Day>3</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2019</Year>
<Month>11</Month>
<Day>2</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2019</Year>
<Month>5</Month>
<Day>4</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">31049621</ArticleId>
<ArticleId IdType="doi">10.1007/s00253-019-09815-x</ArticleId>
<ArticleId IdType="pii">10.1007/s00253-019-09815-x</ArticleId>
</ArticleIdList>
</PubmedData>
</pubmed>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/PoplarV1/Data/Main/Corpus
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000917 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Corpus/biblio.hfd -nk 000917 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    PoplarV1
   |flux=    Main
   |étape=   Corpus
   |type=    RBID
   |clé=     pubmed:31049621
   |texte=   Production of cellulosic butyrate and 3-hydroxybutyrate in engineered Escherichia coli.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Corpus/RBID.i   -Sk "pubmed:31049621" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Corpus/biblio.hfd   \
       | NlmPubMed2Wicri -a PoplarV1 

Wicri

This area was generated with Dilib version V0.6.37.
Data generation: Wed Nov 18 12:07:19 2020. Site generation: Wed Nov 18 12:16:31 2020