Serveur d'exploration sur le peuplier

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

The Genomic Landscape of Crossover Interference in the Desert Tree Populus euphratica.

Identifieur interne : 000861 ( Main/Corpus ); précédent : 000860; suivant : 000862

The Genomic Landscape of Crossover Interference in the Desert Tree Populus euphratica.

Auteurs : Ping Wang ; Libo Jiang ; Meixia Ye ; Xuli Zhu ; Rongling Wu

Source :

RBID : pubmed:31156703

Abstract

Crossover (CO) interference is a universal phenomenon by which the occurrence of one CO event inhibits the simultaneous occurrence of other COs along a chromosome. Because of its critical role in the evolution of genome structure and organization, the cytological and molecular mechanisms underlying CO interference have been extensively investigated. However, the genome-wide distribution of CO interference and its interplay with sex-, stress-, and age-induced differentiation remain poorly understood. Multi-point linkage analysis has proven to be a powerful tool for landscaping CO interference, especially within species for which CO mutants are rarely available. We implemented four-point linkage analysis to landscape a detailed picture of how CO interference is distributed through the entire genome of Populus euphratica, the only forest tree that can survive and grow in saline desert. We identified an extensive occurrence of CO interference, and found that its strength depends on the length of chromosomes and the genomic locations within the chromosome. We detected high-order CO interference, possibly suggesting a highly complex mechanism crucial for P. euphratica to grow, reproduce, and evolve in its harsh environment.

DOI: 10.3389/fgene.2019.00440
PubMed: 31156703
PubMed Central: PMC6530421

Links to Exploration step

pubmed:31156703

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">The Genomic Landscape of Crossover Interference in the Desert Tree
<i>Populus euphratica</i>
.</title>
<author>
<name sortKey="Wang, Ping" sort="Wang, Ping" uniqKey="Wang P" first="Ping" last="Wang">Ping Wang</name>
<affiliation>
<nlm:affiliation>Center for Computational Biology, College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing, China.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Jiang, Libo" sort="Jiang, Libo" uniqKey="Jiang L" first="Libo" last="Jiang">Libo Jiang</name>
<affiliation>
<nlm:affiliation>Center for Computational Biology, College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing, China.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Ye, Meixia" sort="Ye, Meixia" uniqKey="Ye M" first="Meixia" last="Ye">Meixia Ye</name>
<affiliation>
<nlm:affiliation>Center for Computational Biology, College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing, China.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Zhu, Xuli" sort="Zhu, Xuli" uniqKey="Zhu X" first="Xuli" last="Zhu">Xuli Zhu</name>
<affiliation>
<nlm:affiliation>Center for Computational Biology, College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing, China.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Wu, Rongling" sort="Wu, Rongling" uniqKey="Wu R" first="Rongling" last="Wu">Rongling Wu</name>
<affiliation>
<nlm:affiliation>Center for Computational Biology, College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing, China.</nlm:affiliation>
</affiliation>
<affiliation>
<nlm:affiliation>Center for Statistical Genetics, The Pennsylvania State University, Hershey, PA, United States.</nlm:affiliation>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2019">2019</date>
<idno type="RBID">pubmed:31156703</idno>
<idno type="pmid">31156703</idno>
<idno type="doi">10.3389/fgene.2019.00440</idno>
<idno type="pmc">PMC6530421</idno>
<idno type="wicri:Area/Main/Corpus">000861</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">000861</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">The Genomic Landscape of Crossover Interference in the Desert Tree
<i>Populus euphratica</i>
.</title>
<author>
<name sortKey="Wang, Ping" sort="Wang, Ping" uniqKey="Wang P" first="Ping" last="Wang">Ping Wang</name>
<affiliation>
<nlm:affiliation>Center for Computational Biology, College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing, China.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Jiang, Libo" sort="Jiang, Libo" uniqKey="Jiang L" first="Libo" last="Jiang">Libo Jiang</name>
<affiliation>
<nlm:affiliation>Center for Computational Biology, College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing, China.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Ye, Meixia" sort="Ye, Meixia" uniqKey="Ye M" first="Meixia" last="Ye">Meixia Ye</name>
<affiliation>
<nlm:affiliation>Center for Computational Biology, College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing, China.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Zhu, Xuli" sort="Zhu, Xuli" uniqKey="Zhu X" first="Xuli" last="Zhu">Xuli Zhu</name>
<affiliation>
<nlm:affiliation>Center for Computational Biology, College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing, China.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Wu, Rongling" sort="Wu, Rongling" uniqKey="Wu R" first="Rongling" last="Wu">Rongling Wu</name>
<affiliation>
<nlm:affiliation>Center for Computational Biology, College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing, China.</nlm:affiliation>
</affiliation>
<affiliation>
<nlm:affiliation>Center for Statistical Genetics, The Pennsylvania State University, Hershey, PA, United States.</nlm:affiliation>
</affiliation>
</author>
</analytic>
<series>
<title level="j">Frontiers in genetics</title>
<idno type="ISSN">1664-8021</idno>
<imprint>
<date when="2019" type="published">2019</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass></textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Crossover (CO) interference is a universal phenomenon by which the occurrence of one CO event inhibits the simultaneous occurrence of other COs along a chromosome. Because of its critical role in the evolution of genome structure and organization, the cytological and molecular mechanisms underlying CO interference have been extensively investigated. However, the genome-wide distribution of CO interference and its interplay with sex-, stress-, and age-induced differentiation remain poorly understood. Multi-point linkage analysis has proven to be a powerful tool for landscaping CO interference, especially within species for which CO mutants are rarely available. We implemented four-point linkage analysis to landscape a detailed picture of how CO interference is distributed through the entire genome of
<i>Populus euphratica</i>
, the only forest tree that can survive and grow in saline desert. We identified an extensive occurrence of CO interference, and found that its strength depends on the length of chromosomes and the genomic locations within the chromosome. We detected high-order CO interference, possibly suggesting a highly complex mechanism crucial for
<i>P. euphratica</i>
to grow, reproduce, and evolve in its harsh environment.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="PubMed-not-MEDLINE" Owner="NLM">
<PMID Version="1">31156703</PMID>
<DateRevised>
<Year>2020</Year>
<Month>10</Month>
<Day>01</Day>
</DateRevised>
<Article PubModel="Electronic-eCollection">
<Journal>
<ISSN IssnType="Print">1664-8021</ISSN>
<JournalIssue CitedMedium="Print">
<Volume>10</Volume>
<PubDate>
<Year>2019</Year>
</PubDate>
</JournalIssue>
<Title>Frontiers in genetics</Title>
<ISOAbbreviation>Front Genet</ISOAbbreviation>
</Journal>
<ArticleTitle>The Genomic Landscape of Crossover Interference in the Desert Tree
<i>Populus euphratica</i>
.</ArticleTitle>
<Pagination>
<MedlinePgn>440</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.3389/fgene.2019.00440</ELocationID>
<Abstract>
<AbstractText>Crossover (CO) interference is a universal phenomenon by which the occurrence of one CO event inhibits the simultaneous occurrence of other COs along a chromosome. Because of its critical role in the evolution of genome structure and organization, the cytological and molecular mechanisms underlying CO interference have been extensively investigated. However, the genome-wide distribution of CO interference and its interplay with sex-, stress-, and age-induced differentiation remain poorly understood. Multi-point linkage analysis has proven to be a powerful tool for landscaping CO interference, especially within species for which CO mutants are rarely available. We implemented four-point linkage analysis to landscape a detailed picture of how CO interference is distributed through the entire genome of
<i>Populus euphratica</i>
, the only forest tree that can survive and grow in saline desert. We identified an extensive occurrence of CO interference, and found that its strength depends on the length of chromosomes and the genomic locations within the chromosome. We detected high-order CO interference, possibly suggesting a highly complex mechanism crucial for
<i>P. euphratica</i>
to grow, reproduce, and evolve in its harsh environment.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Wang</LastName>
<ForeName>Ping</ForeName>
<Initials>P</Initials>
<AffiliationInfo>
<Affiliation>Center for Computational Biology, College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing, China.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Jiang</LastName>
<ForeName>Libo</ForeName>
<Initials>L</Initials>
<AffiliationInfo>
<Affiliation>Center for Computational Biology, College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing, China.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Ye</LastName>
<ForeName>Meixia</ForeName>
<Initials>M</Initials>
<AffiliationInfo>
<Affiliation>Center for Computational Biology, College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing, China.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Zhu</LastName>
<ForeName>Xuli</ForeName>
<Initials>X</Initials>
<AffiliationInfo>
<Affiliation>Center for Computational Biology, College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing, China.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Wu</LastName>
<ForeName>Rongling</ForeName>
<Initials>R</Initials>
<AffiliationInfo>
<Affiliation>Center for Computational Biology, College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing, China.</Affiliation>
</AffiliationInfo>
<AffiliationInfo>
<Affiliation>Center for Statistical Genetics, The Pennsylvania State University, Hershey, PA, United States.</Affiliation>
</AffiliationInfo>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2019</Year>
<Month>05</Month>
<Day>15</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>Switzerland</Country>
<MedlineTA>Front Genet</MedlineTA>
<NlmUniqueID>101560621</NlmUniqueID>
<ISSNLinking>1664-8021</ISSNLinking>
</MedlineJournalInfo>
<KeywordList Owner="NOTNLM">
<Keyword MajorTopicYN="N">euphrates poplar</Keyword>
<Keyword MajorTopicYN="N">four-point analysis</Keyword>
<Keyword MajorTopicYN="N">genetic interference</Keyword>
<Keyword MajorTopicYN="N">mapping population</Keyword>
<Keyword MajorTopicYN="N">meiotic crossover</Keyword>
</KeywordList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2018</Year>
<Month>10</Month>
<Day>11</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2019</Year>
<Month>04</Month>
<Day>29</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2019</Year>
<Month>6</Month>
<Day>4</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2019</Year>
<Month>6</Month>
<Day>4</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2019</Year>
<Month>6</Month>
<Day>4</Day>
<Hour>6</Hour>
<Minute>1</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>epublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">31156703</ArticleId>
<ArticleId IdType="doi">10.3389/fgene.2019.00440</ArticleId>
<ArticleId IdType="pmc">PMC6530421</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>Am J Hum Genet. 2000 Jun;66(6):1911-26</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10801387</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genetics. 2002 Mar;160(3):1123-31</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11901128</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Am J Hum Genet. 2002 Dec;71(6):1353-68</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12432495</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Am J Hum Genet. 2003 Jul;73(1):188-97</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12772089</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Trends Genet. 2003 Nov;19(11):623-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14585614</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>BMC Genet. 2004 Jul 26;5:20</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15274749</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Biol. 2004 Dec 29;14(24):R1036-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15620632</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genetics. 2005 Jun;170(2):807-12</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15802520</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Bioinformatics. 2005 Sep 15;21(18):3674-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16081474</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS Genet. 2007 May 25;3(5):e83</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17530928</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS Genet. 2007 Jun;3(6):e106</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17604455</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genetics. 2008 Mar;178(3):1251-69</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18385111</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Hum Mol Genet. 2008 Sep 1;17(17):2583-94</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18502786</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Chromosome Res. 2008;16(5):709-19</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18512122</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2008 Jul 24;454(7203):479-85</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18615017</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS Genet. 2009 Jul;5(7):e1000557</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19629172</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2010 Mar 5;327(5970):1254-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20203049</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Genomics. 2010 Apr;11(2):91-102</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20885817</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genetics. 1990 Dec;126(4):1127-38</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">2127577</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Tree Physiol. 2011 Apr;31(4):452-61</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21427158</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Cytogenet. 2011 Apr 08;4:10</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21477316</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS Genet. 2011 Nov;7(11):e1002354</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22072983</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Psychiatry. 2013 Nov;18(11):1178-84</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23938935</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Biol. 2013 Nov 4;23(21):2151-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24139735</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell Cycle. 2015;14(3):305-14</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25590558</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Commun. 2015 Feb 19;6:6260</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25695863</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS Genet. 2015 Aug 25;11(8):e1005478</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26305689</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>BMC Biol. 2015 Nov 27;13:101</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26614097</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Semin Cell Dev Biol. 2016 Jun;54:135-48</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26927691</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Brief Bioinform. 2017 May 1;18(3):382-393</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27113727</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Sci Rep. 2016 Nov 28;6:37698</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27892966</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant J. 2017 Jun;90(5):918-928</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28244225</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Trends Plant Sci. 2017 Oct;22(10):894-907</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28822625</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genetics. 1994 Mar;136(3):1217-26</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8005426</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/PoplarV1/Data/Main/Corpus
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000861 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Corpus/biblio.hfd -nk 000861 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    PoplarV1
   |flux=    Main
   |étape=   Corpus
   |type=    RBID
   |clé=     pubmed:31156703
   |texte=   The Genomic Landscape of Crossover Interference in the Desert Tree Populus euphratica.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Corpus/RBID.i   -Sk "pubmed:31156703" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Corpus/biblio.hfd   \
       | NlmPubMed2Wicri -a PoplarV1 

Wicri

This area was generated with Dilib version V0.6.37.
Data generation: Wed Nov 18 12:07:19 2020. Site generation: Wed Nov 18 12:16:31 2020