Serveur d'exploration sur le peuplier

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Significant influence of lignin on axial elastic modulus of poplar wood at low microfibril angles under wet conditions.

Identifieur interne : 000845 ( Main/Corpus ); précédent : 000844; suivant : 000846

Significant influence of lignin on axial elastic modulus of poplar wood at low microfibril angles under wet conditions.

Auteurs : Merve Özparpucu ; Notburga Gierlinger ; Igor Cesarino ; Ingo Burgert ; Wout Boerjan ; Markus Rüggeberg

Source :

RBID : pubmed:31187131

English descriptors

Abstract

Wood is extensively used as a construction material. Despite increasing knowledge of its mechanical properties, the contribution of the cell-wall matrix polymers to wood mechanics is still not well understood. Previous studies have shown that axial stiffness correlates with lignin content only for cellulose microfibril angles larger than around 20°, while no influence is found for smaller angles. Here, by analysing the wood of poplar with reduced lignin content due to down-regulation of CAFFEOYL SHIKIMATE ESTERASE, we show that lignin content also influences axial stiffness at smaller angles. Micro-tensile tests of the xylem revealed that axial stiffness was strongly reduced in the low-lignin transgenic lines. Strikingly, microfibril angles were around 15° for both wild-type and transgenic poplars, suggesting that cellulose orientation is not responsible for the observed changes in mechanical behavior. Multiple linear regression analysis showed that the decrease in stiffness was almost completely related to the variation in both density and lignin content. We suggest that the influence of lignin content on axial stiffness may gradually increase as a function of the microfibril angle. Our results may help in building up comprehensive models of the cell wall that can unravel the individual roles of the matrix polymers.

DOI: 10.1093/jxb/erz180
PubMed: 31187131
PubMed Central: PMC6685656

Links to Exploration step

pubmed:31187131

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Significant influence of lignin on axial elastic modulus of poplar wood at low microfibril angles under wet conditions.</title>
<author>
<name sortKey="Ozparpucu, Merve" sort="Ozparpucu, Merve" uniqKey="Ozparpucu M" first="Merve" last="Özparpucu">Merve Özparpucu</name>
<affiliation>
<nlm:affiliation>Institute for Building Materials (IfB), ETH Zurich, Zurich, Switzerland.</nlm:affiliation>
</affiliation>
<affiliation>
<nlm:affiliation>School of Life Sciences Weihenstephan, Wood Research Munich, Technical University of Munich (TUM), Munich, Germany.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Gierlinger, Notburga" sort="Gierlinger, Notburga" uniqKey="Gierlinger N" first="Notburga" last="Gierlinger">Notburga Gierlinger</name>
<affiliation>
<nlm:affiliation>Institute for Biophysics, University of Natural Resources and Life Sciences Vienna (BOKU), Wien, Austria.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Cesarino, Igor" sort="Cesarino, Igor" uniqKey="Cesarino I" first="Igor" last="Cesarino">Igor Cesarino</name>
<affiliation>
<nlm:affiliation>Department of Botany, Institute of Biosciences, University of São Paulo, São Paulo - SP, Brazil.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Burgert, Ingo" sort="Burgert, Ingo" uniqKey="Burgert I" first="Ingo" last="Burgert">Ingo Burgert</name>
<affiliation>
<nlm:affiliation>Institute for Building Materials (IfB), ETH Zurich, Zurich, Switzerland.</nlm:affiliation>
</affiliation>
<affiliation>
<nlm:affiliation>Laboratory of Cellulose and Wood Materials, EMPA, Dübendorf, Switzerland.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Boerjan, Wout" sort="Boerjan, Wout" uniqKey="Boerjan W" first="Wout" last="Boerjan">Wout Boerjan</name>
<affiliation>
<nlm:affiliation>Ghent University, Department of Plant Biotechnology and Bioinformatics, Ghent, Belgium.</nlm:affiliation>
</affiliation>
<affiliation>
<nlm:affiliation>VIB Center for Plant Systems Biology, Ghent, Belgium.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Ruggeberg, Markus" sort="Ruggeberg, Markus" uniqKey="Ruggeberg M" first="Markus" last="Rüggeberg">Markus Rüggeberg</name>
<affiliation>
<nlm:affiliation>Institute for Building Materials (IfB), ETH Zurich, Zurich, Switzerland.</nlm:affiliation>
</affiliation>
<affiliation>
<nlm:affiliation>Laboratory of Cellulose and Wood Materials, EMPA, Dübendorf, Switzerland.</nlm:affiliation>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2019">2019</date>
<idno type="RBID">pubmed:31187131</idno>
<idno type="pmid">31187131</idno>
<idno type="doi">10.1093/jxb/erz180</idno>
<idno type="pmc">PMC6685656</idno>
<idno type="wicri:Area/Main/Corpus">000845</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">000845</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Significant influence of lignin on axial elastic modulus of poplar wood at low microfibril angles under wet conditions.</title>
<author>
<name sortKey="Ozparpucu, Merve" sort="Ozparpucu, Merve" uniqKey="Ozparpucu M" first="Merve" last="Özparpucu">Merve Özparpucu</name>
<affiliation>
<nlm:affiliation>Institute for Building Materials (IfB), ETH Zurich, Zurich, Switzerland.</nlm:affiliation>
</affiliation>
<affiliation>
<nlm:affiliation>School of Life Sciences Weihenstephan, Wood Research Munich, Technical University of Munich (TUM), Munich, Germany.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Gierlinger, Notburga" sort="Gierlinger, Notburga" uniqKey="Gierlinger N" first="Notburga" last="Gierlinger">Notburga Gierlinger</name>
<affiliation>
<nlm:affiliation>Institute for Biophysics, University of Natural Resources and Life Sciences Vienna (BOKU), Wien, Austria.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Cesarino, Igor" sort="Cesarino, Igor" uniqKey="Cesarino I" first="Igor" last="Cesarino">Igor Cesarino</name>
<affiliation>
<nlm:affiliation>Department of Botany, Institute of Biosciences, University of São Paulo, São Paulo - SP, Brazil.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Burgert, Ingo" sort="Burgert, Ingo" uniqKey="Burgert I" first="Ingo" last="Burgert">Ingo Burgert</name>
<affiliation>
<nlm:affiliation>Institute for Building Materials (IfB), ETH Zurich, Zurich, Switzerland.</nlm:affiliation>
</affiliation>
<affiliation>
<nlm:affiliation>Laboratory of Cellulose and Wood Materials, EMPA, Dübendorf, Switzerland.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Boerjan, Wout" sort="Boerjan, Wout" uniqKey="Boerjan W" first="Wout" last="Boerjan">Wout Boerjan</name>
<affiliation>
<nlm:affiliation>Ghent University, Department of Plant Biotechnology and Bioinformatics, Ghent, Belgium.</nlm:affiliation>
</affiliation>
<affiliation>
<nlm:affiliation>VIB Center for Plant Systems Biology, Ghent, Belgium.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Ruggeberg, Markus" sort="Ruggeberg, Markus" uniqKey="Ruggeberg M" first="Markus" last="Rüggeberg">Markus Rüggeberg</name>
<affiliation>
<nlm:affiliation>Institute for Building Materials (IfB), ETH Zurich, Zurich, Switzerland.</nlm:affiliation>
</affiliation>
<affiliation>
<nlm:affiliation>Laboratory of Cellulose and Wood Materials, EMPA, Dübendorf, Switzerland.</nlm:affiliation>
</affiliation>
</author>
</analytic>
<series>
<title level="j">Journal of experimental botany</title>
<idno type="eISSN">1460-2431</idno>
<imprint>
<date when="2019" type="published">2019</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Elastic Modulus (physiology)</term>
<term>Lignin (metabolism)</term>
<term>Microfibrils (metabolism)</term>
<term>Plant Proteins (genetics)</term>
<term>Plant Proteins (metabolism)</term>
<term>Plants, Genetically Modified (genetics)</term>
<term>Plants, Genetically Modified (metabolism)</term>
<term>Populus (genetics)</term>
<term>Populus (metabolism)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="genetics" xml:lang="en">
<term>Plant Proteins</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="metabolism" xml:lang="en">
<term>Lignin</term>
<term>Plant Proteins</term>
</keywords>
<keywords scheme="MESH" qualifier="genetics" xml:lang="en">
<term>Plants, Genetically Modified</term>
<term>Populus</term>
</keywords>
<keywords scheme="MESH" qualifier="metabolism" xml:lang="en">
<term>Microfibrils</term>
<term>Plants, Genetically Modified</term>
<term>Populus</term>
</keywords>
<keywords scheme="MESH" qualifier="physiology" xml:lang="en">
<term>Elastic Modulus</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Wood is extensively used as a construction material. Despite increasing knowledge of its mechanical properties, the contribution of the cell-wall matrix polymers to wood mechanics is still not well understood. Previous studies have shown that axial stiffness correlates with lignin content only for cellulose microfibril angles larger than around 20°, while no influence is found for smaller angles. Here, by analysing the wood of poplar with reduced lignin content due to down-regulation of CAFFEOYL SHIKIMATE ESTERASE, we show that lignin content also influences axial stiffness at smaller angles. Micro-tensile tests of the xylem revealed that axial stiffness was strongly reduced in the low-lignin transgenic lines. Strikingly, microfibril angles were around 15° for both wild-type and transgenic poplars, suggesting that cellulose orientation is not responsible for the observed changes in mechanical behavior. Multiple linear regression analysis showed that the decrease in stiffness was almost completely related to the variation in both density and lignin content. We suggest that the influence of lignin content on axial stiffness may gradually increase as a function of the microfibril angle. Our results may help in building up comprehensive models of the cell wall that can unravel the individual roles of the matrix polymers.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">31187131</PMID>
<DateCompleted>
<Year>2020</Year>
<Month>07</Month>
<Day>20</Day>
</DateCompleted>
<DateRevised>
<Year>2020</Year>
<Month>07</Month>
<Day>20</Day>
</DateRevised>
<Article PubModel="Print">
<Journal>
<ISSN IssnType="Electronic">1460-2431</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>70</Volume>
<Issue>15</Issue>
<PubDate>
<Year>2019</Year>
<Month>08</Month>
<Day>07</Day>
</PubDate>
</JournalIssue>
<Title>Journal of experimental botany</Title>
<ISOAbbreviation>J Exp Bot</ISOAbbreviation>
</Journal>
<ArticleTitle>Significant influence of lignin on axial elastic modulus of poplar wood at low microfibril angles under wet conditions.</ArticleTitle>
<Pagination>
<MedlinePgn>4039-4047</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1093/jxb/erz180</ELocationID>
<Abstract>
<AbstractText>Wood is extensively used as a construction material. Despite increasing knowledge of its mechanical properties, the contribution of the cell-wall matrix polymers to wood mechanics is still not well understood. Previous studies have shown that axial stiffness correlates with lignin content only for cellulose microfibril angles larger than around 20°, while no influence is found for smaller angles. Here, by analysing the wood of poplar with reduced lignin content due to down-regulation of CAFFEOYL SHIKIMATE ESTERASE, we show that lignin content also influences axial stiffness at smaller angles. Micro-tensile tests of the xylem revealed that axial stiffness was strongly reduced in the low-lignin transgenic lines. Strikingly, microfibril angles were around 15° for both wild-type and transgenic poplars, suggesting that cellulose orientation is not responsible for the observed changes in mechanical behavior. Multiple linear regression analysis showed that the decrease in stiffness was almost completely related to the variation in both density and lignin content. We suggest that the influence of lignin content on axial stiffness may gradually increase as a function of the microfibril angle. Our results may help in building up comprehensive models of the cell wall that can unravel the individual roles of the matrix polymers.</AbstractText>
<CopyrightInformation>© The Author(s) 2019. Published by Oxford University Press on behalf of the Society for Experimental Biology.</CopyrightInformation>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Özparpucu</LastName>
<ForeName>Merve</ForeName>
<Initials>M</Initials>
<AffiliationInfo>
<Affiliation>Institute for Building Materials (IfB), ETH Zurich, Zurich, Switzerland.</Affiliation>
</AffiliationInfo>
<AffiliationInfo>
<Affiliation>School of Life Sciences Weihenstephan, Wood Research Munich, Technical University of Munich (TUM), Munich, Germany.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Gierlinger</LastName>
<ForeName>Notburga</ForeName>
<Initials>N</Initials>
<AffiliationInfo>
<Affiliation>Institute for Biophysics, University of Natural Resources and Life Sciences Vienna (BOKU), Wien, Austria.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Cesarino</LastName>
<ForeName>Igor</ForeName>
<Initials>I</Initials>
<AffiliationInfo>
<Affiliation>Department of Botany, Institute of Biosciences, University of São Paulo, São Paulo - SP, Brazil.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Burgert</LastName>
<ForeName>Ingo</ForeName>
<Initials>I</Initials>
<AffiliationInfo>
<Affiliation>Institute for Building Materials (IfB), ETH Zurich, Zurich, Switzerland.</Affiliation>
</AffiliationInfo>
<AffiliationInfo>
<Affiliation>Laboratory of Cellulose and Wood Materials, EMPA, Dübendorf, Switzerland.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Boerjan</LastName>
<ForeName>Wout</ForeName>
<Initials>W</Initials>
<AffiliationInfo>
<Affiliation>Ghent University, Department of Plant Biotechnology and Bioinformatics, Ghent, Belgium.</Affiliation>
</AffiliationInfo>
<AffiliationInfo>
<Affiliation>VIB Center for Plant Systems Biology, Ghent, Belgium.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Rüggeberg</LastName>
<ForeName>Markus</ForeName>
<Initials>M</Initials>
<AffiliationInfo>
<Affiliation>Institute for Building Materials (IfB), ETH Zurich, Zurich, Switzerland.</Affiliation>
</AffiliationInfo>
<AffiliationInfo>
<Affiliation>Laboratory of Cellulose and Wood Materials, EMPA, Dübendorf, Switzerland.</Affiliation>
</AffiliationInfo>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D013485">Research Support, Non-U.S. Gov't</PublicationType>
</PublicationTypeList>
</Article>
<MedlineJournalInfo>
<Country>England</Country>
<MedlineTA>J Exp Bot</MedlineTA>
<NlmUniqueID>9882906</NlmUniqueID>
<ISSNLinking>0022-0957</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D010940">Plant Proteins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>9005-53-2</RegistryNumber>
<NameOfSubstance UI="D008031">Lignin</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D055119" MajorTopicYN="N">Elastic Modulus</DescriptorName>
<QualifierName UI="Q000502" MajorTopicYN="N">physiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D008031" MajorTopicYN="N">Lignin</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D020894" MajorTopicYN="N">Microfibrils</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D010940" MajorTopicYN="N">Plant Proteins</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D030821" MajorTopicYN="N">Plants, Genetically Modified</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D032107" MajorTopicYN="N">Populus</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
</MeshHeadingList>
<KeywordList Owner="NOTNLM">
<Keyword MajorTopicYN="Y">Populus tremula×Populus alba</Keyword>
<Keyword MajorTopicYN="Y">CAFFEOYL SHIKIMATE ESTERASE (CSE)</Keyword>
<Keyword MajorTopicYN="Y">cell-wall mechanics</Keyword>
<Keyword MajorTopicYN="Y">lignin</Keyword>
<Keyword MajorTopicYN="Y">lignin engineering</Keyword>
<Keyword MajorTopicYN="Y">micromechanics</Keyword>
</KeywordList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2018</Year>
<Month>11</Month>
<Day>13</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2019</Year>
<Month>04</Month>
<Day>02</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2019</Year>
<Month>6</Month>
<Day>13</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2020</Year>
<Month>7</Month>
<Day>21</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2019</Year>
<Month>6</Month>
<Day>13</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">31187131</ArticleId>
<ArticleId IdType="pii">5477389</ArticleId>
<ArticleId IdType="doi">10.1093/jxb/erz180</ArticleId>
<ArticleId IdType="pmc">PMC6685656</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>J Struct Biol. 1999 Dec 30;128(3):257-69</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10633065</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Planta. 2002 May;215(1):33-40</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12012239</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biomacromolecules. 2006 Jul;7(7):2077-81</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16827572</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2007 Nov;19(11):3669-91</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18024569</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Biol Sci. 2008 Oct 7;275(1648):2221-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18595839</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>New Phytol. 2009;182(2):443-50</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19207686</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biomacromolecules. 2010 Sep 13;11(9):2359-65</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20831275</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>New Phytol. 2011 Mar;189(4):1096-109</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21158867</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Struct Biol. 2013 Sep;183(3):419-428</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23867392</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2013 Sep 6;341(6150):1103-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23950498</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell Rep. 1992 Apr;11(3):137-41</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24213546</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2014 Jan 14;111(2):845-50</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24379366</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochemistry. 2015 Apr 14;54(14):2335-45</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25739924</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant J. 2016 Jun;86(5):363-75</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27037613</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant J. 2017 Aug;91(3):480-490</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28440915</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2017 Nov;175(3):1040-1057</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28878037</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Planta. 2018 Apr;247(4):887-897</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">29270675</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Commun. 2019 Jan 21;10(1):347</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">30664653</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/PoplarV1/Data/Main/Corpus
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000845 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Corpus/biblio.hfd -nk 000845 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    PoplarV1
   |flux=    Main
   |étape=   Corpus
   |type=    RBID
   |clé=     pubmed:31187131
   |texte=   Significant influence of lignin on axial elastic modulus of poplar wood at low microfibril angles under wet conditions.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Corpus/RBID.i   -Sk "pubmed:31187131" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Corpus/biblio.hfd   \
       | NlmPubMed2Wicri -a PoplarV1 

Wicri

This area was generated with Dilib version V0.6.37.
Data generation: Wed Nov 18 12:07:19 2020. Site generation: Wed Nov 18 12:16:31 2020