Serveur d'exploration sur le peuplier

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Genome-wide transcriptional adaptation to salt stress in Populus.

Identifieur interne : 000742 ( Main/Corpus ); précédent : 000741; suivant : 000743

Genome-wide transcriptional adaptation to salt stress in Populus.

Auteurs : Jin-Gui Liu ; Xiao Han ; Tong Yang ; Wen-Hui Cui ; Ai-Min Wu ; Chun-Xiang Fu ; Bai-Chen Wang ; Li-Jun Liu

Source :

RBID : pubmed:31429697

English descriptors

Abstract

BACKGROUND

Adaptation to abiotic stresses is crucial for the survival of perennial plants in a natural environment. However, very little is known about the underlying mechanisms. Here, we adopted a liquid culture system to investigate plant adaptation to repeated salt stress in Populus trees.

RESULTS

We first evaluated phenotypic responses and found that plants exhibit better stress tolerance after pre-treatment of salt stress. Time-course RNA sequencing (RNA-seq) was then performed to profile changes in gene expression over 12 h of salt treatments. Analysis of differentially expressed genes (DEGs) indicated that significant transcriptional reprogramming and adaptation to repeated salt treatment occurred. Clustering analysis identified two modules of co-expressed genes that were potentially critical for repeated salt stress adaptation, and one key module for salt stress response in general. Gene Ontology (GO) enrichment analysis identified pathways including hormone signaling, cell wall biosynthesis and modification, negative regulation of growth, and epigenetic regulation to be highly enriched in these gene modules.

CONCLUSIONS

This study illustrates phenotypic and transcriptional adaptation of Populus trees to salt stress, revealing novel gene modules which are potentially critical for responding and adapting to salt stress.


DOI: 10.1186/s12870-019-1952-2
PubMed: 31429697
PubMed Central: PMC6701017

Links to Exploration step

pubmed:31429697

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Genome-wide transcriptional adaptation to salt stress in Populus.</title>
<author>
<name sortKey="Liu, Jin Gui" sort="Liu, Jin Gui" uniqKey="Liu J" first="Jin-Gui" last="Liu">Jin-Gui Liu</name>
<affiliation>
<nlm:affiliation>State Forestry and Grassland Administration Key Laboratory of Silviculture in downstream areas of the Yellow River, College of Forestry, Shandong Agriculture University, Taian, 271018, Shandong, China.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Han, Xiao" sort="Han, Xiao" uniqKey="Han X" first="Xiao" last="Han">Xiao Han</name>
<affiliation>
<nlm:affiliation>State Key Laboratory of Subtropical Silviculture, College of Forestry and Biotechnology, Zhejiang A&F University, Lin'an, Hangzhou, 311300, China.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Yang, Tong" sort="Yang, Tong" uniqKey="Yang T" first="Tong" last="Yang">Tong Yang</name>
<affiliation>
<nlm:affiliation>State Forestry and Grassland Administration Key Laboratory of Silviculture in downstream areas of the Yellow River, College of Forestry, Shandong Agriculture University, Taian, 271018, Shandong, China.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Cui, Wen Hui" sort="Cui, Wen Hui" uniqKey="Cui W" first="Wen-Hui" last="Cui">Wen-Hui Cui</name>
<affiliation>
<nlm:affiliation>State Forestry and Grassland Administration Key Laboratory of Silviculture in downstream areas of the Yellow River, College of Forestry, Shandong Agriculture University, Taian, 271018, Shandong, China.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Wu, Ai Min" sort="Wu, Ai Min" uniqKey="Wu A" first="Ai-Min" last="Wu">Ai-Min Wu</name>
<affiliation>
<nlm:affiliation>Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou, 510642, China.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Fu, Chun Xiang" sort="Fu, Chun Xiang" uniqKey="Fu C" first="Chun-Xiang" last="Fu">Chun-Xiang Fu</name>
<affiliation>
<nlm:affiliation>Key Laboratory of Biofuels, Qingdao Engineering Research Center of Biomass Resources and Environment, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, 266101, Shandong, China.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Wang, Bai Chen" sort="Wang, Bai Chen" uniqKey="Wang B" first="Bai-Chen" last="Wang">Bai-Chen Wang</name>
<affiliation>
<nlm:affiliation>Photosynthesis Research Center, Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Liu, Li Jun" sort="Liu, Li Jun" uniqKey="Liu L" first="Li-Jun" last="Liu">Li-Jun Liu</name>
<affiliation>
<nlm:affiliation>State Forestry and Grassland Administration Key Laboratory of Silviculture in downstream areas of the Yellow River, College of Forestry, Shandong Agriculture University, Taian, 271018, Shandong, China. lijunliu@sdau.edu.cn.</nlm:affiliation>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2019">2019</date>
<idno type="RBID">pubmed:31429697</idno>
<idno type="pmid">31429697</idno>
<idno type="doi">10.1186/s12870-019-1952-2</idno>
<idno type="pmc">PMC6701017</idno>
<idno type="wicri:Area/Main/Corpus">000742</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">000742</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Genome-wide transcriptional adaptation to salt stress in Populus.</title>
<author>
<name sortKey="Liu, Jin Gui" sort="Liu, Jin Gui" uniqKey="Liu J" first="Jin-Gui" last="Liu">Jin-Gui Liu</name>
<affiliation>
<nlm:affiliation>State Forestry and Grassland Administration Key Laboratory of Silviculture in downstream areas of the Yellow River, College of Forestry, Shandong Agriculture University, Taian, 271018, Shandong, China.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Han, Xiao" sort="Han, Xiao" uniqKey="Han X" first="Xiao" last="Han">Xiao Han</name>
<affiliation>
<nlm:affiliation>State Key Laboratory of Subtropical Silviculture, College of Forestry and Biotechnology, Zhejiang A&F University, Lin'an, Hangzhou, 311300, China.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Yang, Tong" sort="Yang, Tong" uniqKey="Yang T" first="Tong" last="Yang">Tong Yang</name>
<affiliation>
<nlm:affiliation>State Forestry and Grassland Administration Key Laboratory of Silviculture in downstream areas of the Yellow River, College of Forestry, Shandong Agriculture University, Taian, 271018, Shandong, China.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Cui, Wen Hui" sort="Cui, Wen Hui" uniqKey="Cui W" first="Wen-Hui" last="Cui">Wen-Hui Cui</name>
<affiliation>
<nlm:affiliation>State Forestry and Grassland Administration Key Laboratory of Silviculture in downstream areas of the Yellow River, College of Forestry, Shandong Agriculture University, Taian, 271018, Shandong, China.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Wu, Ai Min" sort="Wu, Ai Min" uniqKey="Wu A" first="Ai-Min" last="Wu">Ai-Min Wu</name>
<affiliation>
<nlm:affiliation>Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou, 510642, China.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Fu, Chun Xiang" sort="Fu, Chun Xiang" uniqKey="Fu C" first="Chun-Xiang" last="Fu">Chun-Xiang Fu</name>
<affiliation>
<nlm:affiliation>Key Laboratory of Biofuels, Qingdao Engineering Research Center of Biomass Resources and Environment, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, 266101, Shandong, China.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Wang, Bai Chen" sort="Wang, Bai Chen" uniqKey="Wang B" first="Bai-Chen" last="Wang">Bai-Chen Wang</name>
<affiliation>
<nlm:affiliation>Photosynthesis Research Center, Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Liu, Li Jun" sort="Liu, Li Jun" uniqKey="Liu L" first="Li-Jun" last="Liu">Li-Jun Liu</name>
<affiliation>
<nlm:affiliation>State Forestry and Grassland Administration Key Laboratory of Silviculture in downstream areas of the Yellow River, College of Forestry, Shandong Agriculture University, Taian, 271018, Shandong, China. lijunliu@sdau.edu.cn.</nlm:affiliation>
</affiliation>
</author>
</analytic>
<series>
<title level="j">BMC plant biology</title>
<idno type="eISSN">1471-2229</idno>
<imprint>
<date when="2019" type="published">2019</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Adaptation, Physiological (genetics)</term>
<term>Gene Expression Regulation, Plant (MeSH)</term>
<term>Gene Ontology (MeSH)</term>
<term>Gene Regulatory Networks (MeSH)</term>
<term>Genome, Plant (MeSH)</term>
<term>Phenotype (MeSH)</term>
<term>Populus (genetics)</term>
<term>Populus (physiology)</term>
<term>RNA, Plant (MeSH)</term>
<term>Salt Stress (genetics)</term>
<term>Sequence Analysis, RNA (MeSH)</term>
<term>Transcription, Genetic (MeSH)</term>
<term>Transcriptome (MeSH)</term>
<term>Trees (genetics)</term>
<term>Trees (physiology)</term>
</keywords>
<keywords scheme="MESH" type="chemical" xml:lang="en">
<term>RNA, Plant</term>
</keywords>
<keywords scheme="MESH" qualifier="genetics" xml:lang="en">
<term>Adaptation, Physiological</term>
<term>Populus</term>
<term>Salt Stress</term>
<term>Trees</term>
</keywords>
<keywords scheme="MESH" qualifier="physiology" xml:lang="en">
<term>Populus</term>
<term>Trees</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Gene Expression Regulation, Plant</term>
<term>Gene Ontology</term>
<term>Gene Regulatory Networks</term>
<term>Genome, Plant</term>
<term>Phenotype</term>
<term>Sequence Analysis, RNA</term>
<term>Transcription, Genetic</term>
<term>Transcriptome</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">
<p>
<b>BACKGROUND</b>
</p>
<p>Adaptation to abiotic stresses is crucial for the survival of perennial plants in a natural environment. However, very little is known about the underlying mechanisms. Here, we adopted a liquid culture system to investigate plant adaptation to repeated salt stress in Populus trees.</p>
</div>
<div type="abstract" xml:lang="en">
<p>
<b>RESULTS</b>
</p>
<p>We first evaluated phenotypic responses and found that plants exhibit better stress tolerance after pre-treatment of salt stress. Time-course RNA sequencing (RNA-seq) was then performed to profile changes in gene expression over 12 h of salt treatments. Analysis of differentially expressed genes (DEGs) indicated that significant transcriptional reprogramming and adaptation to repeated salt treatment occurred. Clustering analysis identified two modules of co-expressed genes that were potentially critical for repeated salt stress adaptation, and one key module for salt stress response in general. Gene Ontology (GO) enrichment analysis identified pathways including hormone signaling, cell wall biosynthesis and modification, negative regulation of growth, and epigenetic regulation to be highly enriched in these gene modules.</p>
</div>
<div type="abstract" xml:lang="en">
<p>
<b>CONCLUSIONS</b>
</p>
<p>This study illustrates phenotypic and transcriptional adaptation of Populus trees to salt stress, revealing novel gene modules which are potentially critical for responding and adapting to salt stress.</p>
</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">31429697</PMID>
<DateCompleted>
<Year>2019</Year>
<Month>08</Month>
<Day>27</Day>
</DateCompleted>
<DateRevised>
<Year>2020</Year>
<Month>02</Month>
<Day>25</Day>
</DateRevised>
<Article PubModel="Electronic">
<Journal>
<ISSN IssnType="Electronic">1471-2229</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>19</Volume>
<Issue>1</Issue>
<PubDate>
<Year>2019</Year>
<Month>Aug</Month>
<Day>20</Day>
</PubDate>
</JournalIssue>
<Title>BMC plant biology</Title>
<ISOAbbreviation>BMC Plant Biol</ISOAbbreviation>
</Journal>
<ArticleTitle>Genome-wide transcriptional adaptation to salt stress in Populus.</ArticleTitle>
<Pagination>
<MedlinePgn>367</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1186/s12870-019-1952-2</ELocationID>
<Abstract>
<AbstractText Label="BACKGROUND" NlmCategory="BACKGROUND">Adaptation to abiotic stresses is crucial for the survival of perennial plants in a natural environment. However, very little is known about the underlying mechanisms. Here, we adopted a liquid culture system to investigate plant adaptation to repeated salt stress in Populus trees.</AbstractText>
<AbstractText Label="RESULTS" NlmCategory="RESULTS">We first evaluated phenotypic responses and found that plants exhibit better stress tolerance after pre-treatment of salt stress. Time-course RNA sequencing (RNA-seq) was then performed to profile changes in gene expression over 12 h of salt treatments. Analysis of differentially expressed genes (DEGs) indicated that significant transcriptional reprogramming and adaptation to repeated salt treatment occurred. Clustering analysis identified two modules of co-expressed genes that were potentially critical for repeated salt stress adaptation, and one key module for salt stress response in general. Gene Ontology (GO) enrichment analysis identified pathways including hormone signaling, cell wall biosynthesis and modification, negative regulation of growth, and epigenetic regulation to be highly enriched in these gene modules.</AbstractText>
<AbstractText Label="CONCLUSIONS" NlmCategory="CONCLUSIONS">This study illustrates phenotypic and transcriptional adaptation of Populus trees to salt stress, revealing novel gene modules which are potentially critical for responding and adapting to salt stress.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Liu</LastName>
<ForeName>Jin-Gui</ForeName>
<Initials>JG</Initials>
<Identifier Source="ORCID">http://orcid.org/0000-0002-4728-7841</Identifier>
<AffiliationInfo>
<Affiliation>State Forestry and Grassland Administration Key Laboratory of Silviculture in downstream areas of the Yellow River, College of Forestry, Shandong Agriculture University, Taian, 271018, Shandong, China.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Han</LastName>
<ForeName>Xiao</ForeName>
<Initials>X</Initials>
<AffiliationInfo>
<Affiliation>State Key Laboratory of Subtropical Silviculture, College of Forestry and Biotechnology, Zhejiang A&F University, Lin'an, Hangzhou, 311300, China.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Yang</LastName>
<ForeName>Tong</ForeName>
<Initials>T</Initials>
<AffiliationInfo>
<Affiliation>State Forestry and Grassland Administration Key Laboratory of Silviculture in downstream areas of the Yellow River, College of Forestry, Shandong Agriculture University, Taian, 271018, Shandong, China.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Cui</LastName>
<ForeName>Wen-Hui</ForeName>
<Initials>WH</Initials>
<AffiliationInfo>
<Affiliation>State Forestry and Grassland Administration Key Laboratory of Silviculture in downstream areas of the Yellow River, College of Forestry, Shandong Agriculture University, Taian, 271018, Shandong, China.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Wu</LastName>
<ForeName>Ai-Min</ForeName>
<Initials>AM</Initials>
<AffiliationInfo>
<Affiliation>Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou, 510642, China.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Fu</LastName>
<ForeName>Chun-Xiang</ForeName>
<Initials>CX</Initials>
<AffiliationInfo>
<Affiliation>Key Laboratory of Biofuels, Qingdao Engineering Research Center of Biomass Resources and Environment, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, 266101, Shandong, China.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Wang</LastName>
<ForeName>Bai-Chen</ForeName>
<Initials>BC</Initials>
<AffiliationInfo>
<Affiliation>Photosynthesis Research Center, Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Liu</LastName>
<ForeName>Li-Jun</ForeName>
<Initials>LJ</Initials>
<AffiliationInfo>
<Affiliation>State Forestry and Grassland Administration Key Laboratory of Silviculture in downstream areas of the Yellow River, College of Forestry, Shandong Agriculture University, Taian, 271018, Shandong, China. lijunliu@sdau.edu.cn.</Affiliation>
</AffiliationInfo>
</Author>
</AuthorList>
<Language>eng</Language>
<GrantList CompleteYN="Y">
<Grant>
<GrantID>31700583</GrantID>
<Agency>National Natural Science Foundation of China</Agency>
<Country></Country>
</Grant>
</GrantList>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2019</Year>
<Month>08</Month>
<Day>20</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>England</Country>
<MedlineTA>BMC Plant Biol</MedlineTA>
<NlmUniqueID>100967807</NlmUniqueID>
<ISSNLinking>1471-2229</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D018749">RNA, Plant</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D000222" MajorTopicYN="N">Adaptation, Physiological</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="Y">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D018506" MajorTopicYN="Y">Gene Expression Regulation, Plant</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D063990" MajorTopicYN="N">Gene Ontology</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D053263" MajorTopicYN="N">Gene Regulatory Networks</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D018745" MajorTopicYN="N">Genome, Plant</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D010641" MajorTopicYN="N">Phenotype</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D032107" MajorTopicYN="N">Populus</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="Y">genetics</QualifierName>
<QualifierName UI="Q000502" MajorTopicYN="N">physiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D018749" MajorTopicYN="N">RNA, Plant</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D000077323" MajorTopicYN="N">Salt Stress</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="Y">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D017423" MajorTopicYN="N">Sequence Analysis, RNA</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D014158" MajorTopicYN="Y">Transcription, Genetic</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D059467" MajorTopicYN="N">Transcriptome</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D014197" MajorTopicYN="N">Trees</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000502" MajorTopicYN="N">physiology</QualifierName>
</MeshHeading>
</MeshHeadingList>
<KeywordList Owner="NOTNLM">
<Keyword MajorTopicYN="N">Abiotic stress</Keyword>
<Keyword MajorTopicYN="N">Adaptation</Keyword>
<Keyword MajorTopicYN="N">Gene module</Keyword>
<Keyword MajorTopicYN="N">Perennial plants</Keyword>
<Keyword MajorTopicYN="N">Populus</Keyword>
</KeywordList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2019</Year>
<Month>03</Month>
<Day>31</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2019</Year>
<Month>07</Month>
<Day>29</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2019</Year>
<Month>8</Month>
<Day>21</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2019</Year>
<Month>8</Month>
<Day>21</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2019</Year>
<Month>8</Month>
<Day>28</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>epublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">31429697</ArticleId>
<ArticleId IdType="doi">10.1186/s12870-019-1952-2</ArticleId>
<ArticleId IdType="pii">10.1186/s12870-019-1952-2</ArticleId>
<ArticleId IdType="pmc">PMC6701017</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2000 Mar 28;97(7):3730-4</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10725382</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2001 Sep 25;98(20):11444-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11572991</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2002;14 Suppl:S165-83</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12045276</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Annu Rev Plant Biol. 2002;53:247-73</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12221975</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genome Res. 2003 Nov;13(11):2498-504</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14597658</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2004 Sep;136(1):2579-86</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15375206</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2006 Aug 31;442(7106):1046-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16892047</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2006 Sep 15;313(5793):1596-604</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16973872</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Bioinformatics. 2007 Jan 15;23(2):257-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17098774</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2007 Feb;143(2):1001-12</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17142477</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Annu Rev Plant Biol. 2007;58:435-58</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17280524</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Mol Biol. 2009 Jan;69(1-2):91-105</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18839316</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>BMC Bioinformatics. 2008 Dec 29;9:559</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19114008</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Opin Plant Biol. 2009 Apr;12(2):133-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19179104</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2009 Apr;149(4):1761-72</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19211694</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Gene. 2009 May 1;436(1-2):45-55</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19248824</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell Environ. 2009 Jul;32(7):904-16</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19302170</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Genet Genomics. 2009 Nov;282(5):503-16</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19760256</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Planta. 2009 Dec;231(1):27-34</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19809832</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Development. 2010 Mar;137(5):767-74</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20147378</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Gene. 2010 Jun 1;457(1-2):1-12</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20193749</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Planta. 2010 May;231(6):1459-73</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20358223</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Mol Biol. 2010 Nov;74(4-5):367-80</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20803312</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2011 Feb 8;108(6):2611-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21262798</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell Rep. 2011 Aug;30(8):1383-91</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21476089</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2011 Jun 7;108(23):9709-14</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21593420</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS One. 2011;6(7):e21800</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21789182</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Commun. 2012 Mar 13;3:740</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22415831</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell Physiol. 2012 May;53(5):847-56</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22505693</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Rev Genet. 2012 Jul 18;13(8):552-64</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22805708</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2013 Jul;162(3):1566-82</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23719892</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genome Biol. 2013 Jun 14;14(6):R59</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23767915</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2013 Nov;25(11):4324-41</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24280390</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Exp Biol. 2014 Jan 1;217(Pt 1):67-75</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24353205</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>BMC Plant Biol. 2013 Dec 30;13:229</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24377444</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Plant. 2014 Mar;7(3):502-13</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24482435</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Exp Bot. 2014 May;65(8):2119-35</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24604734</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Plant Physiol. 2014 Apr 15;171(7):486-96</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24655384</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant J. 2014 Jul;79(1):150-61</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24805058</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>BMC Plant Biol. 2014 May 22;14:141</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24885787</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Bioinformatics. 2015 Jan 15;31(2):166-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25260700</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>New Phytol. 2015 Jan;205(2):596-607</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25345749</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Methods. 2015 Apr;12(4):357-60</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25751142</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Front Plant Sci. 2015 Mar 02;6:114</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25784920</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant J. 2015 Jul;83(1):149-59</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25788029</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Tree Physiol. 2015 Jun;35(6):663-77</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25877769</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant J. 2015 Jun;82(5):887-98</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25903933</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Physiol Plant. 2016 Jan;156(1):54-69</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25913889</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>BMC Genomics. 2015 Jun 18;16:466</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26084880</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2015 Aug;27(8):2261-72</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26243314</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Front Genet. 2015 Jul 30;6:256</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26284112</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biol Rev Camb Philos Soc. 2016 Nov;91(4):1118-1133</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26289992</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2015 Oct;27(10):2800-13</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26410302</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>BMC Plant Biol. 2016 Apr 14;16:86</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27079791</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Elife. 2016 May 31;5:</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27242129</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Protoc. 2016 Sep;11(9):1650-67</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27560171</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Genet. 2017 Jun;63(3):435-439</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27807647</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 2017 Jan 4;45(D1):D1040-D1045</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27924042</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>New Phytol. 2017 Jun;214(4):1464-1478</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28248425</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genomics Proteomics Bioinformatics. 2017 Feb;15(1):14-18</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28387199</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>New Phytol. 2017 Jul;215(2):642-657</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28609015</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Sci Rep. 2017 Jul 28;7(1):6769</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28754917</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Physiol Plant. 2018 Jan;162(1):73-97</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28776695</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 2018 Jan 4;46(D1):D14-D20</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">29036542</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Methods Mol Biol. 2018;1667:203-221</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">29039014</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genes (Basel). 2017 Dec 08;8(12):null</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">29292723</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Integr Plant Biol. 2018 Jul;60(7):578-590</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">29480544</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biotechnol Biofuels. 2018 Apr 2;11:91</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">29619087</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>New Phytol. 2018 Jul;219(2):728-742</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">29681133</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol Biochem. 2018 Sep;130:399-407</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">30064096</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Front Plant Sci. 2018 Jul 24;9:1058</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">30087686</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/PoplarV1/Data/Main/Corpus
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000742 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Corpus/biblio.hfd -nk 000742 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    PoplarV1
   |flux=    Main
   |étape=   Corpus
   |type=    RBID
   |clé=     pubmed:31429697
   |texte=   Genome-wide transcriptional adaptation to salt stress in Populus.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Corpus/RBID.i   -Sk "pubmed:31429697" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Corpus/biblio.hfd   \
       | NlmPubMed2Wicri -a PoplarV1 

Wicri

This area was generated with Dilib version V0.6.37.
Data generation: Wed Nov 18 12:07:19 2020. Site generation: Wed Nov 18 12:16:31 2020