Serveur d'exploration sur le peuplier

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Empirical Evidence for the Potential Climate Benefits of Decarbonizing Light Vehicle Transport in the U.S. with Bioenergy from Purpose-Grown Biomass with and without BECCS.

Identifieur interne : 000463 ( Main/Corpus ); précédent : 000462; suivant : 000464

Empirical Evidence for the Potential Climate Benefits of Decarbonizing Light Vehicle Transport in the U.S. with Bioenergy from Purpose-Grown Biomass with and without BECCS.

Auteurs : Ilya Gelfand ; Stephen K. Hamilton ; Alexandra N. Kravchenko ; Randall D. Jackson ; Kurt D. Thelen ; G Philip Robertson

Source :

RBID : pubmed:32052964

English descriptors

Abstract

Climate mitigation scenarios limiting global temperature increases to 1.5 °C rely on decarbonizing vehicle transport with bioenergy production plus carbon capture and storage (BECCS), but climate impacts for producing different bioenergy feedstocks have not been directly compared experimentally or for ethanol vs electric light-duty vehicles. A field experiment at two Midwest U.S. sites on contrasting soils revealed that feedstock yields of seven potential bioenergy cropping systems varied substantially within sites but little between. Bioenergy produced per hectare reflected yields: miscanthus > poplar > switchgrass > native grasses ≈ maize stover (residue) > restored prairie ≈ early successional. Greenhouse gas emission intensities for ethanol vehicles ranged from 20 to -179 g CO2e MJ-1: maize stover ≫ miscanthus ≈ switchgrass ≈ native grasses ≈ poplar > early successional ≥ restored prairie; direct climate benefits ranged from ∼80% (stover) to 290% (restored prairie) reductions in CO2e compared to petroleum and were similar for electric vehicles. With carbon capture and storage (CCS), reductions in emission intensities ranged from 204% (stover) to 416% (restored prairie) for ethanol vehicles and from 329 to 558% for electric vehicles, declining 27 and 15%, respectively, once soil carbon equilibrates within several decades of establishment. Extrapolation based on expected U.S. transportation energy use suggests that, once CCS potential is maximized with CO2 pipeline infrastructure, negative emissions from bioenergy with CCS for light-duty electric vehicles could capture >900 Tg CO2e year-1 in the U.S. In the future, as other renewable electricity sources become more important, electricity production from biomass would offset less fossil fuel electricity, and the advantage of electric over ethanol vehicles would decrease proportionately.

DOI: 10.1021/acs.est.9b07019
PubMed: 32052964

Links to Exploration step

pubmed:32052964

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Empirical Evidence for the Potential Climate Benefits of Decarbonizing Light Vehicle Transport in the U.S. with Bioenergy from Purpose-Grown Biomass with and without BECCS.</title>
<author>
<name sortKey="Gelfand, Ilya" sort="Gelfand, Ilya" uniqKey="Gelfand I" first="Ilya" last="Gelfand">Ilya Gelfand</name>
<affiliation>
<nlm:affiliation>Great Lakes Bioenergy Research Center, Michigan State University, East Lansing, Michigan 48824, United States.</nlm:affiliation>
</affiliation>
<affiliation>
<nlm:affiliation>W.K. Kellogg Biological Station, Michigan State University, Hickory Corners, Michigan 49060, United States.</nlm:affiliation>
</affiliation>
<affiliation>
<nlm:affiliation>The French Associates Institute for Agriculture and Biotechnology of Drylands, The Jacob Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Beer-Sheva 84990, Israel.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Hamilton, Stephen K" sort="Hamilton, Stephen K" uniqKey="Hamilton S" first="Stephen K" last="Hamilton">Stephen K. Hamilton</name>
<affiliation>
<nlm:affiliation>Great Lakes Bioenergy Research Center, Michigan State University, East Lansing, Michigan 48824, United States.</nlm:affiliation>
</affiliation>
<affiliation>
<nlm:affiliation>W.K. Kellogg Biological Station, Michigan State University, Hickory Corners, Michigan 49060, United States.</nlm:affiliation>
</affiliation>
<affiliation>
<nlm:affiliation>Department of Integrative Biology, Michigan State University, East Lansing, Michigan 48824, United States.</nlm:affiliation>
</affiliation>
<affiliation>
<nlm:affiliation>Cary Institute of Ecosystem Studies, Millbrook, New York 12545, United States.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Kravchenko, Alexandra N" sort="Kravchenko, Alexandra N" uniqKey="Kravchenko A" first="Alexandra N" last="Kravchenko">Alexandra N. Kravchenko</name>
<affiliation>
<nlm:affiliation>Great Lakes Bioenergy Research Center, Michigan State University, East Lansing, Michigan 48824, United States.</nlm:affiliation>
</affiliation>
<affiliation>
<nlm:affiliation>Department of Plant, Soil and Microbial Sciences, Michigan State University, East Lansing, Michigan 48824, United States.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Jackson, Randall D" sort="Jackson, Randall D" uniqKey="Jackson R" first="Randall D" last="Jackson">Randall D. Jackson</name>
<affiliation>
<nlm:affiliation>Great Lakes Bioenergy Research Center, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States.</nlm:affiliation>
</affiliation>
<affiliation>
<nlm:affiliation>Department of Agronomy, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Thelen, Kurt D" sort="Thelen, Kurt D" uniqKey="Thelen K" first="Kurt D" last="Thelen">Kurt D. Thelen</name>
<affiliation>
<nlm:affiliation>Great Lakes Bioenergy Research Center, Michigan State University, East Lansing, Michigan 48824, United States.</nlm:affiliation>
</affiliation>
<affiliation>
<nlm:affiliation>Department of Plant, Soil and Microbial Sciences, Michigan State University, East Lansing, Michigan 48824, United States.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Robertson, G Philip" sort="Robertson, G Philip" uniqKey="Robertson G" first="G Philip" last="Robertson">G Philip Robertson</name>
<affiliation>
<nlm:affiliation>Great Lakes Bioenergy Research Center, Michigan State University, East Lansing, Michigan 48824, United States.</nlm:affiliation>
</affiliation>
<affiliation>
<nlm:affiliation>W.K. Kellogg Biological Station, Michigan State University, Hickory Corners, Michigan 49060, United States.</nlm:affiliation>
</affiliation>
<affiliation>
<nlm:affiliation>Department of Plant, Soil and Microbial Sciences, Michigan State University, East Lansing, Michigan 48824, United States.</nlm:affiliation>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2020">2020</date>
<idno type="RBID">pubmed:32052964</idno>
<idno type="pmid">32052964</idno>
<idno type="doi">10.1021/acs.est.9b07019</idno>
<idno type="wicri:Area/Main/Corpus">000463</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">000463</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Empirical Evidence for the Potential Climate Benefits of Decarbonizing Light Vehicle Transport in the U.S. with Bioenergy from Purpose-Grown Biomass with and without BECCS.</title>
<author>
<name sortKey="Gelfand, Ilya" sort="Gelfand, Ilya" uniqKey="Gelfand I" first="Ilya" last="Gelfand">Ilya Gelfand</name>
<affiliation>
<nlm:affiliation>Great Lakes Bioenergy Research Center, Michigan State University, East Lansing, Michigan 48824, United States.</nlm:affiliation>
</affiliation>
<affiliation>
<nlm:affiliation>W.K. Kellogg Biological Station, Michigan State University, Hickory Corners, Michigan 49060, United States.</nlm:affiliation>
</affiliation>
<affiliation>
<nlm:affiliation>The French Associates Institute for Agriculture and Biotechnology of Drylands, The Jacob Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Beer-Sheva 84990, Israel.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Hamilton, Stephen K" sort="Hamilton, Stephen K" uniqKey="Hamilton S" first="Stephen K" last="Hamilton">Stephen K. Hamilton</name>
<affiliation>
<nlm:affiliation>Great Lakes Bioenergy Research Center, Michigan State University, East Lansing, Michigan 48824, United States.</nlm:affiliation>
</affiliation>
<affiliation>
<nlm:affiliation>W.K. Kellogg Biological Station, Michigan State University, Hickory Corners, Michigan 49060, United States.</nlm:affiliation>
</affiliation>
<affiliation>
<nlm:affiliation>Department of Integrative Biology, Michigan State University, East Lansing, Michigan 48824, United States.</nlm:affiliation>
</affiliation>
<affiliation>
<nlm:affiliation>Cary Institute of Ecosystem Studies, Millbrook, New York 12545, United States.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Kravchenko, Alexandra N" sort="Kravchenko, Alexandra N" uniqKey="Kravchenko A" first="Alexandra N" last="Kravchenko">Alexandra N. Kravchenko</name>
<affiliation>
<nlm:affiliation>Great Lakes Bioenergy Research Center, Michigan State University, East Lansing, Michigan 48824, United States.</nlm:affiliation>
</affiliation>
<affiliation>
<nlm:affiliation>Department of Plant, Soil and Microbial Sciences, Michigan State University, East Lansing, Michigan 48824, United States.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Jackson, Randall D" sort="Jackson, Randall D" uniqKey="Jackson R" first="Randall D" last="Jackson">Randall D. Jackson</name>
<affiliation>
<nlm:affiliation>Great Lakes Bioenergy Research Center, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States.</nlm:affiliation>
</affiliation>
<affiliation>
<nlm:affiliation>Department of Agronomy, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Thelen, Kurt D" sort="Thelen, Kurt D" uniqKey="Thelen K" first="Kurt D" last="Thelen">Kurt D. Thelen</name>
<affiliation>
<nlm:affiliation>Great Lakes Bioenergy Research Center, Michigan State University, East Lansing, Michigan 48824, United States.</nlm:affiliation>
</affiliation>
<affiliation>
<nlm:affiliation>Department of Plant, Soil and Microbial Sciences, Michigan State University, East Lansing, Michigan 48824, United States.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Robertson, G Philip" sort="Robertson, G Philip" uniqKey="Robertson G" first="G Philip" last="Robertson">G Philip Robertson</name>
<affiliation>
<nlm:affiliation>Great Lakes Bioenergy Research Center, Michigan State University, East Lansing, Michigan 48824, United States.</nlm:affiliation>
</affiliation>
<affiliation>
<nlm:affiliation>W.K. Kellogg Biological Station, Michigan State University, Hickory Corners, Michigan 49060, United States.</nlm:affiliation>
</affiliation>
<affiliation>
<nlm:affiliation>Department of Plant, Soil and Microbial Sciences, Michigan State University, East Lansing, Michigan 48824, United States.</nlm:affiliation>
</affiliation>
</author>
</analytic>
<series>
<title level="j">Environmental science & technology</title>
<idno type="eISSN">1520-5851</idno>
<imprint>
<date when="2020" type="published">2020</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Biomass (MeSH)</term>
<term>Carbon (MeSH)</term>
<term>Climate (MeSH)</term>
<term>Fossil Fuels (MeSH)</term>
<term>Panicum (MeSH)</term>
</keywords>
<keywords scheme="MESH" type="chemical" xml:lang="en">
<term>Carbon</term>
<term>Fossil Fuels</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Biomass</term>
<term>Climate</term>
<term>Panicum</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Climate mitigation scenarios limiting global temperature increases to 1.5 °C rely on decarbonizing vehicle transport with bioenergy production plus carbon capture and storage (BECCS), but climate impacts for producing different bioenergy feedstocks have not been directly compared experimentally or for ethanol vs electric light-duty vehicles. A field experiment at two Midwest U.S. sites on contrasting soils revealed that feedstock yields of seven potential bioenergy cropping systems varied substantially within sites but little between. Bioenergy produced per hectare reflected yields: miscanthus > poplar > switchgrass > native grasses ≈ maize stover (residue) > restored prairie ≈ early successional. Greenhouse gas emission intensities for ethanol vehicles ranged from 20 to -179 g CO
<sub>2</sub>
e MJ
<sup>-1</sup>
: maize stover ≫ miscanthus ≈ switchgrass ≈ native grasses ≈ poplar > early successional ≥ restored prairie; direct climate benefits ranged from ∼80% (stover) to 290% (restored prairie) reductions in CO
<sub>2</sub>
e compared to petroleum and were similar for electric vehicles. With carbon capture and storage (CCS), reductions in emission intensities ranged from 204% (stover) to 416% (restored prairie) for ethanol vehicles and from 329 to 558% for electric vehicles, declining 27 and 15%, respectively, once soil carbon equilibrates within several decades of establishment. Extrapolation based on expected U.S. transportation energy use suggests that, once CCS potential is maximized with CO
<sub>2</sub>
pipeline infrastructure, negative emissions from bioenergy with CCS for light-duty electric vehicles could capture >900 Tg CO
<sub>2</sub>
e year
<sup>-1</sup>
in the U.S. In the future, as other renewable electricity sources become more important, electricity production from biomass would offset less fossil fuel electricity, and the advantage of electric over ethanol vehicles would decrease proportionately.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" IndexingMethod="Automated" Owner="NLM">
<PMID Version="1">32052964</PMID>
<DateCompleted>
<Year>2020</Year>
<Month>03</Month>
<Day>16</Day>
</DateCompleted>
<DateRevised>
<Year>2020</Year>
<Month>03</Month>
<Day>16</Day>
</DateRevised>
<Article PubModel="Print-Electronic">
<Journal>
<ISSN IssnType="Electronic">1520-5851</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>54</Volume>
<Issue>5</Issue>
<PubDate>
<Year>2020</Year>
<Month>03</Month>
<Day>03</Day>
</PubDate>
</JournalIssue>
<Title>Environmental science & technology</Title>
<ISOAbbreviation>Environ Sci Technol</ISOAbbreviation>
</Journal>
<ArticleTitle>Empirical Evidence for the Potential Climate Benefits of Decarbonizing Light Vehicle Transport in the U.S. with Bioenergy from Purpose-Grown Biomass with and without BECCS.</ArticleTitle>
<Pagination>
<MedlinePgn>2961-2974</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1021/acs.est.9b07019</ELocationID>
<Abstract>
<AbstractText>Climate mitigation scenarios limiting global temperature increases to 1.5 °C rely on decarbonizing vehicle transport with bioenergy production plus carbon capture and storage (BECCS), but climate impacts for producing different bioenergy feedstocks have not been directly compared experimentally or for ethanol vs electric light-duty vehicles. A field experiment at two Midwest U.S. sites on contrasting soils revealed that feedstock yields of seven potential bioenergy cropping systems varied substantially within sites but little between. Bioenergy produced per hectare reflected yields: miscanthus > poplar > switchgrass > native grasses ≈ maize stover (residue) > restored prairie ≈ early successional. Greenhouse gas emission intensities for ethanol vehicles ranged from 20 to -179 g CO
<sub>2</sub>
e MJ
<sup>-1</sup>
: maize stover ≫ miscanthus ≈ switchgrass ≈ native grasses ≈ poplar > early successional ≥ restored prairie; direct climate benefits ranged from ∼80% (stover) to 290% (restored prairie) reductions in CO
<sub>2</sub>
e compared to petroleum and were similar for electric vehicles. With carbon capture and storage (CCS), reductions in emission intensities ranged from 204% (stover) to 416% (restored prairie) for ethanol vehicles and from 329 to 558% for electric vehicles, declining 27 and 15%, respectively, once soil carbon equilibrates within several decades of establishment. Extrapolation based on expected U.S. transportation energy use suggests that, once CCS potential is maximized with CO
<sub>2</sub>
pipeline infrastructure, negative emissions from bioenergy with CCS for light-duty electric vehicles could capture >900 Tg CO
<sub>2</sub>
e year
<sup>-1</sup>
in the U.S. In the future, as other renewable electricity sources become more important, electricity production from biomass would offset less fossil fuel electricity, and the advantage of electric over ethanol vehicles would decrease proportionately.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Gelfand</LastName>
<ForeName>Ilya</ForeName>
<Initials>I</Initials>
<Identifier Source="ORCID">0000-0002-8576-0978</Identifier>
<AffiliationInfo>
<Affiliation>Great Lakes Bioenergy Research Center, Michigan State University, East Lansing, Michigan 48824, United States.</Affiliation>
</AffiliationInfo>
<AffiliationInfo>
<Affiliation>W.K. Kellogg Biological Station, Michigan State University, Hickory Corners, Michigan 49060, United States.</Affiliation>
</AffiliationInfo>
<AffiliationInfo>
<Affiliation>The French Associates Institute for Agriculture and Biotechnology of Drylands, The Jacob Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Beer-Sheva 84990, Israel.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Hamilton</LastName>
<ForeName>Stephen K</ForeName>
<Initials>SK</Initials>
<AffiliationInfo>
<Affiliation>Great Lakes Bioenergy Research Center, Michigan State University, East Lansing, Michigan 48824, United States.</Affiliation>
</AffiliationInfo>
<AffiliationInfo>
<Affiliation>W.K. Kellogg Biological Station, Michigan State University, Hickory Corners, Michigan 49060, United States.</Affiliation>
</AffiliationInfo>
<AffiliationInfo>
<Affiliation>Department of Integrative Biology, Michigan State University, East Lansing, Michigan 48824, United States.</Affiliation>
</AffiliationInfo>
<AffiliationInfo>
<Affiliation>Cary Institute of Ecosystem Studies, Millbrook, New York 12545, United States.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Kravchenko</LastName>
<ForeName>Alexandra N</ForeName>
<Initials>AN</Initials>
<AffiliationInfo>
<Affiliation>Great Lakes Bioenergy Research Center, Michigan State University, East Lansing, Michigan 48824, United States.</Affiliation>
</AffiliationInfo>
<AffiliationInfo>
<Affiliation>Department of Plant, Soil and Microbial Sciences, Michigan State University, East Lansing, Michigan 48824, United States.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Jackson</LastName>
<ForeName>Randall D</ForeName>
<Initials>RD</Initials>
<AffiliationInfo>
<Affiliation>Great Lakes Bioenergy Research Center, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States.</Affiliation>
</AffiliationInfo>
<AffiliationInfo>
<Affiliation>Department of Agronomy, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Thelen</LastName>
<ForeName>Kurt D</ForeName>
<Initials>KD</Initials>
<AffiliationInfo>
<Affiliation>Great Lakes Bioenergy Research Center, Michigan State University, East Lansing, Michigan 48824, United States.</Affiliation>
</AffiliationInfo>
<AffiliationInfo>
<Affiliation>Department of Plant, Soil and Microbial Sciences, Michigan State University, East Lansing, Michigan 48824, United States.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Robertson</LastName>
<ForeName>G Philip</ForeName>
<Initials>GP</Initials>
<AffiliationInfo>
<Affiliation>Great Lakes Bioenergy Research Center, Michigan State University, East Lansing, Michigan 48824, United States.</Affiliation>
</AffiliationInfo>
<AffiliationInfo>
<Affiliation>W.K. Kellogg Biological Station, Michigan State University, Hickory Corners, Michigan 49060, United States.</Affiliation>
</AffiliationInfo>
<AffiliationInfo>
<Affiliation>Department of Plant, Soil and Microbial Sciences, Michigan State University, East Lansing, Michigan 48824, United States.</Affiliation>
</AffiliationInfo>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D013485">Research Support, Non-U.S. Gov't</PublicationType>
<PublicationType UI="D013486">Research Support, U.S. Gov't, Non-P.H.S.</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2020</Year>
<Month>02</Month>
<Day>13</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>United States</Country>
<MedlineTA>Environ Sci Technol</MedlineTA>
<NlmUniqueID>0213155</NlmUniqueID>
<ISSNLinking>0013-936X</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D005579">Fossil Fuels</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>7440-44-0</RegistryNumber>
<NameOfSubstance UI="D002244">Carbon</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D018533" MajorTopicYN="N">Biomass</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D002244" MajorTopicYN="N">Carbon</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D002980" MajorTopicYN="Y">Climate</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D005579" MajorTopicYN="N">Fossil Fuels</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D008897" MajorTopicYN="Y">Panicum</DescriptorName>
</MeshHeading>
</MeshHeadingList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="pubmed">
<Year>2020</Year>
<Month>2</Month>
<Day>14</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2020</Year>
<Month>3</Month>
<Day>17</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2020</Year>
<Month>2</Month>
<Day>14</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">32052964</ArticleId>
<ArticleId IdType="doi">10.1021/acs.est.9b07019</ArticleId>
</ArticleIdList>
</PubmedData>
</pubmed>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/PoplarV1/Data/Main/Corpus
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000463 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Corpus/biblio.hfd -nk 000463 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    PoplarV1
   |flux=    Main
   |étape=   Corpus
   |type=    RBID
   |clé=     pubmed:32052964
   |texte=   Empirical Evidence for the Potential Climate Benefits of Decarbonizing Light Vehicle Transport in the U.S. with Bioenergy from Purpose-Grown Biomass with and without BECCS.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Corpus/RBID.i   -Sk "pubmed:32052964" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Corpus/biblio.hfd   \
       | NlmPubMed2Wicri -a PoplarV1 

Wicri

This area was generated with Dilib version V0.6.37.
Data generation: Wed Nov 18 12:07:19 2020. Site generation: Wed Nov 18 12:16:31 2020