Serveur d'exploration sur le peuplier

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

A willow sex chromosome reveals convergent evolution of complex palindromic repeats.

Identifieur interne : 000457 ( Main/Corpus ); précédent : 000456; suivant : 000458

A willow sex chromosome reveals convergent evolution of complex palindromic repeats.

Auteurs : Ran Zhou ; David Macaya-Sanz ; Craig H. Carlson ; Jeremy Schmutz ; Jerry W. Jenkins ; David Kudrna ; Aditi Sharma ; Laura Sandor ; Shengqiang Shu ; Kerrie Barry ; Gerald A. Tuskan ; Tao Ma ; Jianquan Liu ; Matthew Olson ; Lawrence B. Smart ; Stephen P. Difazio

Source :

RBID : pubmed:32059685

Abstract

BACKGROUND

Sex chromosomes have arisen independently in a wide variety of species, yet they share common characteristics, including the presence of suppressed recombination surrounding sex determination loci. Mammalian sex chromosomes contain multiple palindromic repeats across the non-recombining region that show sequence conservation through gene conversion and contain genes that are crucial for sexual reproduction. In plants, it is not clear if palindromic repeats play a role in maintaining sequence conservation in the absence of homologous recombination.

RESULTS

Here we present the first evidence of large palindromic structures in a plant sex chromosome, based on a highly contiguous assembly of the W chromosome of the dioecious shrub Salix purpurea. The W chromosome has an expanded number of genes due to transpositions from autosomes. It also contains two consecutive palindromes that span a region of 200 kb, with conspicuous 20-kb stretches of highly conserved sequences among the four arms that show evidence of gene conversion. Four genes in the palindrome are homologous to genes in the sex determination regions of the closely related genus Populus, which is located on a different chromosome. These genes show distinct, floral-biased expression patterns compared to paralogous copies on autosomes.

CONCLUSION

The presence of palindromes in sex chromosomes of mammals and plants highlights the intrinsic importance of these features in adaptive evolution in the absence of recombination. Convergent evolution is driving both the independent establishment of sex chromosomes as well as their fine-scale sequence structure.


DOI: 10.1186/s13059-020-1952-4
PubMed: 32059685
PubMed Central: PMC7023750

Links to Exploration step

pubmed:32059685

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">A willow sex chromosome reveals convergent evolution of complex palindromic repeats.</title>
<author>
<name sortKey="Zhou, Ran" sort="Zhou, Ran" uniqKey="Zhou R" first="Ran" last="Zhou">Ran Zhou</name>
<affiliation>
<nlm:affiliation>Department of Biology, West Virginia University, Morgantown, WV, 26506-6057, USA.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Macaya Sanz, David" sort="Macaya Sanz, David" uniqKey="Macaya Sanz D" first="David" last="Macaya-Sanz">David Macaya-Sanz</name>
<affiliation>
<nlm:affiliation>Department of Biology, West Virginia University, Morgantown, WV, 26506-6057, USA.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Carlson, Craig H" sort="Carlson, Craig H" uniqKey="Carlson C" first="Craig H" last="Carlson">Craig H. Carlson</name>
<affiliation>
<nlm:affiliation>Horticulture Section, School of Integrative Plant Science, Cornell University, New York State Agricultural Experiment Station, Geneva, NY, 14456, USA.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Schmutz, Jeremy" sort="Schmutz, Jeremy" uniqKey="Schmutz J" first="Jeremy" last="Schmutz">Jeremy Schmutz</name>
<affiliation>
<nlm:affiliation>HudsonAlpha Institute of Biotechnology, Huntsville, AL, USA.</nlm:affiliation>
</affiliation>
<affiliation>
<nlm:affiliation>Department of Energy Joint Genome Institute, Walnut Creek, California, USA.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Jenkins, Jerry W" sort="Jenkins, Jerry W" uniqKey="Jenkins J" first="Jerry W" last="Jenkins">Jerry W. Jenkins</name>
<affiliation>
<nlm:affiliation>HudsonAlpha Institute of Biotechnology, Huntsville, AL, USA.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Kudrna, David" sort="Kudrna, David" uniqKey="Kudrna D" first="David" last="Kudrna">David Kudrna</name>
<affiliation>
<nlm:affiliation>Arizona Genomics Institute, School of Plant Sciences, University of Arizona, Tucson, AZ, USA.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Sharma, Aditi" sort="Sharma, Aditi" uniqKey="Sharma A" first="Aditi" last="Sharma">Aditi Sharma</name>
<affiliation>
<nlm:affiliation>Department of Energy Joint Genome Institute, Walnut Creek, California, USA.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Sandor, Laura" sort="Sandor, Laura" uniqKey="Sandor L" first="Laura" last="Sandor">Laura Sandor</name>
<affiliation>
<nlm:affiliation>Department of Energy Joint Genome Institute, Walnut Creek, California, USA.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Shu, Shengqiang" sort="Shu, Shengqiang" uniqKey="Shu S" first="Shengqiang" last="Shu">Shengqiang Shu</name>
<affiliation>
<nlm:affiliation>Department of Energy Joint Genome Institute, Walnut Creek, California, USA.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Barry, Kerrie" sort="Barry, Kerrie" uniqKey="Barry K" first="Kerrie" last="Barry">Kerrie Barry</name>
<affiliation>
<nlm:affiliation>Department of Energy Joint Genome Institute, Walnut Creek, California, USA.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Tuskan, Gerald A" sort="Tuskan, Gerald A" uniqKey="Tuskan G" first="Gerald A" last="Tuskan">Gerald A. Tuskan</name>
<affiliation>
<nlm:affiliation>Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, 37831, USA.</nlm:affiliation>
</affiliation>
<affiliation>
<nlm:affiliation>DOE-Center for Bioenergy Innovation (CBI), Oak Ridge National Laboratory, Oak Ridge, TN, 37831, USA.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Ma, Tao" sort="Ma, Tao" uniqKey="Ma T" first="Tao" last="Ma">Tao Ma</name>
<affiliation>
<nlm:affiliation>Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610065, China.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Liu, Jianquan" sort="Liu, Jianquan" uniqKey="Liu J" first="Jianquan" last="Liu">Jianquan Liu</name>
<affiliation>
<nlm:affiliation>Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610065, China.</nlm:affiliation>
</affiliation>
<affiliation>
<nlm:affiliation>State Key Laboratory of Grassland Agro-Ecosystem, Institute of Innovation Ecology & College of Life Sciences, Lanzhou University, Lanzhou, 730000, China.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Olson, Matthew" sort="Olson, Matthew" uniqKey="Olson M" first="Matthew" last="Olson">Matthew Olson</name>
<affiliation>
<nlm:affiliation>Department of Biological Sciences, Texas Tech University, Box 43131, Lubbock, TX, 79409-3131, USA.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Smart, Lawrence B" sort="Smart, Lawrence B" uniqKey="Smart L" first="Lawrence B" last="Smart">Lawrence B. Smart</name>
<affiliation>
<nlm:affiliation>Horticulture Section, School of Integrative Plant Science, Cornell University, New York State Agricultural Experiment Station, Geneva, NY, 14456, USA.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Difazio, Stephen P" sort="Difazio, Stephen P" uniqKey="Difazio S" first="Stephen P" last="Difazio">Stephen P. Difazio</name>
<affiliation>
<nlm:affiliation>Department of Biology, West Virginia University, Morgantown, WV, 26506-6057, USA. spdifazio@mail.wvu.edu.</nlm:affiliation>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2020">2020</date>
<idno type="RBID">pubmed:32059685</idno>
<idno type="pmid">32059685</idno>
<idno type="doi">10.1186/s13059-020-1952-4</idno>
<idno type="pmc">PMC7023750</idno>
<idno type="wicri:Area/Main/Corpus">000457</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">000457</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">A willow sex chromosome reveals convergent evolution of complex palindromic repeats.</title>
<author>
<name sortKey="Zhou, Ran" sort="Zhou, Ran" uniqKey="Zhou R" first="Ran" last="Zhou">Ran Zhou</name>
<affiliation>
<nlm:affiliation>Department of Biology, West Virginia University, Morgantown, WV, 26506-6057, USA.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Macaya Sanz, David" sort="Macaya Sanz, David" uniqKey="Macaya Sanz D" first="David" last="Macaya-Sanz">David Macaya-Sanz</name>
<affiliation>
<nlm:affiliation>Department of Biology, West Virginia University, Morgantown, WV, 26506-6057, USA.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Carlson, Craig H" sort="Carlson, Craig H" uniqKey="Carlson C" first="Craig H" last="Carlson">Craig H. Carlson</name>
<affiliation>
<nlm:affiliation>Horticulture Section, School of Integrative Plant Science, Cornell University, New York State Agricultural Experiment Station, Geneva, NY, 14456, USA.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Schmutz, Jeremy" sort="Schmutz, Jeremy" uniqKey="Schmutz J" first="Jeremy" last="Schmutz">Jeremy Schmutz</name>
<affiliation>
<nlm:affiliation>HudsonAlpha Institute of Biotechnology, Huntsville, AL, USA.</nlm:affiliation>
</affiliation>
<affiliation>
<nlm:affiliation>Department of Energy Joint Genome Institute, Walnut Creek, California, USA.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Jenkins, Jerry W" sort="Jenkins, Jerry W" uniqKey="Jenkins J" first="Jerry W" last="Jenkins">Jerry W. Jenkins</name>
<affiliation>
<nlm:affiliation>HudsonAlpha Institute of Biotechnology, Huntsville, AL, USA.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Kudrna, David" sort="Kudrna, David" uniqKey="Kudrna D" first="David" last="Kudrna">David Kudrna</name>
<affiliation>
<nlm:affiliation>Arizona Genomics Institute, School of Plant Sciences, University of Arizona, Tucson, AZ, USA.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Sharma, Aditi" sort="Sharma, Aditi" uniqKey="Sharma A" first="Aditi" last="Sharma">Aditi Sharma</name>
<affiliation>
<nlm:affiliation>Department of Energy Joint Genome Institute, Walnut Creek, California, USA.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Sandor, Laura" sort="Sandor, Laura" uniqKey="Sandor L" first="Laura" last="Sandor">Laura Sandor</name>
<affiliation>
<nlm:affiliation>Department of Energy Joint Genome Institute, Walnut Creek, California, USA.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Shu, Shengqiang" sort="Shu, Shengqiang" uniqKey="Shu S" first="Shengqiang" last="Shu">Shengqiang Shu</name>
<affiliation>
<nlm:affiliation>Department of Energy Joint Genome Institute, Walnut Creek, California, USA.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Barry, Kerrie" sort="Barry, Kerrie" uniqKey="Barry K" first="Kerrie" last="Barry">Kerrie Barry</name>
<affiliation>
<nlm:affiliation>Department of Energy Joint Genome Institute, Walnut Creek, California, USA.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Tuskan, Gerald A" sort="Tuskan, Gerald A" uniqKey="Tuskan G" first="Gerald A" last="Tuskan">Gerald A. Tuskan</name>
<affiliation>
<nlm:affiliation>Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, 37831, USA.</nlm:affiliation>
</affiliation>
<affiliation>
<nlm:affiliation>DOE-Center for Bioenergy Innovation (CBI), Oak Ridge National Laboratory, Oak Ridge, TN, 37831, USA.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Ma, Tao" sort="Ma, Tao" uniqKey="Ma T" first="Tao" last="Ma">Tao Ma</name>
<affiliation>
<nlm:affiliation>Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610065, China.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Liu, Jianquan" sort="Liu, Jianquan" uniqKey="Liu J" first="Jianquan" last="Liu">Jianquan Liu</name>
<affiliation>
<nlm:affiliation>Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610065, China.</nlm:affiliation>
</affiliation>
<affiliation>
<nlm:affiliation>State Key Laboratory of Grassland Agro-Ecosystem, Institute of Innovation Ecology & College of Life Sciences, Lanzhou University, Lanzhou, 730000, China.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Olson, Matthew" sort="Olson, Matthew" uniqKey="Olson M" first="Matthew" last="Olson">Matthew Olson</name>
<affiliation>
<nlm:affiliation>Department of Biological Sciences, Texas Tech University, Box 43131, Lubbock, TX, 79409-3131, USA.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Smart, Lawrence B" sort="Smart, Lawrence B" uniqKey="Smart L" first="Lawrence B" last="Smart">Lawrence B. Smart</name>
<affiliation>
<nlm:affiliation>Horticulture Section, School of Integrative Plant Science, Cornell University, New York State Agricultural Experiment Station, Geneva, NY, 14456, USA.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Difazio, Stephen P" sort="Difazio, Stephen P" uniqKey="Difazio S" first="Stephen P" last="Difazio">Stephen P. Difazio</name>
<affiliation>
<nlm:affiliation>Department of Biology, West Virginia University, Morgantown, WV, 26506-6057, USA. spdifazio@mail.wvu.edu.</nlm:affiliation>
</affiliation>
</author>
</analytic>
<series>
<title level="j">Genome biology</title>
<idno type="eISSN">1474-760X</idno>
<imprint>
<date when="2020" type="published">2020</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass></textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">
<p>
<b>BACKGROUND</b>
</p>
<p>Sex chromosomes have arisen independently in a wide variety of species, yet they share common characteristics, including the presence of suppressed recombination surrounding sex determination loci. Mammalian sex chromosomes contain multiple palindromic repeats across the non-recombining region that show sequence conservation through gene conversion and contain genes that are crucial for sexual reproduction. In plants, it is not clear if palindromic repeats play a role in maintaining sequence conservation in the absence of homologous recombination.</p>
</div>
<div type="abstract" xml:lang="en">
<p>
<b>RESULTS</b>
</p>
<p>Here we present the first evidence of large palindromic structures in a plant sex chromosome, based on a highly contiguous assembly of the W chromosome of the dioecious shrub Salix purpurea. The W chromosome has an expanded number of genes due to transpositions from autosomes. It also contains two consecutive palindromes that span a region of 200 kb, with conspicuous 20-kb stretches of highly conserved sequences among the four arms that show evidence of gene conversion. Four genes in the palindrome are homologous to genes in the sex determination regions of the closely related genus Populus, which is located on a different chromosome. These genes show distinct, floral-biased expression patterns compared to paralogous copies on autosomes.</p>
</div>
<div type="abstract" xml:lang="en">
<p>
<b>CONCLUSION</b>
</p>
<p>The presence of palindromes in sex chromosomes of mammals and plants highlights the intrinsic importance of these features in adaptive evolution in the absence of recombination. Convergent evolution is driving both the independent establishment of sex chromosomes as well as their fine-scale sequence structure.</p>
</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="In-Process" Owner="NLM">
<PMID Version="1">32059685</PMID>
<DateRevised>
<Year>2020</Year>
<Month>04</Month>
<Day>10</Day>
</DateRevised>
<Article PubModel="Electronic">
<Journal>
<ISSN IssnType="Electronic">1474-760X</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>21</Volume>
<Issue>1</Issue>
<PubDate>
<Year>2020</Year>
<Month>02</Month>
<Day>14</Day>
</PubDate>
</JournalIssue>
<Title>Genome biology</Title>
<ISOAbbreviation>Genome Biol</ISOAbbreviation>
</Journal>
<ArticleTitle>A willow sex chromosome reveals convergent evolution of complex palindromic repeats.</ArticleTitle>
<Pagination>
<MedlinePgn>38</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1186/s13059-020-1952-4</ELocationID>
<Abstract>
<AbstractText Label="BACKGROUND">Sex chromosomes have arisen independently in a wide variety of species, yet they share common characteristics, including the presence of suppressed recombination surrounding sex determination loci. Mammalian sex chromosomes contain multiple palindromic repeats across the non-recombining region that show sequence conservation through gene conversion and contain genes that are crucial for sexual reproduction. In plants, it is not clear if palindromic repeats play a role in maintaining sequence conservation in the absence of homologous recombination.</AbstractText>
<AbstractText Label="RESULTS">Here we present the first evidence of large palindromic structures in a plant sex chromosome, based on a highly contiguous assembly of the W chromosome of the dioecious shrub Salix purpurea. The W chromosome has an expanded number of genes due to transpositions from autosomes. It also contains two consecutive palindromes that span a region of 200 kb, with conspicuous 20-kb stretches of highly conserved sequences among the four arms that show evidence of gene conversion. Four genes in the palindrome are homologous to genes in the sex determination regions of the closely related genus Populus, which is located on a different chromosome. These genes show distinct, floral-biased expression patterns compared to paralogous copies on autosomes.</AbstractText>
<AbstractText Label="CONCLUSION">The presence of palindromes in sex chromosomes of mammals and plants highlights the intrinsic importance of these features in adaptive evolution in the absence of recombination. Convergent evolution is driving both the independent establishment of sex chromosomes as well as their fine-scale sequence structure.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Zhou</LastName>
<ForeName>Ran</ForeName>
<Initials>R</Initials>
<AffiliationInfo>
<Affiliation>Department of Biology, West Virginia University, Morgantown, WV, 26506-6057, USA.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Macaya-Sanz</LastName>
<ForeName>David</ForeName>
<Initials>D</Initials>
<AffiliationInfo>
<Affiliation>Department of Biology, West Virginia University, Morgantown, WV, 26506-6057, USA.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Carlson</LastName>
<ForeName>Craig H</ForeName>
<Initials>CH</Initials>
<AffiliationInfo>
<Affiliation>Horticulture Section, School of Integrative Plant Science, Cornell University, New York State Agricultural Experiment Station, Geneva, NY, 14456, USA.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Schmutz</LastName>
<ForeName>Jeremy</ForeName>
<Initials>J</Initials>
<AffiliationInfo>
<Affiliation>HudsonAlpha Institute of Biotechnology, Huntsville, AL, USA.</Affiliation>
</AffiliationInfo>
<AffiliationInfo>
<Affiliation>Department of Energy Joint Genome Institute, Walnut Creek, California, USA.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Jenkins</LastName>
<ForeName>Jerry W</ForeName>
<Initials>JW</Initials>
<AffiliationInfo>
<Affiliation>HudsonAlpha Institute of Biotechnology, Huntsville, AL, USA.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Kudrna</LastName>
<ForeName>David</ForeName>
<Initials>D</Initials>
<AffiliationInfo>
<Affiliation>Arizona Genomics Institute, School of Plant Sciences, University of Arizona, Tucson, AZ, USA.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Sharma</LastName>
<ForeName>Aditi</ForeName>
<Initials>A</Initials>
<AffiliationInfo>
<Affiliation>Department of Energy Joint Genome Institute, Walnut Creek, California, USA.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Sandor</LastName>
<ForeName>Laura</ForeName>
<Initials>L</Initials>
<AffiliationInfo>
<Affiliation>Department of Energy Joint Genome Institute, Walnut Creek, California, USA.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Shu</LastName>
<ForeName>Shengqiang</ForeName>
<Initials>S</Initials>
<AffiliationInfo>
<Affiliation>Department of Energy Joint Genome Institute, Walnut Creek, California, USA.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Barry</LastName>
<ForeName>Kerrie</ForeName>
<Initials>K</Initials>
<AffiliationInfo>
<Affiliation>Department of Energy Joint Genome Institute, Walnut Creek, California, USA.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Tuskan</LastName>
<ForeName>Gerald A</ForeName>
<Initials>GA</Initials>
<AffiliationInfo>
<Affiliation>Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, 37831, USA.</Affiliation>
</AffiliationInfo>
<AffiliationInfo>
<Affiliation>DOE-Center for Bioenergy Innovation (CBI), Oak Ridge National Laboratory, Oak Ridge, TN, 37831, USA.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Ma</LastName>
<ForeName>Tao</ForeName>
<Initials>T</Initials>
<AffiliationInfo>
<Affiliation>Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610065, China.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Liu</LastName>
<ForeName>Jianquan</ForeName>
<Initials>J</Initials>
<AffiliationInfo>
<Affiliation>Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610065, China.</Affiliation>
</AffiliationInfo>
<AffiliationInfo>
<Affiliation>State Key Laboratory of Grassland Agro-Ecosystem, Institute of Innovation Ecology & College of Life Sciences, Lanzhou University, Lanzhou, 730000, China.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Olson</LastName>
<ForeName>Matthew</ForeName>
<Initials>M</Initials>
<AffiliationInfo>
<Affiliation>Department of Biological Sciences, Texas Tech University, Box 43131, Lubbock, TX, 79409-3131, USA.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Smart</LastName>
<ForeName>Lawrence B</ForeName>
<Initials>LB</Initials>
<AffiliationInfo>
<Affiliation>Horticulture Section, School of Integrative Plant Science, Cornell University, New York State Agricultural Experiment Station, Geneva, NY, 14456, USA.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>DiFazio</LastName>
<ForeName>Stephen P</ForeName>
<Initials>SP</Initials>
<Identifier Source="ORCID">0000-0003-4077-1590</Identifier>
<AffiliationInfo>
<Affiliation>Department of Biology, West Virginia University, Morgantown, WV, 26506-6057, USA. spdifazio@mail.wvu.edu.</Affiliation>
</AffiliationInfo>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D013485">Research Support, Non-U.S. Gov't</PublicationType>
<PublicationType UI="D013486">Research Support, U.S. Gov't, Non-P.H.S.</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2020</Year>
<Month>02</Month>
<Day>14</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>England</Country>
<MedlineTA>Genome Biol</MedlineTA>
<NlmUniqueID>100960660</NlmUniqueID>
<ISSNLinking>1474-7596</ISSNLinking>
</MedlineJournalInfo>
<CitationSubset>IM</CitationSubset>
<KeywordList Owner="NOTNLM">
<Keyword MajorTopicYN="Y">Gene conversion</Keyword>
<Keyword MajorTopicYN="Y">Genome</Keyword>
<Keyword MajorTopicYN="Y">Palindrome</Keyword>
<Keyword MajorTopicYN="Y">Salix</Keyword>
<Keyword MajorTopicYN="Y">Sex</Keyword>
<Keyword MajorTopicYN="Y">W chromosome</Keyword>
</KeywordList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2019</Year>
<Month>07</Month>
<Day>23</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2020</Year>
<Month>02</Month>
<Day>03</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2020</Year>
<Month>2</Month>
<Day>16</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2020</Year>
<Month>2</Month>
<Day>16</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2020</Year>
<Month>2</Month>
<Day>16</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>epublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">32059685</ArticleId>
<ArticleId IdType="doi">10.1186/s13059-020-1952-4</ArticleId>
<ArticleId IdType="pii">10.1186/s13059-020-1952-4</ArticleId>
<ArticleId IdType="pmc">PMC7023750</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>Sci Rep. 2017 Mar 27;7:45388</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28345647</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genome Res. 2010 Sep;20(9):1297-303</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20644199</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Adv Genet. 1958;9:217-81</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">13520443</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Sci Rep. 2019 Jan 31;9(1):1045</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">30705300</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2007 Oct 18;449(7164):909-12</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17943130</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Ann Bot. 2019 Oct 29;124(4):701-716</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">31008500</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Genet Genomics. 2018 Dec;293(6):1437-1452</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">30022352</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genome Biol Evol. 2016 Jun 27;8(6):1868-75</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27352946</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochimie. 2019 Jul;162:26-32</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">30935960</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2010 Jan 28;463(7280):536-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20072128</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell. 2014 Nov 6;159(4):800-13</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25417157</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Am J Bot. 2014 Oct;101(10):1588-96</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25326608</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Annu Rev Plant Biol. 2016 Apr 29;67:397-420</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26653795</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2012 Feb 22;483(7387):82-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22367542</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Rev Genet. 2013 Feb;14(2):113-24</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23329112</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Bioinformatics. 2007 Nov 1;23(21):2947-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17846036</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Int J Evol Biol. 2012;2012:207958</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22844637</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 2009 Nov;37(21):7002-13</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19786494</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Annu Rev Plant Biol. 2011;62:485-514</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21526970</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 2012 Apr;40(7):e49</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22217600</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genome Res. 2004 Oct;14(10A):1861-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15466286</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2012 Aug 21;109(34):13710-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22869747</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS Biol. 2018 Aug 27;16(8):e2006062</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">30148831</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genetics. 2008 Sep;180(1):329-40</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18716330</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Ecol Evol. 2019 Nov;3(11):1587-1597</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">31666742</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Mol Biol. 2016 Mar;90(4-5):359-73</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26694866</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Evolution. 2006 Sep;60(9):1793-800</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17089964</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell. 2009 Sep 4;138(5):855-69</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19737515</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell. 1982 Jun;29(2):537-50</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">6288261</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genome Biol. 2014;15(12):550</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25516281</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Genet. 1998 Sep;20(1):43-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9731528</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2003 Jun 19;423(6942):825-37</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12815422</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS Genet. 2017 Apr 7;13(4):e1006726</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28388635</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2014 Apr 24;508(7497):494-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24759411</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Biol Evol. 2007 Aug;24(8):1586-91</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17483113</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Trends Plant Sci. 2019 Feb;24(2):177-185</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">30446307</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Ecol. 2013 Jun;22(11):3124-40</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23701397</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2018 Apr;30(4):780-795</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">29626069</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Biol Evol. 2011 Oct;28(10):2731-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21546353</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Genet. 2010 Apr;42(4):348-54</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20208533</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Exp Bot. 2013 Jan;64(2):405-20</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23125359</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Heredity (Edinb). 2015 Jun;114(6):575-83</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25649501</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>BMC Bioinformatics. 2008 Jan 14;9:18</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18194517</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Hum Genet. 2017 May;136(5):605-619</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28303348</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Opin Plant Biol. 2007 Apr;10(2):123-30</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17300986</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Ecol. 2015 Jul;24(13):3243-56</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25728270</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Am J Bot. 2016 Apr;103(4):587-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26993970</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Methods. 2012 Mar 04;9(4):357-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22388286</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Chromosome Res. 2010 Jul;18(5):543-53</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20535633</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Sci Rep. 2017 May 12;7(1):1831</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28500332</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Sci. 2018 Dec;277:68-78</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">30466602</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Hum Genet. 2017 May;136(5):637-655</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28456834</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>New Phytol. 2008;177(1):77-89</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17944821</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genome Biol. 2015 Jan 13;16:3</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25583564</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Sci Rep. 2015 Mar 13;5:9076</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25766834</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2003 Jun 19;423(6942):873-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12815433</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Methods. 2016 Dec;13(12):1050-1054</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27749838</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Hereditas. 2007 Jul;144(3):78-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17663699</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Bioinformatics. 2009 Aug 15;25(16):2078-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19505943</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Methods. 2013 Jun;10(6):563-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23644548</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Trends Ecol Evol. 2009 Feb;24(2):94-102</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19100654</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Methods. 2017 Apr;14(4):417-419</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28263959</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Commun. 2017 Nov 2;8(1):1279</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">29093472</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biomed Biotechnol. 2010;2010:936569</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20671934</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Gen Genet. 1996 Aug 27;252(1-2):195-206</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8804393</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2016 Dec;28(12):2905-2915</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27956470</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS Biol. 2014 Jul 01;12(7):e1001899</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24983465</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Annu Rev Plant Biol. 2018 Apr 29;69:553-575</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">29719167</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genome Biol Evol. 2017 Sep 1;9(9):2377-2394</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28957462</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Genet. 2017 Mar;49(3):387-394</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28135246</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/PoplarV1/Data/Main/Corpus
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000457 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Corpus/biblio.hfd -nk 000457 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    PoplarV1
   |flux=    Main
   |étape=   Corpus
   |type=    RBID
   |clé=     pubmed:32059685
   |texte=   A willow sex chromosome reveals convergent evolution of complex palindromic repeats.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Corpus/RBID.i   -Sk "pubmed:32059685" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Corpus/biblio.hfd   \
       | NlmPubMed2Wicri -a PoplarV1 

Wicri

This area was generated with Dilib version V0.6.37.
Data generation: Wed Nov 18 12:07:19 2020. Site generation: Wed Nov 18 12:16:31 2020