Serveur d'exploration sur le peuplier

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Plant and Soil Development Cooperatively Shaped the Composition of the phoD-Harboring Bacterial Community along the Primary Succession in the Hailuogou Glacier Chronosequence.

Identifieur interne : 000166 ( Main/Corpus ); précédent : 000165; suivant : 000167

Plant and Soil Development Cooperatively Shaped the Composition of the phoD-Harboring Bacterial Community along the Primary Succession in the Hailuogou Glacier Chronosequence.

Auteurs : Yan Bai ; Quanju Xiang ; Ke Zhao ; Xiumei Yu ; Qiang Chen ; Menggen Ma ; Hao Jiang ; Xiaoping Zhang ; Petri Penttinen ; Yunfu Gu

Source :

RBID : pubmed:32723794

Abstract

Microbes that produce phosphatases play an important role in the cycling of phosphorus (P), a key nutrient in soil development. We studied the development, compositional turnover, and environmental drivers of microbial communities carrying the phosphatase-encoding phoD gene (here called phoD communities) in the course of primary succession in the Hailuogou glacier chronosequence. We selected the pioneer species Populus purdomii Rehder as a model plant to study the communities in rhizosphere and bulk soils along the chronosequence. The bulk and rhizosphere soils hosted distinct phoD communities. Changes in the taxa Pseudomonas and Pleomorphomonas in the rhizosphere and Bradyrhizobium, Cupriavidus, and Pleomorphomonas in the bulk soil were associated with soil development. The plant development and soil property changes along the chronosequence were accompanied with changes in the phoD communities. Soil pH, soil organic carbon, and total nitrogen contents that are directly related to the plant development and litter input differences along the chronosequence were the main factors related to changes in community compositions. The community similarity decreased along the chronosequence, and the distance decay rate was higher in the bulk soil than in the rhizosphere. In summary, both in the rhizosphere and in bulk soils the phoD community succession was shaped by plant and soil development-related factors along the primary succession in the Hailuogou glacier chronosequence.IMPORTANCE Phosphorus was the key limiting nutrient for soil development during primary succession that occurred in alpine and high-latitude ecosystems with cold and humid climates. The interactions of functional microbiota involved in phosphorus cycling in the rhizosphere under different soil developmental stages along primary succession are still rarely examined. We selected the pioneer species Populus purdomii as a model plant to study the phoD-harboring bacterial communities in rhizosphere and bulk soils along a mountain glacier chronosequence. Our results showed that the bulk soils and rhizosphere host distinct phoD communities and diversity that differentially varied along the chronosequence, describing in detail the development and compositional turnover of the phoD community in the course of primary succession and determining the main environmental factors driving the development.

DOI: 10.1128/mSystems.00475-20
PubMed: 32723794
PubMed Central: PMC7394357

Links to Exploration step

pubmed:32723794

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Plant and Soil Development Cooperatively Shaped the Composition of the
<i>phoD</i>
-Harboring Bacterial Community along the Primary Succession in the Hailuogou Glacier Chronosequence.</title>
<author>
<name sortKey="Bai, Yan" sort="Bai, Yan" uniqKey="Bai Y" first="Yan" last="Bai">Yan Bai</name>
<affiliation>
<nlm:affiliation>Department of Microbiology, College of Resources, Sichuan Agricultural University, Chengdu, Sichuan, China.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Xiang, Quanju" sort="Xiang, Quanju" uniqKey="Xiang Q" first="Quanju" last="Xiang">Quanju Xiang</name>
<affiliation>
<nlm:affiliation>Department of Microbiology, College of Resources, Sichuan Agricultural University, Chengdu, Sichuan, China.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Zhao, Ke" sort="Zhao, Ke" uniqKey="Zhao K" first="Ke" last="Zhao">Ke Zhao</name>
<affiliation>
<nlm:affiliation>Department of Microbiology, College of Resources, Sichuan Agricultural University, Chengdu, Sichuan, China.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Yu, Xiumei" sort="Yu, Xiumei" uniqKey="Yu X" first="Xiumei" last="Yu">Xiumei Yu</name>
<affiliation>
<nlm:affiliation>Department of Microbiology, College of Resources, Sichuan Agricultural University, Chengdu, Sichuan, China.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Chen, Qiang" sort="Chen, Qiang" uniqKey="Chen Q" first="Qiang" last="Chen">Qiang Chen</name>
<affiliation>
<nlm:affiliation>Department of Microbiology, College of Resources, Sichuan Agricultural University, Chengdu, Sichuan, China.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Ma, Menggen" sort="Ma, Menggen" uniqKey="Ma M" first="Menggen" last="Ma">Menggen Ma</name>
<affiliation>
<nlm:affiliation>Department of Microbiology, College of Resources, Sichuan Agricultural University, Chengdu, Sichuan, China.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Jiang, Hao" sort="Jiang, Hao" uniqKey="Jiang H" first="Hao" last="Jiang">Hao Jiang</name>
<affiliation>
<nlm:affiliation>Institute of Mountain Hazards and Environment, Chinese Academy of Sciences, Chengdu, Sichuan, China.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Zhang, Xiaoping" sort="Zhang, Xiaoping" uniqKey="Zhang X" first="Xiaoping" last="Zhang">Xiaoping Zhang</name>
<affiliation>
<nlm:affiliation>Department of Microbiology, College of Resources, Sichuan Agricultural University, Chengdu, Sichuan, China.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Penttinen, Petri" sort="Penttinen, Petri" uniqKey="Penttinen P" first="Petri" last="Penttinen">Petri Penttinen</name>
<affiliation>
<nlm:affiliation>Department of Microbiology, College of Resources, Sichuan Agricultural University, Chengdu, Sichuan, China.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Gu, Yunfu" sort="Gu, Yunfu" uniqKey="Gu Y" first="Yunfu" last="Gu">Yunfu Gu</name>
<affiliation>
<nlm:affiliation>Department of Microbiology, College of Resources, Sichuan Agricultural University, Chengdu, Sichuan, China guyf@sicau.edu.cn.</nlm:affiliation>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2020">2020</date>
<idno type="RBID">pubmed:32723794</idno>
<idno type="pmid">32723794</idno>
<idno type="doi">10.1128/mSystems.00475-20</idno>
<idno type="pmc">PMC7394357</idno>
<idno type="wicri:Area/Main/Corpus">000166</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">000166</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Plant and Soil Development Cooperatively Shaped the Composition of the
<i>phoD</i>
-Harboring Bacterial Community along the Primary Succession in the Hailuogou Glacier Chronosequence.</title>
<author>
<name sortKey="Bai, Yan" sort="Bai, Yan" uniqKey="Bai Y" first="Yan" last="Bai">Yan Bai</name>
<affiliation>
<nlm:affiliation>Department of Microbiology, College of Resources, Sichuan Agricultural University, Chengdu, Sichuan, China.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Xiang, Quanju" sort="Xiang, Quanju" uniqKey="Xiang Q" first="Quanju" last="Xiang">Quanju Xiang</name>
<affiliation>
<nlm:affiliation>Department of Microbiology, College of Resources, Sichuan Agricultural University, Chengdu, Sichuan, China.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Zhao, Ke" sort="Zhao, Ke" uniqKey="Zhao K" first="Ke" last="Zhao">Ke Zhao</name>
<affiliation>
<nlm:affiliation>Department of Microbiology, College of Resources, Sichuan Agricultural University, Chengdu, Sichuan, China.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Yu, Xiumei" sort="Yu, Xiumei" uniqKey="Yu X" first="Xiumei" last="Yu">Xiumei Yu</name>
<affiliation>
<nlm:affiliation>Department of Microbiology, College of Resources, Sichuan Agricultural University, Chengdu, Sichuan, China.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Chen, Qiang" sort="Chen, Qiang" uniqKey="Chen Q" first="Qiang" last="Chen">Qiang Chen</name>
<affiliation>
<nlm:affiliation>Department of Microbiology, College of Resources, Sichuan Agricultural University, Chengdu, Sichuan, China.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Ma, Menggen" sort="Ma, Menggen" uniqKey="Ma M" first="Menggen" last="Ma">Menggen Ma</name>
<affiliation>
<nlm:affiliation>Department of Microbiology, College of Resources, Sichuan Agricultural University, Chengdu, Sichuan, China.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Jiang, Hao" sort="Jiang, Hao" uniqKey="Jiang H" first="Hao" last="Jiang">Hao Jiang</name>
<affiliation>
<nlm:affiliation>Institute of Mountain Hazards and Environment, Chinese Academy of Sciences, Chengdu, Sichuan, China.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Zhang, Xiaoping" sort="Zhang, Xiaoping" uniqKey="Zhang X" first="Xiaoping" last="Zhang">Xiaoping Zhang</name>
<affiliation>
<nlm:affiliation>Department of Microbiology, College of Resources, Sichuan Agricultural University, Chengdu, Sichuan, China.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Penttinen, Petri" sort="Penttinen, Petri" uniqKey="Penttinen P" first="Petri" last="Penttinen">Petri Penttinen</name>
<affiliation>
<nlm:affiliation>Department of Microbiology, College of Resources, Sichuan Agricultural University, Chengdu, Sichuan, China.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Gu, Yunfu" sort="Gu, Yunfu" uniqKey="Gu Y" first="Yunfu" last="Gu">Yunfu Gu</name>
<affiliation>
<nlm:affiliation>Department of Microbiology, College of Resources, Sichuan Agricultural University, Chengdu, Sichuan, China guyf@sicau.edu.cn.</nlm:affiliation>
</affiliation>
</author>
</analytic>
<series>
<title level="j">mSystems</title>
<idno type="ISSN">2379-5077</idno>
<imprint>
<date when="2020" type="published">2020</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass></textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Microbes that produce phosphatases play an important role in the cycling of phosphorus (P), a key nutrient in soil development. We studied the development, compositional turnover, and environmental drivers of microbial communities carrying the phosphatase-encoding
<i>phoD</i>
gene (here called
<i>phoD</i>
communities) in the course of primary succession in the Hailuogou glacier chronosequence. We selected the pioneer species
<i>Populus purdomii</i>
Rehder as a model plant to study the communities in rhizosphere and bulk soils along the chronosequence. The bulk and rhizosphere soils hosted distinct
<i>phoD</i>
communities. Changes in the taxa
<i>Pseudomonas</i>
and
<i>Pleomorphomonas</i>
in the rhizosphere and
<i>Bradyrhizobium, Cupriavidus</i>
, and
<i>Pleomorphomonas</i>
in the bulk soil were associated with soil development. The plant development and soil property changes along the chronosequence were accompanied with changes in the
<i>phoD</i>
communities. Soil pH, soil organic carbon, and total nitrogen contents that are directly related to the plant development and litter input differences along the chronosequence were the main factors related to changes in community compositions. The community similarity decreased along the chronosequence, and the distance decay rate was higher in the bulk soil than in the rhizosphere. In summary, both in the rhizosphere and in bulk soils the
<i>phoD</i>
community succession was shaped by plant and soil development-related factors along the primary succession in the Hailuogou glacier chronosequence.
<b>IMPORTANCE</b>
Phosphorus was the key limiting nutrient for soil development during primary succession that occurred in alpine and high-latitude ecosystems with cold and humid climates. The interactions of functional microbiota involved in phosphorus cycling in the rhizosphere under different soil developmental stages along primary succession are still rarely examined. We selected the pioneer species
<i>Populus purdomii</i>
as a model plant to study the
<i>phoD</i>
-harboring bacterial communities in rhizosphere and bulk soils along a mountain glacier chronosequence. Our results showed that the bulk soils and rhizosphere host distinct
<i>phoD</i>
communities and diversity that differentially varied along the chronosequence, describing in detail the development and compositional turnover of the
<i>phoD</i>
community in the course of primary succession and determining the main environmental factors driving the development.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="PubMed-not-MEDLINE" Owner="NLM">
<PMID Version="1">32723794</PMID>
<DateRevised>
<Year>2020</Year>
<Month>09</Month>
<Day>28</Day>
</DateRevised>
<Article PubModel="Electronic">
<Journal>
<ISSN IssnType="Print">2379-5077</ISSN>
<JournalIssue CitedMedium="Print">
<Volume>5</Volume>
<Issue>4</Issue>
<PubDate>
<Year>2020</Year>
<Month>Jul</Month>
<Day>28</Day>
</PubDate>
</JournalIssue>
<Title>mSystems</Title>
<ISOAbbreviation>mSystems</ISOAbbreviation>
</Journal>
<ArticleTitle>Plant and Soil Development Cooperatively Shaped the Composition of the
<i>phoD</i>
-Harboring Bacterial Community along the Primary Succession in the Hailuogou Glacier Chronosequence.</ArticleTitle>
<ELocationID EIdType="pii" ValidYN="Y">e00475-20</ELocationID>
<ELocationID EIdType="doi" ValidYN="Y">10.1128/mSystems.00475-20</ELocationID>
<Abstract>
<AbstractText>Microbes that produce phosphatases play an important role in the cycling of phosphorus (P), a key nutrient in soil development. We studied the development, compositional turnover, and environmental drivers of microbial communities carrying the phosphatase-encoding
<i>phoD</i>
gene (here called
<i>phoD</i>
communities) in the course of primary succession in the Hailuogou glacier chronosequence. We selected the pioneer species
<i>Populus purdomii</i>
Rehder as a model plant to study the communities in rhizosphere and bulk soils along the chronosequence. The bulk and rhizosphere soils hosted distinct
<i>phoD</i>
communities. Changes in the taxa
<i>Pseudomonas</i>
and
<i>Pleomorphomonas</i>
in the rhizosphere and
<i>Bradyrhizobium, Cupriavidus</i>
, and
<i>Pleomorphomonas</i>
in the bulk soil were associated with soil development. The plant development and soil property changes along the chronosequence were accompanied with changes in the
<i>phoD</i>
communities. Soil pH, soil organic carbon, and total nitrogen contents that are directly related to the plant development and litter input differences along the chronosequence were the main factors related to changes in community compositions. The community similarity decreased along the chronosequence, and the distance decay rate was higher in the bulk soil than in the rhizosphere. In summary, both in the rhizosphere and in bulk soils the
<i>phoD</i>
community succession was shaped by plant and soil development-related factors along the primary succession in the Hailuogou glacier chronosequence.
<b>IMPORTANCE</b>
Phosphorus was the key limiting nutrient for soil development during primary succession that occurred in alpine and high-latitude ecosystems with cold and humid climates. The interactions of functional microbiota involved in phosphorus cycling in the rhizosphere under different soil developmental stages along primary succession are still rarely examined. We selected the pioneer species
<i>Populus purdomii</i>
as a model plant to study the
<i>phoD</i>
-harboring bacterial communities in rhizosphere and bulk soils along a mountain glacier chronosequence. Our results showed that the bulk soils and rhizosphere host distinct
<i>phoD</i>
communities and diversity that differentially varied along the chronosequence, describing in detail the development and compositional turnover of the
<i>phoD</i>
community in the course of primary succession and determining the main environmental factors driving the development.</AbstractText>
<CopyrightInformation>Copyright © 2020 Bai et al.</CopyrightInformation>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Bai</LastName>
<ForeName>Yan</ForeName>
<Initials>Y</Initials>
<AffiliationInfo>
<Affiliation>Department of Microbiology, College of Resources, Sichuan Agricultural University, Chengdu, Sichuan, China.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Xiang</LastName>
<ForeName>Quanju</ForeName>
<Initials>Q</Initials>
<AffiliationInfo>
<Affiliation>Department of Microbiology, College of Resources, Sichuan Agricultural University, Chengdu, Sichuan, China.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Zhao</LastName>
<ForeName>Ke</ForeName>
<Initials>K</Initials>
<AffiliationInfo>
<Affiliation>Department of Microbiology, College of Resources, Sichuan Agricultural University, Chengdu, Sichuan, China.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Yu</LastName>
<ForeName>Xiumei</ForeName>
<Initials>X</Initials>
<AffiliationInfo>
<Affiliation>Department of Microbiology, College of Resources, Sichuan Agricultural University, Chengdu, Sichuan, China.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Chen</LastName>
<ForeName>Qiang</ForeName>
<Initials>Q</Initials>
<AffiliationInfo>
<Affiliation>Department of Microbiology, College of Resources, Sichuan Agricultural University, Chengdu, Sichuan, China.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Ma</LastName>
<ForeName>Menggen</ForeName>
<Initials>M</Initials>
<AffiliationInfo>
<Affiliation>Department of Microbiology, College of Resources, Sichuan Agricultural University, Chengdu, Sichuan, China.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Jiang</LastName>
<ForeName>Hao</ForeName>
<Initials>H</Initials>
<AffiliationInfo>
<Affiliation>Institute of Mountain Hazards and Environment, Chinese Academy of Sciences, Chengdu, Sichuan, China.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Zhang</LastName>
<ForeName>Xiaoping</ForeName>
<Initials>X</Initials>
<AffiliationInfo>
<Affiliation>Department of Microbiology, College of Resources, Sichuan Agricultural University, Chengdu, Sichuan, China.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Penttinen</LastName>
<ForeName>Petri</ForeName>
<Initials>P</Initials>
<AffiliationInfo>
<Affiliation>Department of Microbiology, College of Resources, Sichuan Agricultural University, Chengdu, Sichuan, China.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Gu</LastName>
<ForeName>Yunfu</ForeName>
<Initials>Y</Initials>
<Identifier Source="ORCID">https://orcid.org/0000-0001-8238-9360</Identifier>
<AffiliationInfo>
<Affiliation>Department of Microbiology, College of Resources, Sichuan Agricultural University, Chengdu, Sichuan, China guyf@sicau.edu.cn.</Affiliation>
</AffiliationInfo>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2020</Year>
<Month>07</Month>
<Day>28</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>United States</Country>
<MedlineTA>mSystems</MedlineTA>
<NlmUniqueID>101680636</NlmUniqueID>
<ISSNLinking>2379-5077</ISSNLinking>
</MedlineJournalInfo>
<KeywordList Owner="NOTNLM">
<Keyword MajorTopicYN="N">distance decay</Keyword>
<Keyword MajorTopicYN="N">phoD community</Keyword>
<Keyword MajorTopicYN="N">primary succession</Keyword>
<Keyword MajorTopicYN="N">soil development</Keyword>
</KeywordList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="entrez">
<Year>2020</Year>
<Month>7</Month>
<Day>30</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2020</Year>
<Month>7</Month>
<Day>30</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2020</Year>
<Month>7</Month>
<Day>30</Day>
<Hour>6</Hour>
<Minute>1</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>epublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">32723794</ArticleId>
<ArticleId IdType="pii">5/4/e00475-20</ArticleId>
<ArticleId IdType="doi">10.1128/mSystems.00475-20</ArticleId>
<ArticleId IdType="pmc">PMC7394357</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>Environ Microbiol. 2010 Feb;12(2):293-303</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19840107</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>ISME J. 2012 Aug;6(8):1621-4</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22402401</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS One. 2013;8(2):e55731</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23383346</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Plant Microbe Interact. 2012 Feb;25(2):139-50</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21995763</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Appl Environ Microbiol. 2009 Aug;75(15):5111-20</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19502440</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Environ Qual. 2005 Sep 08;34(5):1921-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16151243</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Bioresour Technol. 2016 Nov;220:142-150</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27566522</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>ISME J. 2018 May;12(5):1188-1198</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">29335640</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Sci Total Environ. 2015 May 1;514:314-21</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25668284</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Rev Microbiol. 2013 Nov;11(11):789-99</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24056930</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>ISME J. 2018 Jun;12(7):1658-1667</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">29463893</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Bioinformatics. 2010 Oct 1;26(19):2460-1</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20709691</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Ecol. 2014 Feb;23(2):481-97</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24112459</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Microb Ecol. 2006 Nov;52(4):679-92</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16909346</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2008 Aug 12;105 Suppl 1:11505-11</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18695215</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>New Phytol. 2005 Nov;168(2):293-303</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16219069</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2009 Dec 15;106(50):21219-23</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19926862</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Oecologia. 2016 Jun;181(2):369-79</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26875186</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 1969 Apr 18;164(3877):262-70</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">5776636</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>FEMS Microbiol Ecol. 2017 Jan;93(1):</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27737901</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Sci Adv. 2018 May 23;4(5):eaaq0942</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">29806022</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2010 Jun 11;328(5984):1388-91</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20508088</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2015 Mar 17;112(11):E1326-32</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25733885</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genome Biol. 2011 Jun 24;12(6):R60</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21702898</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Appl Environ Microbiol. 2015 Oct;81(20):7281-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26253682</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Methods. 2010 May;7(5):335-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20383131</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2013 Feb 15;288(7):4502-12</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23293028</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Microb Ecol. 2007 Jan;53(1):110-22</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17186150</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>mBio. 2013 Sep 17;4(5):e00592-13</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24045641</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/PoplarV1/Data/Main/Corpus
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000166 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Corpus/biblio.hfd -nk 000166 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    PoplarV1
   |flux=    Main
   |étape=   Corpus
   |type=    RBID
   |clé=     pubmed:32723794
   |texte=   Plant and Soil Development Cooperatively Shaped the Composition of the phoD-Harboring Bacterial Community along the Primary Succession in the Hailuogou Glacier Chronosequence.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Corpus/RBID.i   -Sk "pubmed:32723794" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Corpus/biblio.hfd   \
       | NlmPubMed2Wicri -a PoplarV1 

Wicri

This area was generated with Dilib version V0.6.37.
Data generation: Wed Nov 18 12:07:19 2020. Site generation: Wed Nov 18 12:16:31 2020