Serveur d'exploration sur la rouille du peuplier

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Genome-wide expression profiling of microRNAs in poplar upon infection with the foliar rust fungus Melampsora larici-populina.

Identifieur interne : 000037 ( Main/Exploration ); précédent : 000036; suivant : 000038

Genome-wide expression profiling of microRNAs in poplar upon infection with the foliar rust fungus Melampsora larici-populina.

Auteurs : Min Chen [République populaire de Chine] ; Zhimin Cao [République populaire de Chine]

Source :

RBID : pubmed:26370267

Descripteurs français

English descriptors

Abstract

BACKGROUND

MicroRNAs (miRNAs) are small non-coding RNAs that regulate the gene expression of target mRNAs involved in plant growth, development, and abiotic stress and pathogen responses. Previous studies have reported miRNAs in Populus that respond to abiotic stresses, such as cold, heat, drought, flooding, high salt and mechanical stress. However, little is known about the regulatory roles of these molecules in the Populus response to the stress of foliar rust fungal infection. Here, we identified the miRNA profiles of Populus after inoculation with Melampsora larici-populina using high-throughput sequencing and bioinformatics analysis. Quantitative real-time PCR (qRT-PCR) was used to validate the expression levels of 10 miRNAs.

RESULTS

A total of 90 known miRNAs belonging to 42 families and 378 novel miRNAs were identified from three small-RNA libraries of Populus szechuanica infected with M. larici-populina isolates Sb052 and Th053 and a control. Comparative analysis revealed that the expression of 38 known miRNAs and 92 novel miRNAs in P. szechuanica after infection with different rust fungus isolates showed significant differences, and more miRNAs were suppressed during rust infection. Among the differentially expressed miRNAs, 7 known and 20 novel miRNAs were relevant to the rust fungus infection, and according to KEGG (Kyoto Encyclopaedia of Genes and Genomes) pathway analysis, these miRNAs primarily regulate genes encoding disease-resistance proteins, serine/threonine protein kinases, transcription factors, and related proteins. QRT-PCR analysis indicated that most miRNAs were up-regulated in the Sb052 library and down-regulated in the Th053 library at 48 h post-inoculation (hpi).

CONCLUSIONS

These results demonstrate that the expression of miRNAs was altered in poplar under stress associated with M. larici-populina infection, and different temporal dynamics were observed in incompatible and compatible libraries. These findings suggest important roles for miRNA regulation in Populus upon infection with foliar rust fungus.


DOI: 10.1186/s12864-015-1891-8
PubMed: 26370267
PubMed Central: PMC4570220


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Genome-wide expression profiling of microRNAs in poplar upon infection with the foliar rust fungus Melampsora larici-populina.</title>
<author>
<name sortKey="Chen, Min" sort="Chen, Min" uniqKey="Chen M" first="Min" last="Chen">Min Chen</name>
<affiliation wicri:level="1">
<nlm:affiliation>College of Forestry, Northwest A & F University, Yangling, Shaanxi, 712100, People's Republic of China. chenmin.11070@163.com.</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>College of Forestry, Northwest A & F University, Yangling, Shaanxi, 712100</wicri:regionArea>
<wicri:noRegion>712100</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Cao, Zhimin" sort="Cao, Zhimin" uniqKey="Cao Z" first="Zhimin" last="Cao">Zhimin Cao</name>
<affiliation wicri:level="1">
<nlm:affiliation>College of Forestry, Northwest A & F University, Yangling, Shaanxi, 712100, People's Republic of China. zmcao@nwsuaf.edu.cn.</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>College of Forestry, Northwest A & F University, Yangling, Shaanxi, 712100</wicri:regionArea>
<wicri:noRegion>712100</wicri:noRegion>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2015">2015</date>
<idno type="RBID">pubmed:26370267</idno>
<idno type="pmid">26370267</idno>
<idno type="doi">10.1186/s12864-015-1891-8</idno>
<idno type="pmc">PMC4570220</idno>
<idno type="wicri:Area/Main/Corpus">000037</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">000037</idno>
<idno type="wicri:Area/Main/Curation">000037</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">000037</idno>
<idno type="wicri:Area/Main/Exploration">000037</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Genome-wide expression profiling of microRNAs in poplar upon infection with the foliar rust fungus Melampsora larici-populina.</title>
<author>
<name sortKey="Chen, Min" sort="Chen, Min" uniqKey="Chen M" first="Min" last="Chen">Min Chen</name>
<affiliation wicri:level="1">
<nlm:affiliation>College of Forestry, Northwest A & F University, Yangling, Shaanxi, 712100, People's Republic of China. chenmin.11070@163.com.</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>College of Forestry, Northwest A & F University, Yangling, Shaanxi, 712100</wicri:regionArea>
<wicri:noRegion>712100</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Cao, Zhimin" sort="Cao, Zhimin" uniqKey="Cao Z" first="Zhimin" last="Cao">Zhimin Cao</name>
<affiliation wicri:level="1">
<nlm:affiliation>College of Forestry, Northwest A & F University, Yangling, Shaanxi, 712100, People's Republic of China. zmcao@nwsuaf.edu.cn.</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>College of Forestry, Northwest A & F University, Yangling, Shaanxi, 712100</wicri:regionArea>
<wicri:noRegion>712100</wicri:noRegion>
</affiliation>
</author>
</analytic>
<series>
<title level="j">BMC genomics</title>
<idno type="eISSN">1471-2164</idno>
<imprint>
<date when="2015" type="published">2015</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Basidiomycota (MeSH)</term>
<term>Gene Expression Profiling (MeSH)</term>
<term>Gene Expression Regulation, Plant (MeSH)</term>
<term>Gene Regulatory Networks (MeSH)</term>
<term>Genome-Wide Association Study (MeSH)</term>
<term>High-Throughput Nucleotide Sequencing (MeSH)</term>
<term>Host-Pathogen Interactions (MeSH)</term>
<term>MicroRNAs (genetics)</term>
<term>Multigene Family (MeSH)</term>
<term>Plant Diseases (genetics)</term>
<term>Plant Diseases (microbiology)</term>
<term>Populus (genetics)</term>
<term>Populus (metabolism)</term>
<term>Populus (microbiology)</term>
<term>RNA Interference (MeSH)</term>
<term>RNA, Messenger (genetics)</term>
<term>Signal Transduction (MeSH)</term>
<term>Stress, Physiological (genetics)</term>
</keywords>
<keywords scheme="KwdFr" xml:lang="fr">
<term>ARN messager (génétique)</term>
<term>Analyse de profil d'expression de gènes (MeSH)</term>
<term>Basidiomycota (MeSH)</term>
<term>Famille multigénique (MeSH)</term>
<term>Interactions hôte-pathogène (MeSH)</term>
<term>Interférence par ARN (MeSH)</term>
<term>Maladies des plantes (génétique)</term>
<term>Maladies des plantes (microbiologie)</term>
<term>Populus (génétique)</term>
<term>Populus (microbiologie)</term>
<term>Populus (métabolisme)</term>
<term>Régulation de l'expression des gènes végétaux (MeSH)</term>
<term>Réseaux de régulation génique (MeSH)</term>
<term>Stress physiologique (génétique)</term>
<term>Séquençage nucléotidique à haut débit (MeSH)</term>
<term>Transduction du signal (MeSH)</term>
<term>microARN (génétique)</term>
<term>Étude d'association pangénomique (MeSH)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="genetics" xml:lang="en">
<term>MicroRNAs</term>
<term>RNA, Messenger</term>
</keywords>
<keywords scheme="MESH" qualifier="genetics" xml:lang="en">
<term>Plant Diseases</term>
<term>Populus</term>
<term>Stress, Physiological</term>
</keywords>
<keywords scheme="MESH" qualifier="génétique" xml:lang="fr">
<term>ARN messager</term>
<term>Maladies des plantes</term>
<term>Populus</term>
<term>Stress physiologique</term>
<term>microARN</term>
</keywords>
<keywords scheme="MESH" qualifier="metabolism" xml:lang="en">
<term>Populus</term>
</keywords>
<keywords scheme="MESH" qualifier="microbiologie" xml:lang="fr">
<term>Maladies des plantes</term>
<term>Populus</term>
</keywords>
<keywords scheme="MESH" qualifier="microbiology" xml:lang="en">
<term>Plant Diseases</term>
<term>Populus</term>
</keywords>
<keywords scheme="MESH" qualifier="métabolisme" xml:lang="fr">
<term>Populus</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Basidiomycota</term>
<term>Gene Expression Profiling</term>
<term>Gene Expression Regulation, Plant</term>
<term>Gene Regulatory Networks</term>
<term>Genome-Wide Association Study</term>
<term>High-Throughput Nucleotide Sequencing</term>
<term>Host-Pathogen Interactions</term>
<term>Multigene Family</term>
<term>RNA Interference</term>
<term>Signal Transduction</term>
</keywords>
<keywords scheme="MESH" xml:lang="fr">
<term>Analyse de profil d'expression de gènes</term>
<term>Basidiomycota</term>
<term>Famille multigénique</term>
<term>Interactions hôte-pathogène</term>
<term>Interférence par ARN</term>
<term>Régulation de l'expression des gènes végétaux</term>
<term>Réseaux de régulation génique</term>
<term>Séquençage nucléotidique à haut débit</term>
<term>Transduction du signal</term>
<term>Étude d'association pangénomique</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">
<p>
<b>BACKGROUND</b>
</p>
<p>MicroRNAs (miRNAs) are small non-coding RNAs that regulate the gene expression of target mRNAs involved in plant growth, development, and abiotic stress and pathogen responses. Previous studies have reported miRNAs in Populus that respond to abiotic stresses, such as cold, heat, drought, flooding, high salt and mechanical stress. However, little is known about the regulatory roles of these molecules in the Populus response to the stress of foliar rust fungal infection. Here, we identified the miRNA profiles of Populus after inoculation with Melampsora larici-populina using high-throughput sequencing and bioinformatics analysis. Quantitative real-time PCR (qRT-PCR) was used to validate the expression levels of 10 miRNAs.</p>
</div>
<div type="abstract" xml:lang="en">
<p>
<b>RESULTS</b>
</p>
<p>A total of 90 known miRNAs belonging to 42 families and 378 novel miRNAs were identified from three small-RNA libraries of Populus szechuanica infected with M. larici-populina isolates Sb052 and Th053 and a control. Comparative analysis revealed that the expression of 38 known miRNAs and 92 novel miRNAs in P. szechuanica after infection with different rust fungus isolates showed significant differences, and more miRNAs were suppressed during rust infection. Among the differentially expressed miRNAs, 7 known and 20 novel miRNAs were relevant to the rust fungus infection, and according to KEGG (Kyoto Encyclopaedia of Genes and Genomes) pathway analysis, these miRNAs primarily regulate genes encoding disease-resistance proteins, serine/threonine protein kinases, transcription factors, and related proteins. QRT-PCR analysis indicated that most miRNAs were up-regulated in the Sb052 library and down-regulated in the Th053 library at 48 h post-inoculation (hpi).</p>
</div>
<div type="abstract" xml:lang="en">
<p>
<b>CONCLUSIONS</b>
</p>
<p>These results demonstrate that the expression of miRNAs was altered in poplar under stress associated with M. larici-populina infection, and different temporal dynamics were observed in incompatible and compatible libraries. These findings suggest important roles for miRNA regulation in Populus upon infection with foliar rust fungus.</p>
</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">26370267</PMID>
<DateCompleted>
<Year>2016</Year>
<Month>06</Month>
<Day>02</Day>
</DateCompleted>
<DateRevised>
<Year>2018</Year>
<Month>11</Month>
<Day>13</Day>
</DateRevised>
<Article PubModel="Electronic">
<Journal>
<ISSN IssnType="Electronic">1471-2164</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>16</Volume>
<PubDate>
<Year>2015</Year>
<Month>Sep</Month>
<Day>15</Day>
</PubDate>
</JournalIssue>
<Title>BMC genomics</Title>
<ISOAbbreviation>BMC Genomics</ISOAbbreviation>
</Journal>
<ArticleTitle>Genome-wide expression profiling of microRNAs in poplar upon infection with the foliar rust fungus Melampsora larici-populina.</ArticleTitle>
<Pagination>
<MedlinePgn>696</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1186/s12864-015-1891-8</ELocationID>
<Abstract>
<AbstractText Label="BACKGROUND" NlmCategory="BACKGROUND">MicroRNAs (miRNAs) are small non-coding RNAs that regulate the gene expression of target mRNAs involved in plant growth, development, and abiotic stress and pathogen responses. Previous studies have reported miRNAs in Populus that respond to abiotic stresses, such as cold, heat, drought, flooding, high salt and mechanical stress. However, little is known about the regulatory roles of these molecules in the Populus response to the stress of foliar rust fungal infection. Here, we identified the miRNA profiles of Populus after inoculation with Melampsora larici-populina using high-throughput sequencing and bioinformatics analysis. Quantitative real-time PCR (qRT-PCR) was used to validate the expression levels of 10 miRNAs.</AbstractText>
<AbstractText Label="RESULTS" NlmCategory="RESULTS">A total of 90 known miRNAs belonging to 42 families and 378 novel miRNAs were identified from three small-RNA libraries of Populus szechuanica infected with M. larici-populina isolates Sb052 and Th053 and a control. Comparative analysis revealed that the expression of 38 known miRNAs and 92 novel miRNAs in P. szechuanica after infection with different rust fungus isolates showed significant differences, and more miRNAs were suppressed during rust infection. Among the differentially expressed miRNAs, 7 known and 20 novel miRNAs were relevant to the rust fungus infection, and according to KEGG (Kyoto Encyclopaedia of Genes and Genomes) pathway analysis, these miRNAs primarily regulate genes encoding disease-resistance proteins, serine/threonine protein kinases, transcription factors, and related proteins. QRT-PCR analysis indicated that most miRNAs were up-regulated in the Sb052 library and down-regulated in the Th053 library at 48 h post-inoculation (hpi).</AbstractText>
<AbstractText Label="CONCLUSIONS" NlmCategory="CONCLUSIONS">These results demonstrate that the expression of miRNAs was altered in poplar under stress associated with M. larici-populina infection, and different temporal dynamics were observed in incompatible and compatible libraries. These findings suggest important roles for miRNA regulation in Populus upon infection with foliar rust fungus.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Chen</LastName>
<ForeName>Min</ForeName>
<Initials>M</Initials>
<AffiliationInfo>
<Affiliation>College of Forestry, Northwest A & F University, Yangling, Shaanxi, 712100, People's Republic of China. chenmin.11070@163.com.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Cao</LastName>
<ForeName>Zhimin</ForeName>
<Initials>Z</Initials>
<AffiliationInfo>
<Affiliation>College of Forestry, Northwest A & F University, Yangling, Shaanxi, 712100, People's Republic of China. zmcao@nwsuaf.edu.cn.</Affiliation>
</AffiliationInfo>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D013485">Research Support, Non-U.S. Gov't</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2015</Year>
<Month>09</Month>
<Day>15</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>England</Country>
<MedlineTA>BMC Genomics</MedlineTA>
<NlmUniqueID>100965258</NlmUniqueID>
<ISSNLinking>1471-2164</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D035683">MicroRNAs</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D012333">RNA, Messenger</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D001487" MajorTopicYN="Y">Basidiomycota</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D020869" MajorTopicYN="Y">Gene Expression Profiling</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D018506" MajorTopicYN="Y">Gene Expression Regulation, Plant</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D053263" MajorTopicYN="N">Gene Regulatory Networks</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D055106" MajorTopicYN="N">Genome-Wide Association Study</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D059014" MajorTopicYN="N">High-Throughput Nucleotide Sequencing</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D054884" MajorTopicYN="N">Host-Pathogen Interactions</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D035683" MajorTopicYN="N">MicroRNAs</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="Y">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D005810" MajorTopicYN="N">Multigene Family</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D010935" MajorTopicYN="N">Plant Diseases</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="Y">genetics</QualifierName>
<QualifierName UI="Q000382" MajorTopicYN="Y">microbiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D032107" MajorTopicYN="N">Populus</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="Y">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
<QualifierName UI="Q000382" MajorTopicYN="Y">microbiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D034622" MajorTopicYN="N">RNA Interference</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D012333" MajorTopicYN="N">RNA, Messenger</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D015398" MajorTopicYN="N">Signal Transduction</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D013312" MajorTopicYN="N">Stress, Physiological</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
</MeshHeading>
</MeshHeadingList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2015</Year>
<Month>03</Month>
<Day>16</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2015</Year>
<Month>09</Month>
<Day>01</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2015</Year>
<Month>9</Month>
<Day>16</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2015</Year>
<Month>9</Month>
<Day>16</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2016</Year>
<Month>6</Month>
<Day>3</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>epublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">26370267</ArticleId>
<ArticleId IdType="doi">10.1186/s12864-015-1891-8</ArticleId>
<ArticleId IdType="pii">10.1186/s12864-015-1891-8</ArticleId>
<ArticleId IdType="pmc">PMC4570220</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>PLoS One. 2014;9(1):e84416</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24400089</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Bioinformatics. 2009 Aug 1;25(15):1966-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19497933</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Annu Rev Plant Biol. 2009;60:485-510</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19519217</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Funct Integr Genomics. 2012 Jun;12(2):327-39</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22415631</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2007 May;144(1):347-66</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17400708</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell Rep. 2014 Feb;33(2):265-76</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24145912</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>BMC Genomics. 2009;10:620</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20021695</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant J. 2008 Jul;55(1):131-51</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18363789</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>BMC Plant Biol. 2010;10:123</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20573268</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 2014 Jan;42(Database issue):D32-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24217914</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Planta. 2002 Jun;215(2):239-47</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12029473</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Genet Genomics. 2007 Sep;34(9):765-76</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17884686</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>BMC Genomics. 2013;14:233</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23570526</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 1998 Sep;10(9):1439-52</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9724691</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genome. 2011 Nov;54(11):954-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21995769</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Dev Cell. 2005 Apr;8(4):517-27</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15809034</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 2014 Jan;42(Database issue):D68-73</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24275495</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 1993 Aug;5(8):865-75</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8400869</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>BMC Genomics. 2007;8:481</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18166134</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 1995 May 5;268(5211):661-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">7732374</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell Rep. 2014 Jun;33(6):831-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24413694</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 2013 Jan;41(Database issue):D226-32</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23125362</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Biol (Stuttg). 2004 Jan-Feb;6(1):2-4</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15095128</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Annu Rev Plant Biol. 2003;54:23-61</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14502984</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 2008 Jan;36(Database issue):D480-4</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18077471</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Mol Biol. 2013 Apr;81(6):525-39</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23430564</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS One. 2012;7(4):e35765</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22558219</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Plant Pathol. 2004 Jul 1;5(4):361-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20565604</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS One. 2012;7(9):e44968</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23028709</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Gene. 2012 Aug 10;504(2):160-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22634103</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell. 2004 Jan 23;116(2):281-97</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14744438</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Plant. 2014 Jan;7(1):218-30</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23880633</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Cell. 2004 Jun 18;14(6):787-99</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15200956</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2006 Sep 15;313(5793):1596-604</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16973872</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Exp Bot. 2011 Jul;62(11):3765-79</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21511902</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2004 Aug;16(8):2001-19</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15258262</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant J. 2007 Sep;51(6):1077-98</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17635765</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Annu Rev Phytopathol. 2010;48:225-46</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20687832</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell Rep. 2011 Oct;30(10):1893-907</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21706230</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2002 Feb;14(2):435-50</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11884685</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Biol Rep. 2012 Feb;39(2):817-24</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21633895</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2005 Aug;17(8):2186-203</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15994906</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell. 2005 Apr 22;121(2):207-21</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15851028</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Plant Physiol. 2014 Jan 1;171(1):45-54</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24001970</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>BMC Genomics. 2011;12:307</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21663675</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biotechniques. 2005 Oct;39(4):519-25</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16235564</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Planta. 2012 May;235(5):873-83</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22101925</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS One. 2012;7(3):e33034</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22442676</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genes Dev. 2004 May 15;18(10):1187-97</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15131082</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2006 Jun;141(2):423-35</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16603663</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>New Phytol. 2009;184(1):85-98</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19555436</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2006 Apr 21;312(5772):436-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16627744</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Biol. 2005 Nov 22;15(22):2038-43</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16303564</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Planta. 2013 May;237(5):1213-25</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23328897</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2012 Mar;24(3):859-74</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22408077</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochem Biophys Res Commun. 2012 Jan 13;417(2):892-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22209794</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>République populaire de Chine</li>
</country>
</list>
<tree>
<country name="République populaire de Chine">
<noRegion>
<name sortKey="Chen, Min" sort="Chen, Min" uniqKey="Chen M" first="Min" last="Chen">Min Chen</name>
</noRegion>
<name sortKey="Cao, Zhimin" sort="Cao, Zhimin" uniqKey="Cao Z" first="Zhimin" last="Cao">Zhimin Cao</name>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/PoplarRustV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000037 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 000037 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    PoplarRustV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:26370267
   |texte=   Genome-wide expression profiling of microRNAs in poplar upon infection with the foliar rust fungus Melampsora larici-populina.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:26370267" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a PoplarRustV1 

Wicri

This area was generated with Dilib version V0.6.37.
Data generation: Tue Oct 27 22:23:40 2020. Site generation: Sun Jan 31 22:19:43 2021