Serveur d'exploration sur les effecteurs de phytopathogènes

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

A bacterial F-box effector suppresses SAR immunity through mediating the proteasomal degradation of OsTrxh2 in rice.

Identifieur interne : 000235 ( Main/Exploration ); précédent : 000234; suivant : 000236

A bacterial F-box effector suppresses SAR immunity through mediating the proteasomal degradation of OsTrxh2 in rice.

Auteurs : Hongtao Ji [République populaire de Chine] ; Delong Liu [République populaire de Chine] ; Zhaoxin Zhang [République populaire de Chine] ; Jiawen Sun [République populaire de Chine] ; Bing Han [République populaire de Chine] ; Zongyun Li [République populaire de Chine]

Source :

RBID : pubmed:32881160

Abstract

Plant bacterial pathogens usually cause diseases by secreting and translocating numerous virulence effectors into host cells and suppressing various host immunity pathways. It has been demonstrated that the extensive ubiquitin systems of host cells are frequently interfered with or hijacked by numerous pathogenic bacteria, through various strategies. Some type-III secretion system (T3SS) effectors of plant pathogens have been demonstrated to impersonate the F-box protein (FBP) component of the SKP1/CUL1/F-box (SCF) E3 ubiquitin system for their own benefit. Although numerous putative eukaryotic-like F-box effectors have been screened for different bacterial pathogens by bioinformatics analyses, the targets of most F-box effectors in host immune systems remain unknown. Here, we show that XopI, a putative F-box effector of African Xoo (Xanthomonas oryzae pv. oryzae) strain BAI3, strongly inhibits the host's OsNPR1-dependent resistance to Xoo. The xopI knockout mutant displays lower virulence in Oryza sativa (rice) than BAI3. Mechanistically, we identify a thioredoxin protein, OsTrxh2, as an XopI-interacting protein in rice. Although OsTrxh2 positively regulates rice immunity by catalyzing the dissociation of OsNPR1 into monomers in rice, the XopI effector serves as an F-box adapter to form an OSK1-XopI-OsTrxh2 interaction complex, and further disrupts OsNPR1-mediated resistance through proteasomal degradation of OsTrxh2. Our results indicate that XopI targets OsTrxh2 and further represses OsNPR1-dependent signaling, thereby subverting systemic acquired resistance (SAR) immunity in rice.

DOI: 10.1111/tpj.14980
PubMed: 32881160


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">A bacterial F-box effector suppresses SAR immunity through mediating the proteasomal degradation of OsTrxh2 in rice.</title>
<author>
<name sortKey="Ji, Hongtao" sort="Ji, Hongtao" uniqKey="Ji H" first="Hongtao" last="Ji">Hongtao Ji</name>
<affiliation wicri:level="1">
<nlm:affiliation>Institute of Integrative Plant Biology, School of Life Sciences, Jiangsu Normal University, Xuzhou, 221116, China.</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>Institute of Integrative Plant Biology, School of Life Sciences, Jiangsu Normal University, Xuzhou, 221116</wicri:regionArea>
<wicri:noRegion>221116</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Liu, Delong" sort="Liu, Delong" uniqKey="Liu D" first="Delong" last="Liu">Delong Liu</name>
<affiliation wicri:level="1">
<nlm:affiliation>Institute of Integrative Plant Biology, School of Life Sciences, Jiangsu Normal University, Xuzhou, 221116, China.</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>Institute of Integrative Plant Biology, School of Life Sciences, Jiangsu Normal University, Xuzhou, 221116</wicri:regionArea>
<wicri:noRegion>221116</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Zhang, Zhaoxin" sort="Zhang, Zhaoxin" uniqKey="Zhang Z" first="Zhaoxin" last="Zhang">Zhaoxin Zhang</name>
<affiliation wicri:level="1">
<nlm:affiliation>The State Key Laboratory of Pharmaceutical Biotechnology, School of life Sciences, Nanjing University, Nanjing, 210023, China.</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>The State Key Laboratory of Pharmaceutical Biotechnology, School of life Sciences, Nanjing University, Nanjing, 210023</wicri:regionArea>
<wicri:noRegion>210023</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Sun, Jiawen" sort="Sun, Jiawen" uniqKey="Sun J" first="Jiawen" last="Sun">Jiawen Sun</name>
<affiliation wicri:level="1">
<nlm:affiliation>Institute of Integrative Plant Biology, School of Life Sciences, Jiangsu Normal University, Xuzhou, 221116, China.</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>Institute of Integrative Plant Biology, School of Life Sciences, Jiangsu Normal University, Xuzhou, 221116</wicri:regionArea>
<wicri:noRegion>221116</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Han, Bing" sort="Han, Bing" uniqKey="Han B" first="Bing" last="Han">Bing Han</name>
<affiliation wicri:level="1">
<nlm:affiliation>Institute of Plant Protection, Dezhou Academy of Agricultural Sciences, Dezhou, 253015, China.</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>Institute of Plant Protection, Dezhou Academy of Agricultural Sciences, Dezhou, 253015</wicri:regionArea>
<wicri:noRegion>253015</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Li, Zongyun" sort="Li, Zongyun" uniqKey="Li Z" first="Zongyun" last="Li">Zongyun Li</name>
<affiliation wicri:level="1">
<nlm:affiliation>Institute of Integrative Plant Biology, School of Life Sciences, Jiangsu Normal University, Xuzhou, 221116, China.</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>Institute of Integrative Plant Biology, School of Life Sciences, Jiangsu Normal University, Xuzhou, 221116</wicri:regionArea>
<wicri:noRegion>221116</wicri:noRegion>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2020">2020</date>
<idno type="RBID">pubmed:32881160</idno>
<idno type="pmid">32881160</idno>
<idno type="doi">10.1111/tpj.14980</idno>
<idno type="wicri:Area/Main/Corpus">000119</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">000119</idno>
<idno type="wicri:Area/Main/Curation">000119</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">000119</idno>
<idno type="wicri:Area/Main/Exploration">000119</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">A bacterial F-box effector suppresses SAR immunity through mediating the proteasomal degradation of OsTrxh2 in rice.</title>
<author>
<name sortKey="Ji, Hongtao" sort="Ji, Hongtao" uniqKey="Ji H" first="Hongtao" last="Ji">Hongtao Ji</name>
<affiliation wicri:level="1">
<nlm:affiliation>Institute of Integrative Plant Biology, School of Life Sciences, Jiangsu Normal University, Xuzhou, 221116, China.</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>Institute of Integrative Plant Biology, School of Life Sciences, Jiangsu Normal University, Xuzhou, 221116</wicri:regionArea>
<wicri:noRegion>221116</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Liu, Delong" sort="Liu, Delong" uniqKey="Liu D" first="Delong" last="Liu">Delong Liu</name>
<affiliation wicri:level="1">
<nlm:affiliation>Institute of Integrative Plant Biology, School of Life Sciences, Jiangsu Normal University, Xuzhou, 221116, China.</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>Institute of Integrative Plant Biology, School of Life Sciences, Jiangsu Normal University, Xuzhou, 221116</wicri:regionArea>
<wicri:noRegion>221116</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Zhang, Zhaoxin" sort="Zhang, Zhaoxin" uniqKey="Zhang Z" first="Zhaoxin" last="Zhang">Zhaoxin Zhang</name>
<affiliation wicri:level="1">
<nlm:affiliation>The State Key Laboratory of Pharmaceutical Biotechnology, School of life Sciences, Nanjing University, Nanjing, 210023, China.</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>The State Key Laboratory of Pharmaceutical Biotechnology, School of life Sciences, Nanjing University, Nanjing, 210023</wicri:regionArea>
<wicri:noRegion>210023</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Sun, Jiawen" sort="Sun, Jiawen" uniqKey="Sun J" first="Jiawen" last="Sun">Jiawen Sun</name>
<affiliation wicri:level="1">
<nlm:affiliation>Institute of Integrative Plant Biology, School of Life Sciences, Jiangsu Normal University, Xuzhou, 221116, China.</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>Institute of Integrative Plant Biology, School of Life Sciences, Jiangsu Normal University, Xuzhou, 221116</wicri:regionArea>
<wicri:noRegion>221116</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Han, Bing" sort="Han, Bing" uniqKey="Han B" first="Bing" last="Han">Bing Han</name>
<affiliation wicri:level="1">
<nlm:affiliation>Institute of Plant Protection, Dezhou Academy of Agricultural Sciences, Dezhou, 253015, China.</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>Institute of Plant Protection, Dezhou Academy of Agricultural Sciences, Dezhou, 253015</wicri:regionArea>
<wicri:noRegion>253015</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Li, Zongyun" sort="Li, Zongyun" uniqKey="Li Z" first="Zongyun" last="Li">Zongyun Li</name>
<affiliation wicri:level="1">
<nlm:affiliation>Institute of Integrative Plant Biology, School of Life Sciences, Jiangsu Normal University, Xuzhou, 221116, China.</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>Institute of Integrative Plant Biology, School of Life Sciences, Jiangsu Normal University, Xuzhou, 221116</wicri:regionArea>
<wicri:noRegion>221116</wicri:noRegion>
</affiliation>
</author>
</analytic>
<series>
<title level="j">The Plant journal : for cell and molecular biology</title>
<idno type="eISSN">1365-313X</idno>
<imprint>
<date when="2020" type="published">2020</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass></textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Plant bacterial pathogens usually cause diseases by secreting and translocating numerous virulence effectors into host cells and suppressing various host immunity pathways. It has been demonstrated that the extensive ubiquitin systems of host cells are frequently interfered with or hijacked by numerous pathogenic bacteria, through various strategies. Some type-III secretion system (T3SS) effectors of plant pathogens have been demonstrated to impersonate the F-box protein (FBP) component of the SKP1/CUL1/F-box (SCF) E3 ubiquitin system for their own benefit. Although numerous putative eukaryotic-like F-box effectors have been screened for different bacterial pathogens by bioinformatics analyses, the targets of most F-box effectors in host immune systems remain unknown. Here, we show that XopI, a putative F-box effector of African Xoo (Xanthomonas oryzae pv. oryzae) strain BAI3, strongly inhibits the host's OsNPR1-dependent resistance to Xoo. The xopI knockout mutant displays lower virulence in Oryza sativa (rice) than BAI3. Mechanistically, we identify a thioredoxin protein, OsTrxh2, as an XopI-interacting protein in rice. Although OsTrxh2 positively regulates rice immunity by catalyzing the dissociation of OsNPR1 into monomers in rice, the XopI effector serves as an F-box adapter to form an OSK1-XopI-OsTrxh2 interaction complex, and further disrupts OsNPR1-mediated resistance through proteasomal degradation of OsTrxh2. Our results indicate that XopI targets OsTrxh2 and further represses OsNPR1-dependent signaling, thereby subverting systemic acquired resistance (SAR) immunity in rice.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="Publisher" Owner="NLM">
<PMID Version="1">32881160</PMID>
<DateRevised>
<Year>2020</Year>
<Month>11</Month>
<Day>20</Day>
</DateRevised>
<Article PubModel="Print-Electronic">
<Journal>
<ISSN IssnType="Electronic">1365-313X</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>104</Volume>
<Issue>4</Issue>
<PubDate>
<Year>2020</Year>
<Month>Nov</Month>
</PubDate>
</JournalIssue>
<Title>The Plant journal : for cell and molecular biology</Title>
<ISOAbbreviation>Plant J</ISOAbbreviation>
</Journal>
<ArticleTitle>A bacterial F-box effector suppresses SAR immunity through mediating the proteasomal degradation of OsTrxh2 in rice.</ArticleTitle>
<Pagination>
<MedlinePgn>1054-1072</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1111/tpj.14980</ELocationID>
<Abstract>
<AbstractText>Plant bacterial pathogens usually cause diseases by secreting and translocating numerous virulence effectors into host cells and suppressing various host immunity pathways. It has been demonstrated that the extensive ubiquitin systems of host cells are frequently interfered with or hijacked by numerous pathogenic bacteria, through various strategies. Some type-III secretion system (T3SS) effectors of plant pathogens have been demonstrated to impersonate the F-box protein (FBP) component of the SKP1/CUL1/F-box (SCF) E3 ubiquitin system for their own benefit. Although numerous putative eukaryotic-like F-box effectors have been screened for different bacterial pathogens by bioinformatics analyses, the targets of most F-box effectors in host immune systems remain unknown. Here, we show that XopI, a putative F-box effector of African Xoo (Xanthomonas oryzae pv. oryzae) strain BAI3, strongly inhibits the host's OsNPR1-dependent resistance to Xoo. The xopI knockout mutant displays lower virulence in Oryza sativa (rice) than BAI3. Mechanistically, we identify a thioredoxin protein, OsTrxh2, as an XopI-interacting protein in rice. Although OsTrxh2 positively regulates rice immunity by catalyzing the dissociation of OsNPR1 into monomers in rice, the XopI effector serves as an F-box adapter to form an OSK1-XopI-OsTrxh2 interaction complex, and further disrupts OsNPR1-mediated resistance through proteasomal degradation of OsTrxh2. Our results indicate that XopI targets OsTrxh2 and further represses OsNPR1-dependent signaling, thereby subverting systemic acquired resistance (SAR) immunity in rice.</AbstractText>
<CopyrightInformation>© 2020 Society for Experimental Biology and John Wiley & Sons Ltd.</CopyrightInformation>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Ji</LastName>
<ForeName>Hongtao</ForeName>
<Initials>H</Initials>
<Identifier Source="ORCID">https://orcid.org/0000-0001-7071-5608</Identifier>
<AffiliationInfo>
<Affiliation>Institute of Integrative Plant Biology, School of Life Sciences, Jiangsu Normal University, Xuzhou, 221116, China.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Liu</LastName>
<ForeName>Delong</ForeName>
<Initials>D</Initials>
<AffiliationInfo>
<Affiliation>Institute of Integrative Plant Biology, School of Life Sciences, Jiangsu Normal University, Xuzhou, 221116, China.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Zhang</LastName>
<ForeName>Zhaoxin</ForeName>
<Initials>Z</Initials>
<AffiliationInfo>
<Affiliation>The State Key Laboratory of Pharmaceutical Biotechnology, School of life Sciences, Nanjing University, Nanjing, 210023, China.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Sun</LastName>
<ForeName>Jiawen</ForeName>
<Initials>J</Initials>
<AffiliationInfo>
<Affiliation>Institute of Integrative Plant Biology, School of Life Sciences, Jiangsu Normal University, Xuzhou, 221116, China.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Han</LastName>
<ForeName>Bing</ForeName>
<Initials>B</Initials>
<AffiliationInfo>
<Affiliation>Institute of Plant Protection, Dezhou Academy of Agricultural Sciences, Dezhou, 253015, China.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Li</LastName>
<ForeName>Zongyun</ForeName>
<Initials>Z</Initials>
<AffiliationInfo>
<Affiliation>Institute of Integrative Plant Biology, School of Life Sciences, Jiangsu Normal University, Xuzhou, 221116, China.</Affiliation>
</AffiliationInfo>
</Author>
</AuthorList>
<Language>eng</Language>
<GrantList CompleteYN="Y">
<Grant>
<GrantID>31801694</GrantID>
<Agency>National Natural Science Foundation of China</Agency>
<Country></Country>
</Grant>
<Grant>
<Agency>Priority Academic Program Development of Jiangsu Higher Education Institutions (PAPD)</Agency>
<Country></Country>
</Grant>
<Grant>
<GrantID>BK20181007</GrantID>
<Agency>Natural Science Foundation of Jiangsu Province of China</Agency>
<Country></Country>
</Grant>
<Grant>
<GrantID>18KJB210006</GrantID>
<Agency>the Natural Science Foundation of the Jiangsu Higher Education Institutions of China</Agency>
<Country></Country>
</Grant>
<Grant>
<GrantID>17XLR036</GrantID>
<Agency>Natural science fund of Jiangsu normal university</Agency>
<Country></Country>
</Grant>
</GrantList>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2020</Year>
<Month>10</Month>
<Day>14</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>England</Country>
<MedlineTA>Plant J</MedlineTA>
<NlmUniqueID>9207397</NlmUniqueID>
<ISSNLinking>0960-7412</ISSNLinking>
</MedlineJournalInfo>
<CitationSubset>IM</CitationSubset>
<KeywordList Owner="NOTNLM">
<Keyword MajorTopicYN="N">Oryza sativa </Keyword>
<Keyword MajorTopicYN="N">Xanthomonas oryzae </Keyword>
<Keyword MajorTopicYN="N">F-box effector</Keyword>
<Keyword MajorTopicYN="N">OsTrxh2</Keyword>
<Keyword MajorTopicYN="N">pathogen effectors</Keyword>
<Keyword MajorTopicYN="N">protein-protein interactions</Keyword>
<Keyword MajorTopicYN="N">systemic acquired resistance</Keyword>
<Keyword MajorTopicYN="N">transcriptional response</Keyword>
</KeywordList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2020</Year>
<Month>04</Month>
<Day>01</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="revised">
<Year>2020</Year>
<Month>08</Month>
<Day>06</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2020</Year>
<Month>08</Month>
<Day>10</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2020</Year>
<Month>9</Month>
<Day>4</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2020</Year>
<Month>9</Month>
<Day>4</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2020</Year>
<Month>9</Month>
<Day>4</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">32881160</ArticleId>
<ArticleId IdType="doi">10.1111/tpj.14980</ArticleId>
</ArticleIdList>
<ReferenceList>
<Title>REFERENCES</Title>
<Reference>
<Citation>Akimoto-Tomiyama, C., Furutani, A., Tsuge, S., Washington, E.J., Nishizawa, Y., Minami, E. and Ochiai, H. (2012) XopR, a type III effector secreted by Xanthomonas oryzae pv. oryzae, suppresses microbe-associated molecular pattern-triggered immunity in Arabidopsis thaliana. Mol. Plant-Microbe Interact. 25, 505-514.</Citation>
</Reference>
<Reference>
<Citation>Angot, A., Peeters, N., Lechner, E., Vailleau, F., Baud, C., Gentzbittel, L., Sartorel, E., Genschik, P., Boucher, C. and Genin, S. (2006) Ralstonia solanacearum requires F box-like domain-containing type III effectors to promote disease on several host plants. Proc. Natl. Acad. Sci. USA, 103, 14620-14625.</Citation>
</Reference>
<Reference>
<Citation>Ashida, H. and Sasakawa, C. (2017) Bacterial E3 ligase effectors exploit host ubiquitin systems. Curr. Opin. Microbiol. 35, 16-22.</Citation>
</Reference>
<Reference>
<Citation>Baumberger, N., Tsai, C.H., Lie, M., Havecker, E. and Baulcombe, D.C. (2007) The Polerovirus silencing suppressor P0 targets ARGONAUTE proteins for degradation. Curr. Biol. 17, 1609-1614.</Citation>
</Reference>
<Reference>
<Citation>Bortolamiol, D., Pazhouhandeh, M., Marrocco, K., Genschik, P. and Ziegler-Graff, V. (2007) The Polerovirus F box protein P0 targets ARGONAUTE1 to suppress RNA silencing. Curr. Biol. 17, 1615-1621.</Citation>
</Reference>
<Reference>
<Citation>Buttner, D. and Bonas, U. (2002) Getting across-bacterial type III effector proteins on their way to the plant cell. EMBO J. 21, 5313-5322.</Citation>
</Reference>
<Reference>
<Citation>Cao, H., Glazebrook, J., Clarke, J.D., Volko, S. and Dong, X. (1997) The Arabidopsis NPR1 gene that controls systemic acquired resistance encodes a novel protein containing ankyrin repeats. Cell, 88, 57-63.</Citation>
</Reference>
<Reference>
<Citation>Chen, H., Chen, J., Li, M. et al. (2017) A bacterial Type III Effector Targets the master regulator of salicylic acid signaling, NPR1, to subvert plant immunity. Cell Host Microbe, 22, 777-788.</Citation>
</Reference>
<Reference>
<Citation>Chen, W., Xiong, S., Li, J., Li, X., Liu, Y., Zou, C. and Mallampalli, R.K. (2015) The ubiquitin E3 ligase SCF-FBXO24 recognizes deacetylated nucleoside diphosphate kinase A to enhance its degradation. Mol. Cell Biol. 35, 1001-1013.</Citation>
</Reference>
<Reference>
<Citation>Chern, M.S., Fitzgerald, H.A., Yadav, R.C., Canlas, P.E., Dong, X. and Ronald, P.C. (2001) Evidence for a disease-resistance pathway in rice similar to the NPR1-mediated signaling pathway in Arabidopsis. Plant J. 27, 101-113.</Citation>
</Reference>
<Reference>
<Citation>Ciruela, F., Vilardaga, J.P. and Fernández-Dueñas, V. (2010) Lighting up multiprotein complexes: lessons from GPCR oligomerization. Trends Biotechnol. 28, 407-415.</Citation>
</Reference>
<Reference>
<Citation>Collet, J.F. and Messens, J. (2010) Structure, function, and mechanism of thioredoxin proteins. Antioxid Redox Signal. 13, 1205-1216.</Citation>
</Reference>
<Reference>
<Citation>De Vleesschauwer, D., Gheysen, G. and Höfte, M. (2013) Hormone defense networking in rice: tales from a different world. Trends Plant Sci. 18, 555-565.</Citation>
</Reference>
<Reference>
<Citation>De Vleesschauwer, D., Xu, J. and Höfte, M. (2014) Making sense of hormone-mediated defense networking: from rice to Arabidopsis. Front. Plant Sci. 5, 611.</Citation>
</Reference>
<Reference>
<Citation>Després, C., DeLong, C., Glaze, S., Liu, E. and Fobert, P.R. (2000) The Arabidopsis NPR1/NIM1 protein enhances the DNA binding activity of a subgroup of the TGA family of bZIP transcription factors. Plant Cell, 12, 279-290.</Citation>
</Reference>
<Reference>
<Citation>Dielen, A.S., Badaoui, S., Candresse, T. and German-Retana, S. (2010) The ubiquitin/26S proteasome system in plant-pathogen interactions: a never-ending hide-and-seek game. Mol. Plant Pathol. 11, 293-308.</Citation>
</Reference>
<Reference>
<Citation>Domingues, M.N., De Souza, T.A., Cernadas, R.A., de Oliveira, M.L., Docena, C., Farah, C.S. and Benedetti, C.E. (2010) The Xanthomonas citri effector protein PthA interacts with citrus proteins involved in nuclear transport, protein folding and ubiquitination associated with DNA repair. Mol. Plant Pathol. 11, 663-675.</Citation>
</Reference>
<Reference>
<Citation>Donato, V., Bonora, M., Simoneschi, D. et al. (2017) The TDH-GCN5L1-Fbxo15-KBP axis limits mitochondrial biogenesis in mouse embryonic stem cells. Nat. Cell Biol. 19, 341-351.</Citation>
</Reference>
<Reference>
<Citation>Dong, X. (2004) NPR1, all things considered. Curr. Opin. Plant Biol. 7, 547-552.</Citation>
</Reference>
<Reference>
<Citation>Durrant, W.E. and Dong, X. (2004) Systemic acquired resistance. Annu. Rev. Phytopathol. 42, 185-209.</Citation>
</Reference>
<Reference>
<Citation>Fields, S. (1993) The two-hybrid system to detect protein-protein interactions. Meth. Enzymol. 5, 116-124.</Citation>
</Reference>
<Reference>
<Citation>Gagne, J.M., Downes, B.P., Shiu, S.H., Durski, A.M. and Vierstra, R.D. (2002) The F-box subunit of the SCF E3 complex is encoded by a diverse superfamily of genes in Arabidopsis. Proc. Natl. Acad. Sci. USA, 99, 11519-11524.</Citation>
</Reference>
<Reference>
<Citation>Gandia, J., Galino, J., Amaral, O.B., Soriano, A., Lluís, C., Franco, R. and Ciruela, F. (2008) Detection of higher-order G protein-coupled receptor oligomers by a combined BRET-BiFC technique. FEBS Lett. 582, 2979-2984.</Citation>
</Reference>
<Reference>
<Citation>Gonzalez, C., Szurek, B., Manceau, C., Mathieu, T., Séré, Y. and Verdier, V. (2007) Molecular and pathotypic characterization of new Xanthomonas oryzae strains from West Africa. Mol. Plant-Microbe Interact. 20, 534-546.</Citation>
</Reference>
<Reference>
<Citation>Hiei, Y., Ohta, S., Komari, T. and Kumashiro, T. (1994) Efficient transformation of rice (Oryza sativa L.) mediated by Agrobacterium and sequence analysis of the boundaries of the T-DNA. Plant J. 6, 271-282.</Citation>
</Reference>
<Reference>
<Citation>Hua, Z. and Vierstra, R.D. (2011) The cullin-RING ubiquitin-protein ligases. Annu. Rev. Plant Biol. 62, 299-334.</Citation>
</Reference>
<Reference>
<Citation>Ishikawa, K., Yamaguchi, K., Sakamoto, K., Yoshimura, S., Inoue, K., Tsuge, S., Kojima, C. and Kawasaki, T. (2014) Bacterial effector modulation of host E3 ligase activity suppresses PAMP-triggered immunity in rice. Nat. Commun. 5, 5430.</Citation>
</Reference>
<Reference>
<Citation>Ji, H. and Dong, H. (2015) Key steps in type III secretion system (T3SS) towards translocon assembly with potential sensor at plant plasma membrane. Mol. Plant Pathol., 16, 762-773.</Citation>
</Reference>
<Reference>
<Citation>Jones, J.D. and Dangl, J.L. (2006) The plant immune system. Nature, 444, 323-329.</Citation>
</Reference>
<Reference>
<Citation>Kahloul, S., HajSalah El Beji, I., Boulaflous, A., Ferchichi, A., Kong, H., Mouzeyar, S. and Bouzidi, M.F.. (2013) Structural, expression and interaction analysis of rice SKP1-like genes. DNA Res. 20, 67-78.</Citation>
</Reference>
<Reference>
<Citation>Khan, M., Seto, D., Subramaniam, R. and Desveaux, D. (2018) Oh, the places they'll go! A survey of phytopathogen effectors and their host targets. Plant J. 93, 651-663.</Citation>
</Reference>
<Reference>
<Citation>Kinkema, M., Fan, W. and Dong, X. (2000) Nuclear localization of NPR1 is required for activation of PR gene expression. Plant Cell, 12, 2339-2350.</Citation>
</Reference>
<Reference>
<Citation>Kipreos, E.T. and Pagano, M. (2000) The F-box protein family. Genome Biol. 1, REVIEWS3002.</Citation>
</Reference>
<Reference>
<Citation>Koirala, S. and Potts, P.R. (2016) An acetyldegron triggers CRBN to take down the "Q". Mol. Cell, 61, 795-796.</Citation>
</Reference>
<Reference>
<Citation>Kong, H., Landherr, L.L., Frohlich, M.W., Leebens-Mack, J., Ma, H. and de Pamphilis, C.W. (2007) Patterns of gene duplication in the plant SKP1 gene family in angiosperms: evidence for multiple mechanisms of rapid gene birth. Plant J. 50, 873-885.</Citation>
</Reference>
<Reference>
<Citation>Kovacs, I., Durner, J. and Lindermayr, C. (2015) Crosstalk between nitric oxide and glutathione is required for NONEXPRESSOR OF PATHOGENESIS-RELATED GENES 1 (NPR1)-dependent defense signaling in Arabidopsis thaliana. New Phytol. 208, 860-872.</Citation>
</Reference>
<Reference>
<Citation>Kvitko, B.H. and Collmer, A. (2011) Construction of Pseudomonas syringae pv. tomato DC3000 mutant and polymutant strains. Methods Mol. Biol. 712, 109-128.</Citation>
</Reference>
<Reference>
<Citation>Laloi, C., Mestres-Ortega, D., Marco, Y., Meyer, Y. and Reichheld, J.P. (2004) The Arabidopsis cytosolic thioredoxin h5 gene induction by oxidative stress and its W-box-mediated response to pathogen elicitor. Plant Physiol. 134, 1006-1016.</Citation>
</Reference>
<Reference>
<Citation>Lee, E.K. and Diehl, J.A. (2014) SCFs in the new millennium. Oncogene, 33, 2011-2018.</Citation>
</Reference>
<Reference>
<Citation>Lee, J.M., Lee, J.S., Kim, H. et al. (2012) EZH2 generates a methyl degron that is recognized by the DCAF1/DDB1/CUL4 E3 ubiquitin ligase complex. Mol. Cell, 48, 572-586.</Citation>
</Reference>
<Reference>
<Citation>Li, P., Zhang, L., Mo, X. et al. (2019) Rice aquaporin PIP1;3 and harpin Hpa1 of bacterial blight pathogen cooperate in a type III effector translocation. J. Exp. Bot. 70, 3057-3073.</Citation>
</Reference>
<Reference>
<Citation>Lorang, J., Kidarsa, T., Bradford, C.S., Gilbert, B., Curtis, M., Tzeng, S.C., Maier, C.S. and Wolpert, T.J. (2012) Tricking the guard: exploiting plant defense for disease susceptibility. Science, 338, 659-662.</Citation>
</Reference>
<Reference>
<Citation>Maeda, K., Hägglund, P., Finnie, C., Svensson, B. and Henriksen, A. (2006) Structural basis for target protein recognition by the protein disulfide reductase thioredoxin. Structure, 14, 1701-1710.</Citation>
</Reference>
<Reference>
<Citation>Magori, S. and Citovsky, V. (2011) Hijacking of the Host SCF Ubiquitin Ligase Machinery by Plant Pathogens. Front. Plant Sci. 22, 87.</Citation>
</Reference>
<Reference>
<Citation>Mata-Pérez, C. and Spoel, S.H. (2019) Thioredoxin-mediated redox signalling in plant immunity. Plant Sci. 279, 27-33.</Citation>
</Reference>
<Reference>
<Citation>Mitsuhara, I., Iwai, T., Seo, S., Yanagawa, Y., Kawahigasi, H., Hirose, S., Ohkawa, Y. and Ohashi, Y. (2008) Characteristic expression of twelve rice PR1 family genes in response to pathogen infection, wounding, and defense-related signal compounds (121/180). Mol. Genet. Genomics, 279, 415-427.</Citation>
</Reference>
<Reference>
<Citation>Mou, Z., Fan, W. and Dong, X. (2003) Inducers of plant systemic acquired resistance regulate NPR1 function through redox changes. Cell, 113, 935-944.</Citation>
</Reference>
<Reference>
<Citation>Mukhtar, M.S., McCormack, M.E., Argueso, C.T. and Pajerowska-Mukhtar, K.M. (2016) Pathogen tactics to manipulate plant cell death. Curr. Biol. 26, 608-619.</Citation>
</Reference>
<Reference>
<Citation>Nakao, L.S., Everley, R.A., Marino, S.M., Lo, S.M., de Souza, L.E., Gygi, S.P. and Gladyshev, V.N. (2015) Mechanism-based proteomic screening identifies targets of thioredoxin-like proteins. J. Biol. Chem. 290, 5685-5695.</Citation>
</Reference>
<Reference>
<Citation>Nguyen, T.V., Lee, J.E., Sweredoski, M.J. et al. (2016) Glutamine triggers acetylation-dependent degradation of glutamine synthetase via the thalidomide receptor cereblon. Mol. Cell, 61, 809-820.</Citation>
</Reference>
<Reference>
<Citation>Nino-Liu, D.O., Ronald, P.C. and Bogdanove, A.J. (2006) Xanthomonas oryzae pathovars: model pathogens of a model crop. Mol. Plant Pathol. 7, 303-324.</Citation>
</Reference>
<Reference>
<Citation>Nuruzzaman, M., Gupta, M., Zhang, C., Wang, L., Xie, W., Xiong, L., Zhang, Q. and Lian, X. (2008) Sequence and expression analysis of the thioredoxin protein gene family in rice. Mol. Genet. Genomics, 280, 139-151.</Citation>
</Reference>
<Reference>
<Citation>Nuruzzaman, M., Sharoni, A.M., Satoh, K., Al-Shammari, T., Shimizu, T., Sasaya, T., Omura, T. and Kikuchi, S. (2012) The thioredoxin gene family in rice: genome-wide identification and expression profiling under different biotic and abiotic treatments. Biochem Biophys. Res. Commun. 423, 417-423.</Citation>
</Reference>
<Reference>
<Citation>Palde, P.B. and Carroll, K.S. (2015) A universal entropy-driven mechanism for thioredoxin-target recognition. Proc. Natl. Acad. Sci. USA, 112, 7960-7965.</Citation>
</Reference>
<Reference>
<Citation>Price, C.T. and Kwaik, Y.A. (2010) Exploitation of host polyubiquitination machinery through molecular mimicry by eukaryotic-like bacterial f-box effectors. Front Microbiol. 1, 122.</Citation>
</Reference>
<Reference>
<Citation>Qi, G., Chen, J., Chang, M., Chen, H., Hall, K., Korin, J., Liu, F., Wang, D. and Fu, Z.Q. (2018) Pandemonium breaks out: disruption of salicylic acid-mediated defense by plant pathogens. Mol. Plant, 11, 1427-1439.</Citation>
</Reference>
<Reference>
<Citation>Ravid, T. and Hochstrasser, M. (2008) Diversity of degradation signals in the ubiquitin-proteasome system. Nature Rev. Mol. Cell Biol. 9, 679-690.</Citation>
</Reference>
<Reference>
<Citation>Reichheld, J.P., Mestres-Ortega, D., Laloi, C. and Meyer, Y. (2002) The multigenic family of thioredoxin h in Arabidopsis thaliana: specific expression and stress response. Plant Physiol. Biochem. 40, 685-690.</Citation>
</Reference>
<Reference>
<Citation>Ryan, R.P., Vorhölter, F.J., Potnis, N., Jones, J.B., Van Sluys, M.A., Bogdanove, A.J. and Dow, J.M. (2011) Pathogenomics of Xanthomonas: understanding bacterium-plant interactions. Nat. Rev. Microbiol. 9, 344-355.</Citation>
</Reference>
<Reference>
<Citation>Schrammeijer, B., Risseeuw, E., Pansegrau, W., Regensburg-Tuink, T.J., Crosby, W.L. and Hooykaas, P.J. (2001) Interaction of the virulence protein VirF of Agrobacterium tumefaciens with plant homologs of the yeast Skp1 protein. Curr. Biol. 11, 258-262.</Citation>
</Reference>
<Reference>
<Citation>Sevilla, F., Camejo, D., Ortiz-Espín, A., Calderón, A., Lázaro, J.J. and Jiménez, A. (2015) The thioredoxin/peroxiredoxin/sulfiredoxin system: current overview on its redox function in plants and regulation by reactive oxygen and nitrogen species. J. Exp. Bot. 66, 2945-2955.</Citation>
</Reference>
<Reference>
<Citation>Silverman, P., Seskar, M., Kanter, D., Schweizer, P., Metraux, J.P. and Raskin, I. (1995) Salicylic acid in rice biosynthesis, conjugation, and possible role. Plant Physiol. 108, 633-639.</Citation>
</Reference>
<Reference>
<Citation>Singer, A.U., Schulze, S., Skarina, T. et al. (2013) A pathogen type III effector with a novel E3 ubiquitin ligase architecture. PLoS Pathog. 9, e1003121.</Citation>
</Reference>
<Reference>
<Citation>Sinha, D., Gupta, M.K., Patel, H.K., Ranjan, A. and Sonti, R.V. (2013) Cell wall degrading enzyme induced rice innate immune responses are suppressed by the type 3 secretion system effectors XopN, XopQ, XopX and XopZ of Xanthomonas oryzae pv. oryzae. PLoS One, 8, e75867.</Citation>
</Reference>
<Reference>
<Citation>Skaar, J.R., Pagan, J.K. and Pagano, M. (2013) Mechanisms and function of substrate recruitment by F-box proteins. Nat. Rev. Mol. Cell Biol., 14, 369-381.</Citation>
</Reference>
<Reference>
<Citation>Song, C. and Yang, B. (2010) Mutagenesis of 18 Type III effectors reveals virulence function of XopZPXO99 in Xanthomonas oryzae pv. oryzae. Mol. Plant-Microbe Interact. 23, 893-902.</Citation>
</Reference>
<Reference>
<Citation>Stintzi, A., Heitz, T., Prasad, V., Wiedemann-Merdinoglu, S., Kauffmann, S., Geoffroy, P., Legrand, M. and Fritig, B. (1993) Plant pathogenesis-related proteins and their role in defense against pathogens. Biochimie, 75, 687-706.</Citation>
</Reference>
<Reference>
<Citation>Subramanian, C., Kim, B.H., Lyssenko, N.N., Xu, X., Johnson, C.H. and von Arnim, A.G. (2004) The Arabidopsis repressor of light signaling, COP1, is regulated by nuclear exclusion: mutational analysis by bioluminescence resonance energy transfer. Proc. Natl. Acad. Sci. USA, 101, 6798-6802.</Citation>
</Reference>
<Reference>
<Citation>Subramanian, C., Woo, J., Cai, X., Xu, X., Servick, S., Johnson, C.H., Nebenführ, A. and von Arnim, A.G. (2006) A suite of tools and application notes for in vivo protein interaction assays using bioluminescence resonance energy transfer (BRET). Plant J. 48, 138-152.</Citation>
</Reference>
<Reference>
<Citation>Sun, Y., Detchemendy, T.W., Pajerowska-Mukhtar, K.M. and Mukhtar, M.S. (2018) NPR1 in jazzset with pathogen effectors. Trends Plant Sci. 23, 469-472.</Citation>
</Reference>
<Reference>
<Citation>Sweat, T.A. and Wolpert, T.J. (2007) Thioredoxin h5 is required for victorin sensitivity mediated by a CC-NBS-LRR gene in Arabidopsis. Plant cell, 19, 673-687.</Citation>
</Reference>
<Reference>
<Citation>Tada, Y., Spoel, S.H., Pajerowska-Mukhtar, K., Mou, Z., Song, J., Wang, C., Zuo, J. and Dong, X. (2008) Plant immunity requires conformational changes of NPR1 via S-nitrosylation and thioredoxins. Science, 321, 952-956.</Citation>
</Reference>
<Reference>
<Citation>Tanaka, S., Han, X. and Kahmann, R. (2015) Microbial effectors target multiple steps in the salicylic acid production and signaling pathway. Front. Plant Sci. 6, 349.</Citation>
</Reference>
<Reference>
<Citation>Tang, X., Xiao, Y. and Zhou, J.M. (2006) Regulation of the type III secretion system in phytopathogenic bacteria. Mol. Plant-Microbe Interact. 19, 1159-1166.</Citation>
</Reference>
<Reference>
<Citation>Tran, T.T., Pérez-Quintero, A.L., Wonni, I. et al. (2018) Functional analysis of African Xanthomonas oryzae pv. oryzae TALomes reveals a new susceptibility gene in bacterial leaf blight of rice. PLoS Pathog. 14, e1007092.</Citation>
</Reference>
<Reference>
<Citation>Tsuge, S., Furutani, A., Fukunaka, R., Oku, T., Tsuno, K., Ochiai, H., Inoue, Y., Kaku, H. and Kubo, Y. (2002) Expression of Xanthomonas oryzae pv.oryzae hrp genes in XOM2, a novel synthetic medium. J. Gen. Plant Pathol. 68, 363-371.</Citation>
</Reference>
<Reference>
<Citation>Tzfira, T., Vaidya, M. and Citovsky, V. (2004) Involvement of targeted proteolysis in plant genetic transformation by Agrobacterium. Nature, 431, 87-92.</Citation>
</Reference>
<Reference>
<Citation>Üstün, S., Bartetzko, V. and Börnke, F. (2013) The Xanthomonas campestris type III effector XopJ targets the host cell proteasome to suppress salicylic-acid mediated plant defence. PLoS Pathog. 9, e1003427.</Citation>
</Reference>
<Reference>
<Citation>Üstün, S. and Börnke, F. (2014) Interactions of Xanthomonas type-III effector proteins with the plant ubiquitin and ubiquitin-like pathways. Front. Plant Sci. 5, 736.</Citation>
</Reference>
<Reference>
<Citation>Wang, D., Amornsiripanitch, N. and Dong, X. (2006) A genomic approach to identify regulatory nodes in the transcriptional network of systemic acquired resistance in plants. PLoS Pathog. 2, e123.</Citation>
</Reference>
<Reference>
<Citation>Wang, S., Sun, J., Fan, F., Tan, Z., Zou, Y. and Lu, D. (2016) A Xanthomonas oryzae pv. oryzae effector, XopR, associates with receptor-like cytoplasmic kinases and suppresses PAMP-triggered stomatal closure. Sci. China Life Sci. 59, 897-905.</Citation>
</Reference>
<Reference>
<Citation>White, F.F., Potnis, N., Jones, J.B. and Koebnik, R. (2009) The type III effectors of Xanthomonas. Mol. Plant Pathol. 10, 749-766.</Citation>
</Reference>
<Reference>
<Citation>Withers, J. and Dong, X. (2016) Posttranslational modifications of NPR1: a single protein playing multiple roles in plant immunity and physiology. PLoS Pathog. 12, e1005707.</Citation>
</Reference>
<Reference>
<Citation>Xu, R.F., Li, H., Qin, R.Y., Li, J., Qiu, C.H., Yang, Y.C., Ma, H., Li, L., Wei, P.C. and Yang, J.B. (2015) Generation of inheritable and "transgene clean" targeted genome-modified rice in later generations using the CRISPR/Cas9 system. Sci. Rep. 5, 11491.</Citation>
</Reference>
<Reference>
<Citation>Yamaguchi, K., Yamada, K., Ishikawa, K. et al. (2013a) A receptor-like cytoplasmic kinase targeted by a plant pathogen effector is directly phosphorylated by the chitin receptor and mediates rice immunity. Cell Host Microbe, 13, 347-357.</Citation>
</Reference>
<Reference>
<Citation>Yamaguchi, K., Nakamura, Y., Ishikawa, K., Yoshimura, Y., Tsuge, S. and Kawasaki, T. (2013b) Suppression of rice immunity by Xanthomonas oryzae type III effector Xoo2875. Biosci. Biotechnol. Biochem. 77, 796-801.</Citation>
</Reference>
<Reference>
<Citation>Yang, D.L., Yang, Y. and He, Z. (2013) Roles of plant hormones and their interplay in rice immunity. Mol. Plant, 6, 675-685.</Citation>
</Reference>
<Reference>
<Citation>Ying, Y., Yue, W., Wang, S., Li, S., Wang, M., Zhao, Y., Wang, C., Mao, C., Whelan, J. and Shou, H. (2017) Two h-type thioredoxins interact with the E2 ubiquitin conjugase PHO2 to fine-tune phosphate homeostasis in rice. Plant Physiol. 173, 812-824.</Citation>
</Reference>
<Reference>
<Citation>Yokochi, Y., Sugiura, K., Takemura, K., Yoshida, K., Hara, S., Wakabayashi, K.I., Kitao, A. and Hisabori, T. (2019) Impact of key residues within chloroplast thioredoxin-f on recognition for reduction and oxidation of target proteins. J. Biol. Chem. 294, 17437-17450.</Citation>
</Reference>
<Reference>
<Citation>Yuan, Y., Zhong, S., Li, Q. et al. (2007) Functional analysis of rice NPR1-like genes reveals that OsNPR1/NH1 is the rice orthologue conferring disease resistance with enhanced herbivore susceptibility. Plant Biotechnol. J. 5, 313-324.</Citation>
</Reference>
<Reference>
<Citation>Zhang, C.J., Zhao, B.C., Ge, W.N., Zhang, Y.F., Song, Y., Sun, D.Y. and Guo, Y. (2011) An apoplastic h-type thioredoxin is involved in the stress response through regulation of the apoplastic reactive oxygen species in rice. Plant Physiol. 157, 1884-1899.</Citation>
</Reference>
<Reference>
<Citation>Zhang, H. and Wang, S. (2013) Rice versus Xanthomonas oryzae pv. oryzae: a unique pathosystem. Curr. Opin. Plant Biol. 16, 188-195.</Citation>
</Reference>
<Reference>
<Citation>Zipfel, C. (2009) Early molecular events in PAMP-triggered immunity. Curr. Opin. Plant Biol. 12, 414-420.</Citation>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>République populaire de Chine</li>
</country>
</list>
<tree>
<country name="République populaire de Chine">
<noRegion>
<name sortKey="Ji, Hongtao" sort="Ji, Hongtao" uniqKey="Ji H" first="Hongtao" last="Ji">Hongtao Ji</name>
</noRegion>
<name sortKey="Han, Bing" sort="Han, Bing" uniqKey="Han B" first="Bing" last="Han">Bing Han</name>
<name sortKey="Li, Zongyun" sort="Li, Zongyun" uniqKey="Li Z" first="Zongyun" last="Li">Zongyun Li</name>
<name sortKey="Liu, Delong" sort="Liu, Delong" uniqKey="Liu D" first="Delong" last="Liu">Delong Liu</name>
<name sortKey="Sun, Jiawen" sort="Sun, Jiawen" uniqKey="Sun J" first="Jiawen" last="Sun">Jiawen Sun</name>
<name sortKey="Zhang, Zhaoxin" sort="Zhang, Zhaoxin" uniqKey="Zhang Z" first="Zhaoxin" last="Zhang">Zhaoxin Zhang</name>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/PlantPathoEffV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000235 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 000235 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    PlantPathoEffV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:32881160
   |texte=   A bacterial F-box effector suppresses SAR immunity through mediating the proteasomal degradation of OsTrxh2 in rice.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:32881160" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a PlantPathoEffV1 

Wicri

This area was generated with Dilib version V0.6.38.
Data generation: Sat Nov 21 16:00:34 2020. Site generation: Sat Nov 21 16:01:01 2020