Serveur d'exploration sur les effecteurs de phytopathogènes

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Cherry picking by pseudomonads: After a century of research on canker, genomics provides insights into the evolution of pathogenicity towards stone fruits.

Identifieur interne : 000200 ( Main/Exploration ); précédent : 000199; suivant : 000201

Cherry picking by pseudomonads: After a century of research on canker, genomics provides insights into the evolution of pathogenicity towards stone fruits.

Auteurs : Michelle T. Hulin ; Robert W. Jackson ; Richard J. Harrison ; John W. Mansfield

Source :

RBID : pubmed:32742023

Abstract

Bacterial canker disease is a major limiting factor in the growing of cherry and other Prunus species worldwide. At least five distinct clades within the bacterial species complex Pseudomonas syringae are known to be causal agents of the disease. The different pathogens commonly coexist in the field. Reducing canker is a challenging prospect as the efficacy of chemical controls and host resistance may vary against each of the diverse clades involved. Genomic analysis has revealed that the pathogens use a variable repertoire of virulence factors to cause the disease. Significantly, strains of P. syringae pv. syringae possess more genes for toxin biosynthesis and fewer encoding type III effector proteins. There is also a shared pool of key effector genes present on mobile elements such as plasmids and prophages that may have roles in virulence. By contrast, there is evidence that absence or truncation of certain effector genes, such as hopAB, is characteristic of cherry pathogens. Here we highlight how recent research, underpinned by the earlier epidemiological studies, is allowing significant progress in our understanding of the canker pathogens. This fundamental knowledge, combined with emerging insights into host genetics, provides the groundwork for development of precise control measures and informed approaches to breed for disease resistance.

DOI: 10.1111/ppa.13189
PubMed: 32742023
PubMed Central: PMC7386918


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Cherry picking by pseudomonads: After a century of research on canker, genomics provides insights into the evolution of pathogenicity towards stone fruits.</title>
<author>
<name sortKey="Hulin, Michelle T" sort="Hulin, Michelle T" uniqKey="Hulin M" first="Michelle T" last="Hulin">Michelle T. Hulin</name>
<affiliation>
<nlm:affiliation>NIAB EMR East Malling UK.</nlm:affiliation>
<wicri:noCountry code="no comma">NIAB EMR East Malling UK.</wicri:noCountry>
</affiliation>
</author>
<author>
<name sortKey="Jackson, Robert W" sort="Jackson, Robert W" uniqKey="Jackson R" first="Robert W" last="Jackson">Robert W. Jackson</name>
<affiliation>
<nlm:affiliation>Birmingham Institute of Forest Research (BIFoR), University of Birmingham Birmingham UK.</nlm:affiliation>
<wicri:noCountry code="subField">University of Birmingham Birmingham UK</wicri:noCountry>
</affiliation>
<affiliation>
<nlm:affiliation>School of Biosciences, University of Birmingham Birmingham UK.</nlm:affiliation>
<wicri:noCountry code="subField">University of Birmingham Birmingham UK</wicri:noCountry>
</affiliation>
</author>
<author>
<name sortKey="Harrison, Richard J" sort="Harrison, Richard J" uniqKey="Harrison R" first="Richard J" last="Harrison">Richard J. Harrison</name>
<affiliation>
<nlm:affiliation>NIAB EMR East Malling UK.</nlm:affiliation>
<wicri:noCountry code="no comma">NIAB EMR East Malling UK.</wicri:noCountry>
</affiliation>
<affiliation>
<nlm:affiliation>NIAB Cambridge UK.</nlm:affiliation>
<wicri:noCountry code="no comma">NIAB Cambridge UK.</wicri:noCountry>
</affiliation>
</author>
<author>
<name sortKey="Mansfield, John W" sort="Mansfield, John W" uniqKey="Mansfield J" first="John W" last="Mansfield">John W. Mansfield</name>
<affiliation>
<nlm:affiliation>Faculty of Natural Sciences Imperial College London London UK.</nlm:affiliation>
<wicri:noCountry code="no comma">Faculty of Natural Sciences Imperial College London London UK.</wicri:noCountry>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2020">2020</date>
<idno type="RBID">pubmed:32742023</idno>
<idno type="pmid">32742023</idno>
<idno type="doi">10.1111/ppa.13189</idno>
<idno type="pmc">PMC7386918</idno>
<idno type="wicri:Area/Main/Corpus">000165</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">000165</idno>
<idno type="wicri:Area/Main/Curation">000165</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">000165</idno>
<idno type="wicri:Area/Main/Exploration">000165</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Cherry picking by pseudomonads: After a century of research on canker, genomics provides insights into the evolution of pathogenicity towards stone fruits.</title>
<author>
<name sortKey="Hulin, Michelle T" sort="Hulin, Michelle T" uniqKey="Hulin M" first="Michelle T" last="Hulin">Michelle T. Hulin</name>
<affiliation>
<nlm:affiliation>NIAB EMR East Malling UK.</nlm:affiliation>
<wicri:noCountry code="no comma">NIAB EMR East Malling UK.</wicri:noCountry>
</affiliation>
</author>
<author>
<name sortKey="Jackson, Robert W" sort="Jackson, Robert W" uniqKey="Jackson R" first="Robert W" last="Jackson">Robert W. Jackson</name>
<affiliation>
<nlm:affiliation>Birmingham Institute of Forest Research (BIFoR), University of Birmingham Birmingham UK.</nlm:affiliation>
<wicri:noCountry code="subField">University of Birmingham Birmingham UK</wicri:noCountry>
</affiliation>
<affiliation>
<nlm:affiliation>School of Biosciences, University of Birmingham Birmingham UK.</nlm:affiliation>
<wicri:noCountry code="subField">University of Birmingham Birmingham UK</wicri:noCountry>
</affiliation>
</author>
<author>
<name sortKey="Harrison, Richard J" sort="Harrison, Richard J" uniqKey="Harrison R" first="Richard J" last="Harrison">Richard J. Harrison</name>
<affiliation>
<nlm:affiliation>NIAB EMR East Malling UK.</nlm:affiliation>
<wicri:noCountry code="no comma">NIAB EMR East Malling UK.</wicri:noCountry>
</affiliation>
<affiliation>
<nlm:affiliation>NIAB Cambridge UK.</nlm:affiliation>
<wicri:noCountry code="no comma">NIAB Cambridge UK.</wicri:noCountry>
</affiliation>
</author>
<author>
<name sortKey="Mansfield, John W" sort="Mansfield, John W" uniqKey="Mansfield J" first="John W" last="Mansfield">John W. Mansfield</name>
<affiliation>
<nlm:affiliation>Faculty of Natural Sciences Imperial College London London UK.</nlm:affiliation>
<wicri:noCountry code="no comma">Faculty of Natural Sciences Imperial College London London UK.</wicri:noCountry>
</affiliation>
</author>
</analytic>
<series>
<title level="j">Plant pathology</title>
<idno type="ISSN">0032-0862</idno>
<imprint>
<date when="2020" type="published">2020</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass></textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Bacterial canker disease is a major limiting factor in the growing of cherry and other
<i>Prunus</i>
species worldwide. At least five distinct clades within the bacterial species complex
<i>Pseudomonas syringae</i>
are known to be causal agents of the disease. The different pathogens commonly coexist in the field. Reducing canker is a challenging prospect as the efficacy of chemical controls and host resistance may vary against each of the diverse clades involved. Genomic analysis has revealed that the pathogens use a variable repertoire of virulence factors to cause the disease. Significantly, strains of
<i>P</i>
.
<i>syringae</i>
pv.
<i>syringae</i>
possess more genes for toxin biosynthesis and fewer encoding type III effector proteins. There is also a shared pool of key effector genes present on mobile elements such as plasmids and prophages that may have roles in virulence. By contrast, there is evidence that absence or truncation of certain effector genes, such as
<i>hopAB</i>
, is characteristic of cherry pathogens. Here we highlight how recent research, underpinned by the earlier epidemiological studies, is allowing significant progress in our understanding of the canker pathogens. This fundamental knowledge, combined with emerging insights into host genetics, provides the groundwork for development of precise control measures and informed approaches to breed for disease resistance.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="PubMed-not-MEDLINE" Owner="NLM">
<PMID Version="1">32742023</PMID>
<DateRevised>
<Year>2020</Year>
<Month>09</Month>
<Day>28</Day>
</DateRevised>
<Article PubModel="Print-Electronic">
<Journal>
<ISSN IssnType="Print">0032-0862</ISSN>
<JournalIssue CitedMedium="Print">
<Volume>69</Volume>
<Issue>6</Issue>
<PubDate>
<Year>2020</Year>
<Month>Aug</Month>
</PubDate>
</JournalIssue>
<Title>Plant pathology</Title>
<ISOAbbreviation>Plant Pathol</ISOAbbreviation>
</Journal>
<ArticleTitle>Cherry picking by pseudomonads: After a century of research on canker, genomics provides insights into the evolution of pathogenicity towards stone fruits.</ArticleTitle>
<Pagination>
<MedlinePgn>962-978</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1111/ppa.13189</ELocationID>
<Abstract>
<AbstractText>Bacterial canker disease is a major limiting factor in the growing of cherry and other
<i>Prunus</i>
species worldwide. At least five distinct clades within the bacterial species complex
<i>Pseudomonas syringae</i>
are known to be causal agents of the disease. The different pathogens commonly coexist in the field. Reducing canker is a challenging prospect as the efficacy of chemical controls and host resistance may vary against each of the diverse clades involved. Genomic analysis has revealed that the pathogens use a variable repertoire of virulence factors to cause the disease. Significantly, strains of
<i>P</i>
.
<i>syringae</i>
pv.
<i>syringae</i>
possess more genes for toxin biosynthesis and fewer encoding type III effector proteins. There is also a shared pool of key effector genes present on mobile elements such as plasmids and prophages that may have roles in virulence. By contrast, there is evidence that absence or truncation of certain effector genes, such as
<i>hopAB</i>
, is characteristic of cherry pathogens. Here we highlight how recent research, underpinned by the earlier epidemiological studies, is allowing significant progress in our understanding of the canker pathogens. This fundamental knowledge, combined with emerging insights into host genetics, provides the groundwork for development of precise control measures and informed approaches to breed for disease resistance.</AbstractText>
<CopyrightInformation>© 2020 The Authors. Plant Pathology published by John Wiley & Sons Ltd on behalf of British Society for Plant Pathology.</CopyrightInformation>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Hulin</LastName>
<ForeName>Michelle T</ForeName>
<Initials>MT</Initials>
<Identifier Source="ORCID">https://orcid.org/0000-0003-4240-5746</Identifier>
<AffiliationInfo>
<Affiliation>NIAB EMR East Malling UK.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Jackson</LastName>
<ForeName>Robert W</ForeName>
<Initials>RW</Initials>
<Identifier Source="ORCID">https://orcid.org/0000-0002-2042-4105</Identifier>
<AffiliationInfo>
<Affiliation>Birmingham Institute of Forest Research (BIFoR), University of Birmingham Birmingham UK.</Affiliation>
</AffiliationInfo>
<AffiliationInfo>
<Affiliation>School of Biosciences, University of Birmingham Birmingham UK.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Harrison</LastName>
<ForeName>Richard J</ForeName>
<Initials>RJ</Initials>
<Identifier Source="ORCID">https://orcid.org/0000-0002-3307-3519</Identifier>
<AffiliationInfo>
<Affiliation>NIAB EMR East Malling UK.</Affiliation>
</AffiliationInfo>
<AffiliationInfo>
<Affiliation>NIAB Cambridge UK.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Mansfield</LastName>
<ForeName>John W</ForeName>
<Initials>JW</Initials>
<Identifier Source="ORCID">https://orcid.org/0000-0002-0135-5140</Identifier>
<AffiliationInfo>
<Affiliation>Faculty of Natural Sciences Imperial College London London UK.</Affiliation>
</AffiliationInfo>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D016454">Review</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2020</Year>
<Month>05</Month>
<Day>06</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>England</Country>
<MedlineTA>Plant Pathol</MedlineTA>
<NlmUniqueID>9883944</NlmUniqueID>
<ISSNLinking>0032-0862</ISSNLinking>
</MedlineJournalInfo>
<KeywordList Owner="NOTNLM">
<Keyword MajorTopicYN="N">Prunus</Keyword>
<Keyword MajorTopicYN="N">Pseudomonas</Keyword>
<Keyword MajorTopicYN="N">evolution</Keyword>
<Keyword MajorTopicYN="N">pathogenicity</Keyword>
</KeywordList>
<CoiStatement>The authors declare no conflict of interest.</CoiStatement>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2019</Year>
<Month>12</Month>
<Day>04</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="revised">
<Year>2020</Year>
<Month>03</Month>
<Day>09</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2020</Year>
<Month>03</Month>
<Day>23</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2020</Year>
<Month>8</Month>
<Day>4</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2020</Year>
<Month>8</Month>
<Day>4</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2020</Year>
<Month>8</Month>
<Day>4</Day>
<Hour>6</Hour>
<Minute>1</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">32742023</ArticleId>
<ArticleId IdType="doi">10.1111/ppa.13189</ArticleId>
<ArticleId IdType="pii">PPA13189</ArticleId>
<ArticleId IdType="pmc">PMC7386918</ArticleId>
</ArticleIdList>
<pmc-dir>pmcsd</pmc-dir>
<ReferenceList>
<Reference>
<Citation>Plant Dis. 2020 Mar;104(3):882-892</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">31935341</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS One. 2013;8(2):e55954</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23437080</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2002 Feb;14(2):479-90</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11884688</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Appl Environ Microbiol. 1999 May;65(5):1904-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10223977</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Plant Microbe Interact. 2012 Jul;25(7):877-88</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22414441</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Front Microbiol. 2017 Dec 07;8:2422</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">29270162</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Plant Pathol. 2019 Jul;20(7):1013-1018</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">31116476</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Appl Microbiol Biotechnol. 2016 Apr;100(8):3693-711</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26830104</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Plant Pathol. 2018 Jul;19(7):1779-1794</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">29277959</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genome Biol Evol. 2017 Apr 1;9(4):932-944</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28369338</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>New Phytol. 2019 Feb;221(3):1634-1648</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">30288743</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2013 Jan 29;110(5):E425-34</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23319638</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>DNA Res. 2017 Oct 1;24(5):499-508</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28541388</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS Genet. 2013;9(10):e1003834</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24098145</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Biol. 2018 May 21;28(10):R619-R634</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">29787730</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>BMC Genomics. 2019 Mar 5;20(1):172</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">30836956</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Plant Microbe Interact. 2010 Oct;23(10):1287-93</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20831408</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell Host Microbe. 2010 Apr 22;7(4):290-301</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20413097</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Front Plant Sci. 2017 Jun 21;8:1089</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28680437</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Environ Microbiol. 2014 Jul;16(7):2301-15</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24612372</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Front Plant Sci. 2019 Apr 05;10:418</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">31024592</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Plant Pathol. 2016 Dec;17(9):1409-1424</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27145446</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2011 Feb 15;108(7):2975-80</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21282655</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Appl Environ Microbiol. 1993 Apr;59(4):1018-24</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8476279</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS Biol. 2014 Feb 18;12(2):e1001792</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24558350</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Plant Microbe Interact. 2013 Apr;26(4):387-97</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23252461</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Plant Pathol. 2015 Feb;16(2):137-49</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24986268</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 2017 Jul 3;45(W1):W30-W35</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28472413</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Environ Microbiol. 2018 Jun;20(6):2066-2084</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">29521473</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Arch Microbiol. 2019 Jan;201(1):67-80</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">30229267</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Pathol. 2018 Jun;67(5):1177-1193</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">29937581</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS Pathog. 2013 Mar;9(3):e1003281</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23555272</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Microb Genom. 2016 Oct 21;2(10):e000089</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28348830</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Int Microbiol. 2009 Jun;12(2):87-95</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19784928</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Plant Pathol. 2012 Aug;13(6):614-29</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22672649</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Annu Rev Phytopathol. 2013;51:85-104</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23663005</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>New Phytol. 2019 Mar 4;:</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">30834534</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Front Microbiol. 2019 Feb 19;10:270</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">30837979</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Dis. 2010 Mar;94(3):345-350</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">30754244</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Syst Appl Microbiol. 2016 Sep;39(6):370-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27283223</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2020 Feb 14;367(6479):763-768</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">32054757</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Plant Microbe Interact. 2019 May;32(5):550-565</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">30480480</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 1999 Sep 14;96(19):10875-80</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10485919</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS One. 2008 Aug 06;3(8):e2875</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18682852</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>New Phytol. 2018 Jul;219(2):672-696</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">29726587</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genetics. 2006 Oct;174(2):1041-56</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16951068</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Plant Microbe Interact. 2017 Feb;30(2):113-126</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28027024</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2019 Sep 17;116(38):18900-18910</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">31484768</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Appl Environ Microbiol. 2006 Jan;72(1):702-12</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16391110</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 1996 Jun 28;272(5270):1910-4</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8658163</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genome Res. 2009 Sep;19(9):1639-45</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19541911</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Microbiol Mol Biol Rev. 1999 Jun;63(2):266-92</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10357851</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Plant Microbe Interact. 2015 Jun;28(6):727-35</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25625821</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Exp Bot. 2018 Jan 4;69(2):245-254</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">29272462</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS Pathog. 2009 Apr;5(4):e1000388</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19381254</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Dis. 2018 Aug 6;:PDIS10171618PDN</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">30086245</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Viruses. 2018 Apr 25;10(5):</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">29693561</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 2016 Jul 8;44(W1):W16-21</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27141966</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS One. 2010 Apr 19;5(4):e10224</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20419105</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Plant Pathol. 2014 Apr;15(3):297-303</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24745046</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Environ Microbiol. 2010 Jun;12(6):1604-20</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20370821</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Ann Bot. 2017 Mar 1;119(5):703-709</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27594647</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant J. 2007 Jul;51(1):32-46</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17559511</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Plant Pathol. 2011 Sep;12(7):617-27</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21726364</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>FEMS Microbiol Lett. 2014 Jul;356(2):184-92</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24606017</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Biol Evol. 2015 Jan;32(1):268-74</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25371430</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Trends Microbiol. 2012 Apr;20(4):199-208</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22341410</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>BMC Plant Biol. 2019 Jan 21;19(1):31</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">30665361</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Trends Microbiol. 2001 Oct;9(10):481-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11597449</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS One. 2014 Sep 03;9(9):e105547</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25184292</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell. 2019 Sep 19;179(1):205-218.e21</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">31522888</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>BMC Genomics. 2019 Aug 20;20(1):662</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">31429698</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Plant Microbe Interact. 2006 Mar;19(3):257-69</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16570656</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2006 Nov 16;444(7117):323-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17108957</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Plant Pathol. 2000 Sep 1;1(5):263-75</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20572973</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Methods. 2009 Oct;6(10):767-72</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19767758</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2005 Aug 2;102(31):11064-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16043691</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2002 Feb 19;99(4):2275-80</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11854524</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Plant Microbe Interact. 2001 Mar;14(3):336-48</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11277431</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Plant Pathol. 2012 Dec;13(9):998-1009</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22805238</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Plant Pathol. 2017 Apr;18(3):457-468</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27061875</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Commun Agric Appl Biol Sci. 2004;69(4):443-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15756824</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2009 May 8;324(5928):750-2</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19423816</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2009 Jun 5;284(23):15867-79</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19346252</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS Pathog. 2013 Oct;9(10):e1003715</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24204266</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Phytopathology. 2017 Aug;107(8):912-919</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28430023</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell Host Microbe. 2017 Feb 8;21(2):156-168</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28132837</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Ann N Y Acad Sci. 2019 Jan;1435(1):5-17</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28574575</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Rev Microbiol. 2018 May;16(5):316-328</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">29479077</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Hortic Res. 2019 Sep 1;6:101</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">31645956</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Dis. 2007 Jan;91(1):4-17</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">30781059</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
<affiliations>
<list></list>
<tree>
<noCountry>
<name sortKey="Harrison, Richard J" sort="Harrison, Richard J" uniqKey="Harrison R" first="Richard J" last="Harrison">Richard J. Harrison</name>
<name sortKey="Hulin, Michelle T" sort="Hulin, Michelle T" uniqKey="Hulin M" first="Michelle T" last="Hulin">Michelle T. Hulin</name>
<name sortKey="Jackson, Robert W" sort="Jackson, Robert W" uniqKey="Jackson R" first="Robert W" last="Jackson">Robert W. Jackson</name>
<name sortKey="Mansfield, John W" sort="Mansfield, John W" uniqKey="Mansfield J" first="John W" last="Mansfield">John W. Mansfield</name>
</noCountry>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/PlantPathoEffV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000200 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 000200 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    PlantPathoEffV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:32742023
   |texte=   Cherry picking by pseudomonads: After a century of research on canker, genomics provides insights into the evolution of pathogenicity towards stone fruits.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:32742023" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a PlantPathoEffV1 

Wicri

This area was generated with Dilib version V0.6.38.
Data generation: Sat Nov 21 16:00:34 2020. Site generation: Sat Nov 21 16:01:01 2020