Serveur d'exploration sur les effecteurs de phytopathogènes

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Fungal factors involved in host immune evasion, modulation and exploitation during infection.

Identifieur interne : 000159 ( Main/Exploration ); précédent : 000158; suivant : 000160

Fungal factors involved in host immune evasion, modulation and exploitation during infection.

Auteurs : Annika König [Allemagne] ; Rita Müller [Allemagne] ; Selene Mogavero [Allemagne] ; Bernhard Hube [Allemagne]

Source :

RBID : pubmed:32978997

Abstract

Human and plant pathogenic fungi have a major impact on public health and agriculture. Although these fungi infect very diverse hosts and are often highly adapted to specific host niches, they share surprisingly similar mechanisms that mediate immune evasion, modulation of distinct host targets and exploitation of host nutrients, highlighting that successful strategies have evolved independently among diverse fungal pathogens. These attributes are facilitated by an arsenal of fungal factors. However, not a single molecule, but rather the combined effects of several factors enable these pathogens to establish infection. In this review, we discuss the principles of human and plant fungal pathogenicity mechanisms and discuss recent discoveries made in this field.

DOI: 10.1111/cmi.13272
PubMed: 32978997


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Fungal factors involved in host immune evasion, modulation and exploitation during infection.</title>
<author>
<name sortKey="Konig, Annika" sort="Konig, Annika" uniqKey="Konig A" first="Annika" last="König">Annika König</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Microbial Pathogenicity Mechanisms, Leibniz Institute for Natural Product Research and Infection Biology - Hans Knoell Institute, Jena, Germany.</nlm:affiliation>
<country xml:lang="fr">Allemagne</country>
<wicri:regionArea>Department of Microbial Pathogenicity Mechanisms, Leibniz Institute for Natural Product Research and Infection Biology - Hans Knoell Institute, Jena</wicri:regionArea>
<wicri:noRegion>Jena</wicri:noRegion>
<wicri:noRegion>Jena</wicri:noRegion>
<wicri:noRegion>Jena</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Muller, Rita" sort="Muller, Rita" uniqKey="Muller R" first="Rita" last="Müller">Rita Müller</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Microbial Pathogenicity Mechanisms, Leibniz Institute for Natural Product Research and Infection Biology - Hans Knoell Institute, Jena, Germany.</nlm:affiliation>
<country xml:lang="fr">Allemagne</country>
<wicri:regionArea>Department of Microbial Pathogenicity Mechanisms, Leibniz Institute for Natural Product Research and Infection Biology - Hans Knoell Institute, Jena</wicri:regionArea>
<wicri:noRegion>Jena</wicri:noRegion>
<wicri:noRegion>Jena</wicri:noRegion>
<wicri:noRegion>Jena</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Mogavero, Selene" sort="Mogavero, Selene" uniqKey="Mogavero S" first="Selene" last="Mogavero">Selene Mogavero</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Microbial Pathogenicity Mechanisms, Leibniz Institute for Natural Product Research and Infection Biology - Hans Knoell Institute, Jena, Germany.</nlm:affiliation>
<country xml:lang="fr">Allemagne</country>
<wicri:regionArea>Department of Microbial Pathogenicity Mechanisms, Leibniz Institute for Natural Product Research and Infection Biology - Hans Knoell Institute, Jena</wicri:regionArea>
<wicri:noRegion>Jena</wicri:noRegion>
<wicri:noRegion>Jena</wicri:noRegion>
<wicri:noRegion>Jena</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Hube, Bernhard" sort="Hube, Bernhard" uniqKey="Hube B" first="Bernhard" last="Hube">Bernhard Hube</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Microbial Pathogenicity Mechanisms, Leibniz Institute for Natural Product Research and Infection Biology - Hans Knoell Institute, Jena, Germany.</nlm:affiliation>
<country xml:lang="fr">Allemagne</country>
<wicri:regionArea>Department of Microbial Pathogenicity Mechanisms, Leibniz Institute for Natural Product Research and Infection Biology - Hans Knoell Institute, Jena</wicri:regionArea>
<wicri:noRegion>Jena</wicri:noRegion>
<wicri:noRegion>Jena</wicri:noRegion>
<wicri:noRegion>Jena</wicri:noRegion>
</affiliation>
<affiliation wicri:level="1">
<nlm:affiliation>Center for Sepsis Control and Care, University Hospital Jena, Jena, Germany.</nlm:affiliation>
<country xml:lang="fr">Allemagne</country>
<wicri:regionArea>Center for Sepsis Control and Care, University Hospital Jena, Jena</wicri:regionArea>
<wicri:noRegion>Jena</wicri:noRegion>
<wicri:noRegion>Jena</wicri:noRegion>
<wicri:noRegion>Jena</wicri:noRegion>
</affiliation>
<affiliation wicri:level="1">
<nlm:affiliation>Institute of Microbiology, Friedrich Schiller University, Jena, Germany.</nlm:affiliation>
<country xml:lang="fr">Allemagne</country>
<wicri:regionArea>Institute of Microbiology, Friedrich Schiller University, Jena</wicri:regionArea>
<wicri:noRegion>Jena</wicri:noRegion>
<wicri:noRegion>Jena</wicri:noRegion>
<wicri:noRegion>Jena</wicri:noRegion>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2020">2020</date>
<idno type="RBID">pubmed:32978997</idno>
<idno type="pmid">32978997</idno>
<idno type="doi">10.1111/cmi.13272</idno>
<idno type="wicri:Area/Main/Corpus">000093</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">000093</idno>
<idno type="wicri:Area/Main/Curation">000093</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">000093</idno>
<idno type="wicri:Area/Main/Exploration">000093</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Fungal factors involved in host immune evasion, modulation and exploitation during infection.</title>
<author>
<name sortKey="Konig, Annika" sort="Konig, Annika" uniqKey="Konig A" first="Annika" last="König">Annika König</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Microbial Pathogenicity Mechanisms, Leibniz Institute for Natural Product Research and Infection Biology - Hans Knoell Institute, Jena, Germany.</nlm:affiliation>
<country xml:lang="fr">Allemagne</country>
<wicri:regionArea>Department of Microbial Pathogenicity Mechanisms, Leibniz Institute for Natural Product Research and Infection Biology - Hans Knoell Institute, Jena</wicri:regionArea>
<wicri:noRegion>Jena</wicri:noRegion>
<wicri:noRegion>Jena</wicri:noRegion>
<wicri:noRegion>Jena</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Muller, Rita" sort="Muller, Rita" uniqKey="Muller R" first="Rita" last="Müller">Rita Müller</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Microbial Pathogenicity Mechanisms, Leibniz Institute for Natural Product Research and Infection Biology - Hans Knoell Institute, Jena, Germany.</nlm:affiliation>
<country xml:lang="fr">Allemagne</country>
<wicri:regionArea>Department of Microbial Pathogenicity Mechanisms, Leibniz Institute for Natural Product Research and Infection Biology - Hans Knoell Institute, Jena</wicri:regionArea>
<wicri:noRegion>Jena</wicri:noRegion>
<wicri:noRegion>Jena</wicri:noRegion>
<wicri:noRegion>Jena</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Mogavero, Selene" sort="Mogavero, Selene" uniqKey="Mogavero S" first="Selene" last="Mogavero">Selene Mogavero</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Microbial Pathogenicity Mechanisms, Leibniz Institute for Natural Product Research and Infection Biology - Hans Knoell Institute, Jena, Germany.</nlm:affiliation>
<country xml:lang="fr">Allemagne</country>
<wicri:regionArea>Department of Microbial Pathogenicity Mechanisms, Leibniz Institute for Natural Product Research and Infection Biology - Hans Knoell Institute, Jena</wicri:regionArea>
<wicri:noRegion>Jena</wicri:noRegion>
<wicri:noRegion>Jena</wicri:noRegion>
<wicri:noRegion>Jena</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Hube, Bernhard" sort="Hube, Bernhard" uniqKey="Hube B" first="Bernhard" last="Hube">Bernhard Hube</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Microbial Pathogenicity Mechanisms, Leibniz Institute for Natural Product Research and Infection Biology - Hans Knoell Institute, Jena, Germany.</nlm:affiliation>
<country xml:lang="fr">Allemagne</country>
<wicri:regionArea>Department of Microbial Pathogenicity Mechanisms, Leibniz Institute for Natural Product Research and Infection Biology - Hans Knoell Institute, Jena</wicri:regionArea>
<wicri:noRegion>Jena</wicri:noRegion>
<wicri:noRegion>Jena</wicri:noRegion>
<wicri:noRegion>Jena</wicri:noRegion>
</affiliation>
<affiliation wicri:level="1">
<nlm:affiliation>Center for Sepsis Control and Care, University Hospital Jena, Jena, Germany.</nlm:affiliation>
<country xml:lang="fr">Allemagne</country>
<wicri:regionArea>Center for Sepsis Control and Care, University Hospital Jena, Jena</wicri:regionArea>
<wicri:noRegion>Jena</wicri:noRegion>
<wicri:noRegion>Jena</wicri:noRegion>
<wicri:noRegion>Jena</wicri:noRegion>
</affiliation>
<affiliation wicri:level="1">
<nlm:affiliation>Institute of Microbiology, Friedrich Schiller University, Jena, Germany.</nlm:affiliation>
<country xml:lang="fr">Allemagne</country>
<wicri:regionArea>Institute of Microbiology, Friedrich Schiller University, Jena</wicri:regionArea>
<wicri:noRegion>Jena</wicri:noRegion>
<wicri:noRegion>Jena</wicri:noRegion>
<wicri:noRegion>Jena</wicri:noRegion>
</affiliation>
</author>
</analytic>
<series>
<title level="j">Cellular microbiology</title>
<idno type="eISSN">1462-5822</idno>
<imprint>
<date when="2020" type="published">2020</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass></textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Human and plant pathogenic fungi have a major impact on public health and agriculture. Although these fungi infect very diverse hosts and are often highly adapted to specific host niches, they share surprisingly similar mechanisms that mediate immune evasion, modulation of distinct host targets and exploitation of host nutrients, highlighting that successful strategies have evolved independently among diverse fungal pathogens. These attributes are facilitated by an arsenal of fungal factors. However, not a single molecule, but rather the combined effects of several factors enable these pathogens to establish infection. In this review, we discuss the principles of human and plant fungal pathogenicity mechanisms and discuss recent discoveries made in this field.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="Publisher" Owner="NLM">
<PMID Version="1">32978997</PMID>
<DateRevised>
<Year>2020</Year>
<Month>10</Month>
<Day>26</Day>
</DateRevised>
<Article PubModel="Print-Electronic">
<Journal>
<ISSN IssnType="Electronic">1462-5822</ISSN>
<JournalIssue CitedMedium="Internet">
<PubDate>
<Year>2020</Year>
<Month>Sep</Month>
<Day>26</Day>
</PubDate>
</JournalIssue>
<Title>Cellular microbiology</Title>
<ISOAbbreviation>Cell Microbiol</ISOAbbreviation>
</Journal>
<ArticleTitle>Fungal factors involved in host immune evasion, modulation and exploitation during infection.</ArticleTitle>
<Pagination>
<MedlinePgn>e13272</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1111/cmi.13272</ELocationID>
<Abstract>
<AbstractText>Human and plant pathogenic fungi have a major impact on public health and agriculture. Although these fungi infect very diverse hosts and are often highly adapted to specific host niches, they share surprisingly similar mechanisms that mediate immune evasion, modulation of distinct host targets and exploitation of host nutrients, highlighting that successful strategies have evolved independently among diverse fungal pathogens. These attributes are facilitated by an arsenal of fungal factors. However, not a single molecule, but rather the combined effects of several factors enable these pathogens to establish infection. In this review, we discuss the principles of human and plant fungal pathogenicity mechanisms and discuss recent discoveries made in this field.</AbstractText>
<CopyrightInformation>© 2020 The Authors. Cellular Microbiology published by John Wiley & Sons Ltd.</CopyrightInformation>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>König</LastName>
<ForeName>Annika</ForeName>
<Initials>A</Initials>
<AffiliationInfo>
<Affiliation>Department of Microbial Pathogenicity Mechanisms, Leibniz Institute for Natural Product Research and Infection Biology - Hans Knoell Institute, Jena, Germany.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Müller</LastName>
<ForeName>Rita</ForeName>
<Initials>R</Initials>
<AffiliationInfo>
<Affiliation>Department of Microbial Pathogenicity Mechanisms, Leibniz Institute for Natural Product Research and Infection Biology - Hans Knoell Institute, Jena, Germany.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Mogavero</LastName>
<ForeName>Selene</ForeName>
<Initials>S</Initials>
<AffiliationInfo>
<Affiliation>Department of Microbial Pathogenicity Mechanisms, Leibniz Institute for Natural Product Research and Infection Biology - Hans Knoell Institute, Jena, Germany.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Hube</LastName>
<ForeName>Bernhard</ForeName>
<Initials>B</Initials>
<Identifier Source="ORCID">https://orcid.org/0000-0002-6028-0425</Identifier>
<AffiliationInfo>
<Affiliation>Department of Microbial Pathogenicity Mechanisms, Leibniz Institute for Natural Product Research and Infection Biology - Hans Knoell Institute, Jena, Germany.</Affiliation>
</AffiliationInfo>
<AffiliationInfo>
<Affiliation>Center for Sepsis Control and Care, University Hospital Jena, Jena, Germany.</Affiliation>
</AffiliationInfo>
<AffiliationInfo>
<Affiliation>Institute of Microbiology, Friedrich Schiller University, Jena, Germany.</Affiliation>
</AffiliationInfo>
</Author>
</AuthorList>
<Language>eng</Language>
<GrantList CompleteYN="Y">
<Grant>
<GrantID>EXC 2051 - Project-ID 390713860</GrantID>
<Agency>Balance of the Microverse</Agency>
<Country></Country>
</Grant>
<Grant>
<GrantID>Hu 532/20-1</GrantID>
<Agency>Deutsche Forschungsgemeinschaft</Agency>
<Country></Country>
</Grant>
<Grant>
<GrantID>Project C1 CRC/Transregio 124 FungiNet</GrantID>
<Agency>Deutsche Forschungsgemeinschaft</Agency>
<Country></Country>
</Grant>
<Grant>
<GrantID>812969 (FunHoMic)</GrantID>
<Agency>H2020 Marie Skłodowska-Curie Actions</Agency>
<Country></Country>
</Grant>
<Grant>
<Agency>Leibniz Research Alliance Infections'21</Agency>
<Country></Country>
</Grant>
<Grant>
<GrantID>InfectoOptics SAS-2015-HKI-LWC</GrantID>
<Agency>Leibniz-Gemeinschaft</Agency>
<Country></Country>
</Grant>
<Grant>
<GrantID>215599/Z/19/Z</GrantID>
<Acronym>WT_</Acronym>
<Agency>Wellcome Trust</Agency>
<Country>United Kingdom</Country>
</Grant>
</GrantList>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D016454">Review</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2020</Year>
<Month>09</Month>
<Day>26</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>England</Country>
<MedlineTA>Cell Microbiol</MedlineTA>
<NlmUniqueID>100883691</NlmUniqueID>
<ISSNLinking>1462-5814</ISSNLinking>
</MedlineJournalInfo>
<CitationSubset>IM</CitationSubset>
<KeywordList Owner="NOTNLM">
<Keyword MajorTopicYN="N">effector proteins</Keyword>
<Keyword MajorTopicYN="N">fungal virulence factors</Keyword>
<Keyword MajorTopicYN="N">host exploitation</Keyword>
<Keyword MajorTopicYN="N">host modulation</Keyword>
<Keyword MajorTopicYN="N">human pathogenic fungi</Keyword>
<Keyword MajorTopicYN="N">immune evasion</Keyword>
<Keyword MajorTopicYN="N">plant pathogenic fungi</Keyword>
</KeywordList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2020</Year>
<Month>05</Month>
<Day>20</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="revised">
<Year>2020</Year>
<Month>07</Month>
<Day>20</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2020</Year>
<Month>07</Month>
<Day>26</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2020</Year>
<Month>9</Month>
<Day>27</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2020</Year>
<Month>9</Month>
<Day>27</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2020</Year>
<Month>9</Month>
<Day>26</Day>
<Hour>8</Hour>
<Minute>33</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>aheadofprint</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">32978997</ArticleId>
<ArticleId IdType="doi">10.1111/cmi.13272</ArticleId>
</ArticleIdList>
<ReferenceList>
<Title>REFERENCES</Title>
<Reference>
<Citation>Akoumianaki, T., Kyrmizi, I., Valsecchi, I., Gresnigt, M. S., Samonis, G., Drakos, E., … Chamilos, G. (2016). Aspergillus Cell Wall melanin blocks LC3-associated phagocytosis to promote pathogenicity. Cell Host & Microbe, 19(1), 79-90. https://doi.org/10.1016/j.chom.2015.12.002</Citation>
</Reference>
<Reference>
<Citation>Albert, M. L. (2004). Death-defying immunity: Do apoptotic cells influence antigen processing and presentation? Nature Reviews. Immunology, 4(3), 223-231. https://doi.org/10.1038/nri11308</Citation>
</Reference>
<Reference>
<Citation>Almeida, R. S., Brunke, S., Albrecht, A., Thewes, S., Laue, M., Edwards, J. E., … Hube, B. (2008). The hyphal-associated adhesin and invasin Als3 of Candida albicans mediates iron acquisition from host ferritin. PLoS Pathogens, 4(11), e1000217. https://doi.org/10.1371/journal.ppat.1000217</Citation>
</Reference>
<Reference>
<Citation>Almeida, R. S., Wilson, D., & Hube, B. (2009). Candida albicans iron acquisition within the host. FEMS Yeast Research, 9(7), 1000-1012. https://doi.org/10.1111/j.1567-1364.2009.00570.x</Citation>
</Reference>
<Reference>
<Citation>Amich, J., Vicentefranqueira, R., Leal, F., & Calera, J. A. (2010). Aspergillus fumigatus survival in alkaline and extreme zinc-limiting environments relies on the induction of a zinc homeostasis system encoded by the zrfC and aspf2 genes. Eukaryotic Cell, 9(3), 424-437. https://doi.org/10.1128/EC.00348-09</Citation>
</Reference>
<Reference>
<Citation>Asai, T., Stone, J. M., Heard, J. E., Kovtun, Y., Yorgey, P., Sheen, J., & Ausubel, F. M. (2000). Fumonisin B1-induced cell death in Arabidopsis protoplasts requires jasmonate-, ethylene-, and salicylate-dependent signaling pathways. Plant Cell, 12(10), 1823-1836. https://doi.org/10.1105/tpc.12.10.1823</Citation>
</Reference>
<Reference>
<Citation>Bain, J. M., Lewis, L. E., Okai, B., Quinn, J., Gow, N. A., & Erwig, L. P. (2012). Non-lytic expulsion/exocytosis of Candida albicans from macrophages. Fungal Genetics and Biology, 49(9), 677-678. https://doi.org/10.1016/j.fgb.2012.01.008</Citation>
</Reference>
<Reference>
<Citation>Blackwell, M. (2011). The fungi: 1, 2, 3 … 5.1 million species? American Journal of Botany, 98(3), 426-438. https://doi.org/10.3732/ajb.1000298</Citation>
</Reference>
<Reference>
<Citation>Bos, J. I., Armstrong, M. R., Gilroy, E. M., Boevink, P. C., Hein, I., Taylor, R. M., … Birch, P. R. (2010). Phytophthora infestans effector AVR3a is essential for virulence and manipulates plant immunity by stabilizing host E3 ligase CMPG1. Proceedings of the National Academy of Sciences of the United States of America, 107(21), 9909-9914. https://doi.org/10.1073/pnas.0914408107</Citation>
</Reference>
<Reference>
<Citation>Brand, A. (2012). Hyphal growth in human fungal pathogens and its role in virulence. nternational Journal of Microbiology, 2012, 517529. https://doi.org/10.1155/2012/517529</Citation>
</Reference>
<Reference>
<Citation>Brechting, P. J., & Rappleye, C. A. (2019). Histoplasma responses to nutritional immunity imposed by macrophage activation. Journal of Fungi, 5(2), 1-11. https://doi.org/10.3390/jof5020045</Citation>
</Reference>
<Reference>
<Citation>Brown, G. D., Denning, D. W., & Levitz, S. M. (2012). Tackling human fungal infections. Science, 336(6082), 647. https://doi.org/10.1126/science.1222236</Citation>
</Reference>
<Reference>
<Citation>Budde, A. D., & Leong, S. A. (1989). Characterization of siderophores from Ustilago maydis. Mycopathologia, 108(2), 125-133. https://doi.org/10.1007/bf00436063</Citation>
</Reference>
<Reference>
<Citation>Carrion Sde, J., Leal, S. M., Jr., Ghannoum, M. A., Aimanianda, V., Latge, J. P., & Pearlman, E. (2013). The RodA hydrophobin on Aspergillus fumigatus spores masks dectin-1- and dectin-2-dependent responses and enhances fungal survival in vivo. Journal of Immunology, 191(5), 2581-2588. https://doi.org/10.4049/jimmunol.1300748</Citation>
</Reference>
<Reference>
<Citation>Citiulo, F., Jacobsen, I. D., Miramon, P., Schild, L., Brunke, S., Zipfel, P., … Wilson, D. (2012). Candida albicans scavenges host zinc via Pra1 during endothelial invasion. PLoS Pathogens, 8(6), e1002777. https://doi.org/10.1371/journal.ppat.1002777</Citation>
</Reference>
<Reference>
<Citation>Cox, G. M., Harrison, T. S., McDade, H. C., Taborda, C. P., Heinrich, G., Casadevall, A., & Perfect, J. R. (2003). Superoxide dismutase influences the virulence of Cryptococcus neoformans by affecting growth within macrophages. Infection and Immunity, 71(1), 173-180. https://doi.org/10.1128/iai.71.1.173-180.2003</Citation>
</Reference>
<Reference>
<Citation>Curtis, M. J., & Wolpert, T. J. (2004). The victorin-induced mitochondrial permeability transition precedes cell shrinkage and biochemical markers of cell death, and shrinkage occurs without loss of membrane integrity. The Plant Journal, 38(2), 244-259. https://doi.org/10.1111/j.1365-313X.2004.02040.x</Citation>
</Reference>
<Reference>
<Citation>Dade, J., DuBois, J. C., Pasula, R., Donnell, A. M., Caruso, J. A., Smulian, A. G., & Deepe, G. S., Jr. (2016). HcZrt2, a zinc responsive gene, is indispensable for the survival of Histoplasma capsulatum in vivo. Medical Mycology, 54(8), 865-875. https://doi.org/10.1093/mmy/myw045</Citation>
</Reference>
<Reference>
<Citation>Dasari, P., Shopova, I. A., Stroe, M., Wartenberg, D., Martin-Dahse, H., Beyersdorf, N., … Zipfel, P. F. (2018). Aspf2 from Aspergillus fumigatus recruits human immune regulators for immune evasion and cell damage. Frontiers in Immunology, 9, 1635. https://doi.org/10.3389/fimmu.2018.01635</Citation>
</Reference>
<Reference>
<Citation>De Leon-Rodriguez, C. M., Fu, M. S., Corbali, M. O., Cordero, R. J. B., & Casadevall, A. (2018). The capsule of Cryptococcus neoformans modulates Phagosomal pH through its Acid-Base properties. mSphere, 3(5), e00437-18. https://doi.org/10.1128/mSphere.00437-18</Citation>
</Reference>
<Reference>
<Citation>Ding, C., Festa, R. A., Chen, Y. L., Espart, A., Palacios, O., Espin, J., … Thiele, D. J. (2013). Cryptococcus neoformans copper detoxification machinery is critical for fungal virulence. Cell Host & Microbe, 13(3), 265-276. https://doi.org/10.1016/j.chom.2013.02.002</Citation>
</Reference>
<Reference>
<Citation>Divon, H. H., Rothan-Denoyes, B., Davydov, O., A, D. I. P., & Fluhr, R. (2005). Nitrogen-responsive genes are differentially regulated in planta during Fusarium oxysporum f. sp. lycopersici infection. Molecular Plant Pathology, 6(4), 459-470. https://doi.org/10.1111/j.1364-3703.2005.00297.x</Citation>
</Reference>
<Reference>
<Citation>Djamei, A., Schipper, K., Rabe, F., Ghosh, A., Vincon, V., Kahnt, J., … Kahmann, R. (2011). Metabolic priming by a secreted fungal effector. Nature, 478(7369), 395-398. https://doi.org/10.1038/nature10454</Citation>
</Reference>
<Reference>
<Citation>Doehlemann, G., Okmen, B., Zhu, W., & Sharon, A. (2017). Plant pathogenic fungi. Microbiology Spectrum, 5(1), 1-23. https://doi.org/10.1128/microbiolspec.FUNK-0023-2016</Citation>
</Reference>
<Reference>
<Citation>Dou, D., Kale, S. D., Wang, X., Chen, Y., Wang, Q., Wang, X., … Tyler, B. M. (2008). Conserved C-terminal motifs required for avirulence and suppression of cell death by Phytophthora sojae effector Avr1b. Plant Cell, 20(4), 1118-1133. https://doi.org/10.1105/tpc.107.057067</Citation>
</Reference>
<Reference>
<Citation>Eisendle, M., Oberegger, H., Zadra, I., & Haas, H. (2003). The siderophore system is essential for viability of Aspergillus nidulans: Functional analysis of two genes encoding l-ornithine N 5-monooxygenase (sidA) and a non-ribosomal peptide synthetase (sidC). Molecular Microbiology, 49(2), 359-375. https://doi.org/10.1046/j.1365-2958.2003.03586.x</Citation>
</Reference>
<Reference>
<Citation>Fourie, R., Kuloyo, O. O., Mochochoko, B. M., Albertyn, J., & Pohl, C. H. (2018). Iron at the Centre of Candida albicans interactions. Frontiers in Cellular and Infection Microbiology, 8, 185. https://doi.org/10.3389/fcimb.2018.00185</Citation>
</Reference>
<Reference>
<Citation>Fradin, C., De Groot, P., MacCallum, D., Schaller, M., Klis, F., Odds, F. C., & Hube, B. (2005). Granulocytes govern the transcriptional response, morphology and proliferation of Candida albicans in human blood. Molecular Microbiology, 56(2), 397-415. https://doi.org/10.1111/j.1365-2958.2005.04557.x</Citation>
</Reference>
<Reference>
<Citation>Frohner, I. E., Bourgeois, C., Yatsyk, K., Majer, O., & Kuchler, K. (2009). Candida albicans cell surface superoxide dismutases degrade host-derived reactive oxygen species to escape innate immune surveillance. Molecular Microbiology, 71(1), 240-252. https://doi.org/10.1111/j.1365-2958.2008.06528.x</Citation>
</Reference>
<Reference>
<Citation>Fu, M. S., Coelho, C., De Leon-Rodriguez, C. M., Rossi, D. C. P., Camacho, E., Jung, E. H., … Casadevall, A. (2018). Cryptococcus neoformans urease affects the outcome of intracellular pathogenesis by modulating phagolysosomal pH. PLoS Pathogens, 14(6), e1007144. https://doi.org/10.1371/journal.ppat.1007144</Citation>
</Reference>
<Reference>
<Citation>Garcia-Rodas, R., Gonzalez-Camacho, F., Rodriguez-Tudela, J. L., Cuenca-Estrella, M., & Zaragoza, O. (2011). The interaction between Candida krusei and murine macrophages results in multiple outcomes, including intracellular survival and escape from killing. Infection and Immunity, 79(6), 2136-2144. https://doi.org/10.1128/iai.00044-11</Citation>
</Reference>
<Reference>
<Citation>Garfoot, A. L., Shen, Q., Wuthrich, M., Klein, B. S., & Rappleye, C. A. (2016). The Eng1 beta-Glucanase enhances Histoplasma virulence by reducing beta-glucan exposure. MBio, 7(2), e01388-01315. https://doi.org/10.1128/mBio.01388-15</Citation>
</Reference>
<Reference>
<Citation>Gerwien, F., Skrahina, V., Kasper, L., Hube, B., & Brunke, S. (2018). Metals in fungal virulence. FEMS Microbiology Reviews, 42(1), 1-21. https://doi.org/10.1093/femsre/fux050</Citation>
</Reference>
<Reference>
<Citation>Gow, N. A. R., Latge, J. P., & Munro, C. A. (2017). The fungal Cell Wall: Structure, biosynthesis, and function. Microbiology Spectrum, 5(3), 1-25. https://doi.org/10.1128/microbiolspec.FUNK-0035-2016</Citation>
</Reference>
<Reference>
<Citation>Guimaraes, R. L., & Stotz, H. U. (2004). Oxalate production by Sclerotinia sclerotiorum deregulates guard cells during infection. Plant Physiology, 136(3), 3703-3711. https://doi.org/10.1104/pp.104.049650</Citation>
</Reference>
<Reference>
<Citation>Haas, H., Schoeser, M., Lesuisse, E., Ernst, J. F., Parson, W., Abt, B., … Oberegger, H. (2003). Characterization of the Aspergillus nidulans transporters for the siderophores enterobactin and triacetylfusarinine C. The Biochemical Journal, 371(Pt 2), 505-513. https://doi.org/10.1042/bj20021685</Citation>
</Reference>
<Reference>
<Citation>Hemetsberger, C., Herrberger, C., Zechmann, B., Hillmer, M., & Doehlemann, G. (2012). The Ustilago maydis effector Pep1 suppresses plant immunity by inhibition of host peroxidase activity. PLoS Pathogens, 8(5), e1002684. https://doi.org/10.1371/journal.ppat.1002684</Citation>
</Reference>
<Reference>
<Citation>Hissen, A. H., Chow, J. M., Pinto, L. J., & Moore, M. M. (2004). Survival of Aspergillus fumigatus in serum involves removal of iron from transferrin: The role of siderophores. Infection and Immunity, 72(3), 1402-1408. https://doi.org/10.1128/iai.72.3.1402-1408.2004</Citation>
</Reference>
<Reference>
<Citation>Horbach, R., Navarro-Quesada, A. R., Knogge, W., & Deising, H. B. (2011). When and how to kill a plant cell: Infection strategies of plant pathogenic fungi. Journal of Plant Physiology, 168(1), 51-62. https://doi.org/10.1016/j.jplph.2010.06.014</Citation>
</Reference>
<Reference>
<Citation>Howard, D. H., Rafie, R., Tiwari, A., & Faull, K. F. (2000). Hydroxamate siderophores of Histoplasma capsulatum. Infection and Immunity, 68(4), 2338-2343. https://doi.org/10.1128/iai.68.4.2338-2343.2000</Citation>
</Reference>
<Reference>
<Citation>Ikeh, M. A., Kastora, S. L., Day, A. M., Herrero-de-Dios, C. M., Tarrant, E., Waldron, K. J., … Quinn, J. (2016). Pho4 mediates phosphate acquisition in Candida albicans and is vital for stress resistance and metal homeostasis. Molecular Biology of the Cell, 27(17), 2784-2801. https://doi.org/10.1091/mbc.E16-05-0266</Citation>
</Reference>
<Reference>
<Citation>Isaac, D. T., Berkes, C. A., English, B. C., Murray, D. H., Lee, Y. N., Coady, A., & Sil, A. (2015). Macrophage cell death and transcriptional response are actively triggered by the fungal virulence factor Cbp1 during H. capsulatum infection. Molecular Microbiology, 98(5), 910-929. https://doi.org/10.1111/mmi.13168</Citation>
</Reference>
<Reference>
<Citation>Johnston, S. A., & May, R. C. (2010). The human fungal pathogen Cryptococcus neoformans escapes macrophages by a phagosome emptying mechanism that is inhibited by Arp2/3 complex-mediated Actin polymerisation. PLoS Pathogens, 6(8), e1001041. https://doi.org/10.1371/journal.ppat.1001041</Citation>
</Reference>
<Reference>
<Citation>Joly, S., Ma, N., Sadler, J. J., Soll, D. R., Cassel, S. L., & Sutterwala, F. S. (2009). Cutting edge: Candida albicans hyphae formation triggers activation of the Nlrp3 inflammasome. Journal of Immunology, 183(6), 3578-3581. https://doi.org/10.4049/jimmunol.0901323</Citation>
</Reference>
<Reference>
<Citation>Kasper, L., Konig, A., Koenig, P. A., Gresnigt, M. S., Westman, J., Drummond, R. A., … Hube, B. (2018). The fungal peptide toxin Candidalysin activates the NLRP3 inflammasome and causes cytolysis in mononuclear phagocytes. Nature Communications, 9(1), 4260. https://doi.org/10.1038/s41467-018-06607-1</Citation>
</Reference>
<Reference>
<Citation>Kelley, B. S., Lee, S. J., Damasceno, C. M., Chakravarthy, S., Kim, B. D., Martin, G. B., & Rose, J. K. (2010). A secreted effector protein (SNE1) from Phytophthora infestans is a broadly acting suppressor of programmed cell death. The Plant Journal, 62(3), 357-366. https://doi.org/10.1111/j.1365-313X.2010.04160.x</Citation>
</Reference>
<Reference>
<Citation>Kemen, E., Kemen, A., Ehlers, A., Voegele, R., & Mendgen, K. (2013). A novel structural effector from rust fungi is capable of fibril formation. The Plant Journal, 75(5), 767-780. https://doi.org/10.1111/tpj.12237</Citation>
</Reference>
<Reference>
<Citation>Kloppholz, S., Kuhn, H., & Requena, N. (2011). A secreted fungal effector of Glomus intraradices promotes symbiotic biotrophy. Current Biology, 21(14), 1204-1209. https://doi.org/10.1016/j.cub.2011.06.044</Citation>
</Reference>
<Reference>
<Citation>Kohler, J. R., Hube, B., Puccia, R., Casadevall, A., & Perfect, J. R. (2017). Fungi that infect humans. Microbiology Spectrum, 5(3), 1-29. https://doi.org/10.1128/microbiolspec.FUNK-0014-2016</Citation>
</Reference>
<Reference>
<Citation>König, A., Hube, B., & Kasper, L. (2020). The dual function of the fungal toxin Candidalysin during Candida albicans-macrophage interaction and virulence. Toxins (Basel), 12(8), 1-14. https://doi.org/10.3390/toxins12080469</Citation>
</Reference>
<Reference>
<Citation>Lev, S., Kaufman-Francis, K., Desmarini, D., Juillard, P. G., Li, C., Stifter, S. A., … Djordjevic, J. T. (2017). Pho4 is essential for dissemination of Cryptococcus neoformans to the host brain by promoting phosphate uptake and growth at alkaline pH. mSphere, 2(1), e00381-16. https://doi.org/10.1128/mSphere.00381-16</Citation>
</Reference>
<Reference>
<Citation>Lingner, U., Munch, S., Deising, H. B., & Sauer, N. (2011). Hexose transporters of a hemibiotrophic plant pathogen: Functional variations and regulatory differences at different stages of infection. The Journal of Biological Chemistry, 286(23), 20913-20922. https://doi.org/10.1074/jbc.M110.213678</Citation>
</Reference>
<Reference>
<Citation>Liu, T. B., Wang, Y., Baker, G. M., Fahmy, H., Jiang, L., & Xue, C. (2013). The glucose sensor-like protein Hxs1 is a high-affinity glucose transporter and required for virulence in Cryptococcus neoformans. PLoS One, 8(5), e64239. https://doi.org/10.1371/journal.pone.0064239</Citation>
</Reference>
<Reference>
<Citation>Liu, Y., & Filler, S. G. (2011). Candida albicans Als3, a multifunctional adhesin and invasin. Eukaryotic Cell, 10(2), 168-173. https://doi.org/10.1128/EC.00279-10</Citation>
</Reference>
<Reference>
<Citation>Lo Presti, L., Lanver, D., Schweizer, G., Tanaka, S., Liang, L., Tollot, M., … Kahmann, R. (2015). Fungal effectors and plant susceptibility. Annual Review of Plant Biology, 66, 513-545. https://doi.org/10.1146/annurev-arplant-043014-114623</Citation>
</Reference>
<Reference>
<Citation>Luberto, C., Martinez-Marino, B., Taraskiewicz, D., Bolanos, B., Chitano, P., Toffaletti, D. L., … Del Poeta, M. (2003). Identification of App1 as a regulator of phagocytosis and virulence of Cryptococcus neoformans. The Journal of Clinical Investigation, 112(7), 1080-1094. https://doi.org/10.1172/JCI18309</Citation>
</Reference>
<Reference>
<Citation>Luo, S., Hipler, U. C., Munzberg, C., Skerka, C., & Zipfel, P. F. (2015). Sequence variations and protein expression levels of the two immune evasion proteins Gpm1 and Pra1 influence virulence of clinical Candida albicans isolates. PLoS One, 10(2), e0113192. https://doi.org/10.1371/journal.pone.0113192</Citation>
</Reference>
<Reference>
<Citation>Lyu, X., Shen, C., Fu, Y., Xie, J., Jiang, D., Li, G., & Cheng, J. (2016). A small secreted virulence-related protein is essential for the necrotrophic interactions of Sclerotinia sclerotiorum with its host plants. PLoS Pathogens, 12(2), e1005435. https://doi.org/10.1371/journal.ppat.1005435</Citation>
</Reference>
<Reference>
<Citation>Ma, H., Croudace, J. E., Lammas, D. A., & May, R. C. (2006). Expulsion of live pathogenic yeast by macrophages. Current Biology, 16(21), 2156-2160. https://doi.org/10.1016/j.cub.2006.09.032</Citation>
</Reference>
<Reference>
<Citation>Martho, K. F., de Melo, A. T., Takahashi, J. P., Guerra, J. M., Santos, D. C., Purisco, S. U., … Pascon, R. C. (2016). Amino acid permeases and virulence in Cryptococcus neoformans. PLoS One, 11(10), e0163919. https://doi.org/10.1371/journal.pone.0163919</Citation>
</Reference>
<Reference>
<Citation>Martin, R., Albrecht-Eckardt, D., Brunke, S., Hube, B., Hunniger, K., & Kurzai, O. (2013). A core filamentation response network in Candida albicans is restricted to eight genes. PLoS One, 8(3), e58613. https://doi.org/10.1371/journal.pone.0058613</Citation>
</Reference>
<Reference>
<Citation>Martinez, P., & Ljungdahl, P. O. (2004). An ER packaging chaperone determines the amino acid uptake capacity and virulence of Candida albicans. Molecular Microbiology, 51(2), 371-384. https://doi.org/10.1046/j.1365-2958.2003.03845.x</Citation>
</Reference>
<Reference>
<Citation>Marvin, M. E., Williams, P. H., & Cashmore, A. M. (2003). The Candida albicans CTR1 gene encodes a functional copper transporter. Microbiology, 149(Pt 6), 1461-1474. https://doi.org/10.1099/mic.0.26172-0</Citation>
</Reference>
<Reference>
<Citation>McKenzie, C. G., Koser, U., Lewis, L. E., Bain, J. M., Mora-Montes, H. M., Barker, R. N., … Erwig, L. P. (2010). Contribution of Candida albicans cell wall components to recognition by and escape from murine macrophages. Infection and Immunity, 78(4), 1650-1658. https://doi.org/10.1128/IAI.00001-10</Citation>
</Reference>
<Reference>
<Citation>Mendgen, K., Hahn, M., & Deising, H. (1996). Morphogenesis and mechanisms of penetration by plant pathogenic fungi. Annual Review of Phytopathology, 34, 367-386. https://doi.org/10.1146/annurev.phyto.34.1.367</Citation>
</Reference>
<Reference>
<Citation>Miramon, P., Dunker, C., Windecker, H., Bohovych, I. M., Brown, A. J., Kurzai, O., & Hube, B. (2012). Cellular responses of Candida albicans to phagocytosis and the extracellular activities of neutrophils are critical to counteract carbohydrate starvation, oxidative and nitrosative stress. PLoS One, 7(12), e52850. https://doi.org/10.1371/journal.pone.0052850</Citation>
</Reference>
<Reference>
<Citation>Miramon, P., Pountain, A. W., van Hoof, A., & Lorenz, M. C. (2020). The paralogous transcription factors Stp1 and Stp2 of Candida albicans have distinct functions in nutrient acquisition and host interaction. Infection and Immunity, 88(5), e00763-19. https://doi.org/10.1128/IAI.00763-19</Citation>
</Reference>
<Reference>
<Citation>Mor, H., Pasternak, M., & Barash, I. (1988). Uptake of iron by Geotrichum candidum, a non-siderophore producer. Biology of Metals, 1, 99-105.</Citation>
</Reference>
<Reference>
<Citation>Moyes, D. L., Wilson, D., Richardson, J. P., Mogavero, S., Tang, S. X., Wernecke, J., … Naglik, J. R. (2016). Candidalysin is a fungal peptide toxin critical for mucosal infection. Nature, 532(7597), 64-68. https://doi.org/10.1038/nature17625</Citation>
</Reference>
<Reference>
<Citation>Mueller, A. N., Ziemann, S., Treitschke, S., Assmann, D., & Doehlemann, G. (2013). Compatibility in the Ustilago maydis-maize interaction requires inhibition of host cysteine proteases by the fungal effector Pit2. PLoS Pathogens, 9(2), e1003177-. https://doi.org/10.1371/journal.ppat.1003177</Citation>
</Reference>
<Reference>
<Citation>Naglik, J. R., Gaffen, S. L., & Hube, B. (2019). Candidalysin: Discovery and function in Candida albicans infections. Current Opinion in Microbiology, 52, 100-109. https://doi.org/10.1016/j.mib.2019.06.002</Citation>
</Reference>
<Reference>
<Citation>Nicola, A. M., Albuquerque, P., Martinez, L. R., Dal-Rosso, R. A., Saylor, C., De Jesus, M., … Casadevall, A. (2012). Macrophage autophagy in immunity to Cryptococcus neoformans and Candida albicans. Infection and Immunity, 80(9), 3065-3076. https://doi.org/10.1128/iai.00358-12</Citation>
</Reference>
<Reference>
<Citation>O'Meara, T. R., & Alspaugh, J. A. (2012). The Cryptococcus neoformans capsule: A sword and a shield. Clinical Microbiology Reviews, 25(3), 387-408. https://doi.org/10.1128/CMR.00001-12</Citation>
</Reference>
<Reference>
<Citation>O'Meara, T. R., Duah, K., Guo, C. X., Maxson, M. E., Gaudet, R. G., Koselny, K., … Cowen, L. E. (2018). High-throughput screening identifies genes required for Candida albicans induction of macrophage Pyroptosis. MBio, 9(4), e01581-18. https://doi.org/10.1128/mBio.01581-18</Citation>
</Reference>
<Reference>
<Citation>Okmen, B., Kemmerich, B., Hilbig, D., Wemhoner, R., Aschenbroich, J., Perrar, A., … Doehlemann, G. (2018). Dual function of a secreted fungalysin metalloprotease in Ustilago maydis. The New Phytologist, 220(1), 249-261. https://doi.org/10.1111/nph.15265</Citation>
</Reference>
<Reference>
<Citation>Oliveira-Garcia, E., & Deising, H. B. (2013). Infection structure-specific expression of beta-1,3-glucan synthase is essential for pathogenicity of Colletotrichum graminicola and evasion of beta-glucan-triggered immunity in maize. Plant Cell, 25(6), 2356-2378. https://doi.org/10.1105/tpc.112.103499</Citation>
</Reference>
<Reference>
<Citation>Park, C. H., Chen, S., Shirsekar, G., Zhou, B., Khang, C. H., Songkumarn, P., … Wang, G. L. (2012). The Magnaporthe oryzae effector AvrPiz-t targets the RING E3 ubiquitin ligase APIP6 to suppress pathogen-associated molecular pattern-triggered immunity in rice. Plant Cell, 24(11), 4748-4762. https://doi.org/10.1105/tpc.112.105429</Citation>
</Reference>
<Reference>
<Citation>Pietrella, D., Pandey, N., Gabrielli, E., Pericolini, E., Perito, S., Kasper, L., … Vecchiarelli, A. (2013). Secreted aspartic proteases of Candida albicans activate the NLRP3 inflammasome. European Journal of Immunology, 43(3), 679-692. https://doi.org/10.1002/eji.201242691</Citation>
</Reference>
<Reference>
<Citation>Rabe, F., Ajami-Rashidi, Z., Doehlemann, G., Kahmann, R., & Djamei, A. (2013). Degradation of the plant defence hormone salicylic acid by the biotrophic fungus Ustilago maydis. Molecular Microbiology, 89(1), 179-188. https://doi.org/10.1111/mmi.12269</Citation>
</Reference>
<Reference>
<Citation>Rappleye, C. A., Eissenberg, L. G., & Goldman, W. E. (2007). Histoplasma capsulatum alpha-(1,3)-glucan blocks innate immune recognition by the beta-glucan receptor. Proceedings of the National Academy of Sciences of the United States of America, 104(4), 1366-1370. https://doi.org/10.1073/pnas.0609848104</Citation>
</Reference>
<Reference>
<Citation>Roetzer, A., Klopf, E., Gratz, N., Marcet-Houben, M., Hiller, E., Rupp, S., … Schuller, C. (2011). Regulation of Candida glabrata oxidative stress resistance is adapted to host environment. FEBS Letters, 585(2), 319-327. https://doi.org/10.1016/j.febslet.2010.12.006</Citation>
</Reference>
<Reference>
<Citation>Santiago-Tirado, F. H., Onken, M. D., Cooper, J. A., Klein, R. S., & Doering, T. L. (2017). Trojan horse transit contributes to blood-brain barrier crossing of a eukaryotic pathogen. MBio, 8(1), e02183-16. https://doi.org/10.1128/mBio.02183-16</Citation>
</Reference>
<Reference>
<Citation>Seider, K., Brunke, S., Schild, L., Jablonowski, N., Wilson, D., Majer, O., … Hube, B. (2011). The facultative intracellular pathogen Candida glabrata subverts macrophage cytokine production and phagolysosome maturation. Journal of Immunology, 187(6), 3072-3086. https://doi.org/10.4049/jimmunol.1003730</Citation>
</Reference>
<Reference>
<Citation>Shen, Q., Beucler, M. J., Ray, S. C., & Rappleye, C. A. (2018). Macrophage activation by IFN-gamma triggers restriction of phagosomal copper from intracellular pathogens. PLoS Pathogens, 14(11), e1007444. https://doi.org/10.1371/journal.ppat.1007444</Citation>
</Reference>
<Reference>
<Citation>Shi, X., Long, Y., He, F., Zhang, C., Wang, R., Zhang, T., … Ning, Y. (2018). The fungal pathogen Magnaporthe oryzae suppresses innate immunity by modulating a host potassium channel. PLoS Pathogens, 14(1), e1006878. https://doi.org/10.1371/journal.ppat.1006878</Citation>
</Reference>
<Reference>
<Citation>Singh, A., Panting, R. J., Varma, A., Saijo, T., Waldron, K. J., Jong, A., … Kwon-Chung, K. J. (2013). Factors required for activation of urease as a virulence determinant in Cryptococcus neoformans. MBio, 4(3), e00220-00213. https://doi.org/10.1128/mBio.00220-13</Citation>
</Reference>
<Reference>
<Citation>Sprenger, M., Hartung, T. S., Allert, S., Wisgott, S., Niemiec, M. J., Graf, K., … Hube, B. (2020). Fungal biotin homeostasis is essential for immune evasion after macrophage phagocytosis and virulence. Cellular Microbiology, 22, e13197. https://doi.org/10.1111/cmi.13197</Citation>
</Reference>
<Reference>
<Citation>Stergiopoulos, I., & de Wit, P. J. (2009). Fungal effector proteins. Annual Review of Phytopathology, 47, 233-263. https://doi.org/10.1146/annurev.phyto.112408.132637</Citation>
</Reference>
<Reference>
<Citation>Stergiopoulos, I., van den Burg, H. A., Okmen, B., Beenen, H. G., van Liere, S., Kema, G. H., & de Wit, P. J. (2010). Tomato Cf resistance proteins mediate recognition of cognate homologous effectors from fungi pathogenic on dicots and monocots. Proceedings of the National Academy of Sciences of the United States of America, 107(16), 7610-7615. https://doi.org/10.1073/pnas.1002910107</Citation>
</Reference>
<Reference>
<Citation>Struck, C., Ernst, M., & Hahn, M. (2002). Characterization of a developmentally regulated amino acid transporter (AAT1p) of the rust fungus Uromyces fabae. Molecular Plant Pathology, 3(1), 23-30. https://doi.org/10.1046/j.1464-6722.2001.00091.x</Citation>
</Reference>
<Reference>
<Citation>Struck, C., Mueller, E., Martin, H., & Lohaus, G. (2004). The Uromyces fabae UfAAT3 gene encodes a general amino acid permease that prefers uptake of in planta scarce amino acids. Molecular Plant Pathology, 5(3), 183-189. https://doi.org/10.1111/j.1364-3703.2004.00222.x</Citation>
</Reference>
<Reference>
<Citation>Tanaka, S., Brefort, T., Neidig, N., Djamei, A., Kahnt, J., Vermerris, W., … Kahmann, R. (2014). A secreted Ustilago maydis effector promotes virulence by targeting anthocyanin biosynthesis in maize. eLife, 3, e01355. https://doi.org/10.7554/eLife.01355</Citation>
</Reference>
<Reference>
<Citation>Thywissen, A., Heinekamp, T., Dahse, H. M., Schmaler-Ripcke, J., Nietzsche, S., Zipfel, P. F., & Brakhage, A. A. (2011). Conidial Dihydroxynaphthalene melanin of the human pathogenic fungus Aspergillus fumigatus interferes with the host endocytosis pathway. Frontiers in Microbiology, 2, 1-12. https://doi.org/10.3389/fmicb.2011.00096</Citation>
</Reference>
<Reference>
<Citation>Toth, R., Toth, A., Papp, C., Jankovics, F., Vagvolgyi, C., Alonso, M. F., … Gacser, A. (2014). Kinetic studies of Candida parapsilosis phagocytosis by macrophages and detection of intracellular survival mechanisms. Frontiers in Microbiology, 5, 633. https://doi.org/10.3389/fmicb.2014.00633</Citation>
</Reference>
<Reference>
<Citation>Tsunawaki, S., Yoshida, L. S., Nishida, S., Kobayashi, T., & Shimoyama, T. (2004). Fungal metabolite gliotoxin inhibits assembly of the human respiratory burst NADPH oxidase. Infection and Immunity, 72(6), 3373-3382. https://doi.org/10.1128/iai.72.6.3373-3382.2004</Citation>
</Reference>
<Reference>
<Citation>Uwamahoro, N., Verma-Gaur, J., Shen, H. H., Qu, Y., Lewis, R., Lu, J., … Traven, A. (2014). The pathogen Candida albicans hijacks pyroptosis for escape from macrophages. MBio, 5(2), e00003-00014. https://doi.org/10.1128/mBio.00003-14</Citation>
</Reference>
<Reference>
<Citation>van der Linde, K., Hemetsberger, C., Kastner, C., Kaschani, F., van der Hoorn, R. A., Kumlehn, J., & Doehlemann, G. (2012). A maize cystatin suppresses host immunity by inhibiting apoplastic cysteine proteases. Plant Cell, 24(3), 1285-1300. https://doi.org/10.1105/tpc.111.093732</Citation>
</Reference>
<Reference>
<Citation>van Esse, H. P., Van't Klooster, J. W., Bolton, M. D., Yadeta, K. A., van Baarlen, P., Boeren, S., … Thomma, B. P. (2008). The Cladosporium fulvum virulence protein Avr2 inhibits host proteases required for basal defense. Plant Cell, 20(7), 1948-1963. https://doi.org/10.1105/tpc.108.059394</Citation>
</Reference>
<Reference>
<Citation>Voegele, R. T., Struck, C., Hahn, M., & Mendgen, K. (2001). The role of haustoria in sugar supply during infection of broad bean by the rust fungus Uromyces fabae. Proceedings of the National Academy of Sciences of the United States of America, 98(14), 8133-8138. https://doi.org/10.1073/pnas.131186798</Citation>
</Reference>
<Reference>
<Citation>Vylkova, S., & Lorenz, M. C. (2017). Phagosomal neutralization by the fungal pathogen Candida albicans induces macrophage Pyroptosis. Infection and Immunity, 85(2), e00832-16. https://doi.org/10.1128/iai.00832-16</Citation>
</Reference>
<Reference>
<Citation>Wachtler, B., Citiulo, F., Jablonowski, N., Forster, S., Dalle, F., Schaller, M., … Hube, B. (2012). Candida albicans-epithelial interactions: Dissecting the roles of active penetration, induced endocytosis and host factors on the infection process. PLoS One, 7(5), e36952. https://doi.org/10.1371/journal.pone.0036952</Citation>
</Reference>
<Reference>
<Citation>Wahl, R., Wippel, K., Goos, S., Kamper, J., & Sauer, N. (2010). A novel high-affinity sucrose transporter is required for virulence of the plant pathogen Ustilago maydis. PLoS Biology, 8(2), e1000303. https://doi.org/10.1371/journal.pbio.1000303</Citation>
</Reference>
<Reference>
<Citation>Wawra, S., Fesel, P., Widmer, H., Timm, M., Seibel, J., Leson, L., … Zuccaro, A. (2016). The fungal-specific beta-glucan-binding lectin FGB1 alters cell-wall composition and suppresses glucan-triggered immunity in plants. Nature Communications, 7, 13188. https://doi.org/10.1038/ncomms13188</Citation>
</Reference>
<Reference>
<Citation>Wellington, M., Koselny, K., Sutterwala, F. S., & Krysan, D. J. (2014). Candida albicans triggers NLRP3-mediated pyroptosis in macrophages. Eukaryotic Cell, 13(2), 329-340. https://doi.org/10.1128/ec.00336-13</Citation>
</Reference>
<Reference>
<Citation>Wolpert, T. J., & Lorang, J. M. (2016). Victoria blight, defense turned upside down. Physiological and Molecular Plant Pathology, 95, 8-13. https://doi.org/10.1016/j.pmpp.2016.03.006</Citation>
</Reference>
<Reference>
<Citation>Yakimova, E. T., Yordanova, Z. P., Slavov, S., Kapchina-Toteva, V. M., & Woltering, E. J. (2009). Alternaria alternata AT toxin induces programmed cell death in tobacco. Journal of Phytopathology, 157(10), 592-601. https://doi.org/10.1111/j.1439-0434.2008.01535.x</Citation>
</Reference>
<Reference>
<Citation>Youseff, B. H., Holbrook, E. D., Smolnycki, K. A., & Rappleye, C. A. (2012). Extracellular superoxide dismutase protects Histoplasma yeast cells from host-derived oxidative stress. PLoS Pathogens, 8(5), e1002713. https://doi.org/10.1371/journal.ppat.1002713</Citation>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>Allemagne</li>
</country>
</list>
<tree>
<country name="Allemagne">
<noRegion>
<name sortKey="Konig, Annika" sort="Konig, Annika" uniqKey="Konig A" first="Annika" last="König">Annika König</name>
</noRegion>
<name sortKey="Hube, Bernhard" sort="Hube, Bernhard" uniqKey="Hube B" first="Bernhard" last="Hube">Bernhard Hube</name>
<name sortKey="Hube, Bernhard" sort="Hube, Bernhard" uniqKey="Hube B" first="Bernhard" last="Hube">Bernhard Hube</name>
<name sortKey="Hube, Bernhard" sort="Hube, Bernhard" uniqKey="Hube B" first="Bernhard" last="Hube">Bernhard Hube</name>
<name sortKey="Mogavero, Selene" sort="Mogavero, Selene" uniqKey="Mogavero S" first="Selene" last="Mogavero">Selene Mogavero</name>
<name sortKey="Muller, Rita" sort="Muller, Rita" uniqKey="Muller R" first="Rita" last="Müller">Rita Müller</name>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/PlantPathoEffV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000159 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 000159 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    PlantPathoEffV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:32978997
   |texte=   Fungal factors involved in host immune evasion, modulation and exploitation during infection.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:32978997" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a PlantPathoEffV1 

Wicri

This area was generated with Dilib version V0.6.38.
Data generation: Sat Nov 21 16:00:34 2020. Site generation: Sat Nov 21 16:01:01 2020