Serveur d'exploration sur les récepteurs immunitaires végétaux

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Phytochemical drug candidates for the modulation of peroxisome proliferator-activated receptor γ in inflammatory bowel diseases.

Identifieur interne : 000084 ( Main/Exploration ); précédent : 000083; suivant : 000085

Phytochemical drug candidates for the modulation of peroxisome proliferator-activated receptor γ in inflammatory bowel diseases.

Auteurs : Balaji Venkataraman [Émirats arabes unis] ; Shreesh Ojha [Émirats arabes unis] ; Prasanna D. Belur [Inde] ; Bhoomendra Bhongade [Émirats arabes unis] ; Vishnu Raj [Émirats arabes unis] ; Peter D. Collin [États-Unis] ; Thomas E. Adrian [Émirats arabes unis] ; Sandeep B. Subramanya [Émirats arabes unis]

Source :

RBID : pubmed:32009281

Descripteurs français

English descriptors

Abstract

Plant-based compounds or phytochemicals such as alkaloids, glycosides, flavonoids, volatile oils, tannins, resins, and polyphenols have been used extensively in traditional medicine for centuries and more recently in Western alternative medicine. Extensive evidence suggests that consumption of dietary polyphenolic compounds lowers the risk of inflammatory diseases. The anti-inflammatory properties of several phytochemicals are mediated through ligand-inducible peroxisome proliferator-activated receptors (PPARs), particularly the PPARγ transcription factor. Inflammatory bowel disease (IBD) is represented by ulcerative colitis, which occurs in the mucosa of the colon and rectum, and Crohn's disease (CD) that can involve any segment of gastrointestinal tract. Because of the lack of cost-effective pharmaceutical treatment options, many IBD patients seek and use alternative and unconventional therapies to alleviate their symptoms. PPARγ plays a role in the inhibition of inflammatory cytokine expression and activation of anti-inflammatory immune cells. The phytochemicals reported here are ligands that activate PPARγ, which in turn modulates inflammatory responses. PPARγ is highly expressed in the gut making it a potential therapeutic target for IBDs. This review summarizes the effects of the currently published phytochemicals that modulate the PPARγ pathway and reduce or eliminate colonic inflammation.

DOI: 10.1002/ptr.6625
PubMed: 32009281


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Phytochemical drug candidates for the modulation of peroxisome proliferator-activated receptor γ in inflammatory bowel diseases.</title>
<author>
<name sortKey="Venkataraman, Balaji" sort="Venkataraman, Balaji" uniqKey="Venkataraman B" first="Balaji" last="Venkataraman">Balaji Venkataraman</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Physiology, Zayed Bin Sultan Center for Health Sciences, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates.</nlm:affiliation>
<country xml:lang="fr">Émirats arabes unis</country>
<wicri:regionArea>Department of Physiology, Zayed Bin Sultan Center for Health Sciences, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain</wicri:regionArea>
<wicri:noRegion>Al Ain</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Ojha, Shreesh" sort="Ojha, Shreesh" uniqKey="Ojha S" first="Shreesh" last="Ojha">Shreesh Ojha</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Pharmacology and Therapeutics, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates.</nlm:affiliation>
<country xml:lang="fr">Émirats arabes unis</country>
<wicri:regionArea>Department of Pharmacology and Therapeutics, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain</wicri:regionArea>
<wicri:noRegion>Al Ain</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Belur, Prasanna D" sort="Belur, Prasanna D" uniqKey="Belur P" first="Prasanna D" last="Belur">Prasanna D. Belur</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Chemical Engineering, National Institute of Technology Karnataka, Mangalore, India.</nlm:affiliation>
<country xml:lang="fr">Inde</country>
<wicri:regionArea>Department of Chemical Engineering, National Institute of Technology Karnataka, Mangalore</wicri:regionArea>
<wicri:noRegion>Mangalore</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Bhongade, Bhoomendra" sort="Bhongade, Bhoomendra" uniqKey="Bhongade B" first="Bhoomendra" last="Bhongade">Bhoomendra Bhongade</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Pharmaceutical Chemistry, RAK College of Pharmaceutical Sciences, RAK Medical & Health Sciences University, Ras Al Khaimah, United Arab Emirates.</nlm:affiliation>
<country xml:lang="fr">Émirats arabes unis</country>
<wicri:regionArea>Department of Pharmaceutical Chemistry, RAK College of Pharmaceutical Sciences, RAK Medical & Health Sciences University, Ras Al Khaimah</wicri:regionArea>
<wicri:noRegion>Ras Al Khaimah</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Raj, Vishnu" sort="Raj, Vishnu" uniqKey="Raj V" first="Vishnu" last="Raj">Vishnu Raj</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Physiology, Zayed Bin Sultan Center for Health Sciences, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates.</nlm:affiliation>
<country xml:lang="fr">Émirats arabes unis</country>
<wicri:regionArea>Department of Physiology, Zayed Bin Sultan Center for Health Sciences, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain</wicri:regionArea>
<wicri:noRegion>Al Ain</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Collin, Peter D" sort="Collin, Peter D" uniqKey="Collin P" first="Peter D" last="Collin">Peter D. Collin</name>
<affiliation wicri:level="2">
<nlm:affiliation>Coastside Bio Resources, Deer Isle, Maine.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<placeName>
<region type="state">Maine (État)</region>
</placeName>
<wicri:cityArea>Coastside Bio Resources, Deer Isle</wicri:cityArea>
</affiliation>
</author>
<author>
<name sortKey="Adrian, Thomas E" sort="Adrian, Thomas E" uniqKey="Adrian T" first="Thomas E" last="Adrian">Thomas E. Adrian</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Basic Medical Sciences, Mohamed Bin Rashid University of Medicine and Health Sciences, Dubai, United Arab Emirates.</nlm:affiliation>
<country xml:lang="fr">Émirats arabes unis</country>
<wicri:regionArea>Department of Basic Medical Sciences, Mohamed Bin Rashid University of Medicine and Health Sciences, Dubai</wicri:regionArea>
<wicri:noRegion>Dubai</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Subramanya, Sandeep B" sort="Subramanya, Sandeep B" uniqKey="Subramanya S" first="Sandeep B" last="Subramanya">Sandeep B. Subramanya</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Physiology, Zayed Bin Sultan Center for Health Sciences, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates.</nlm:affiliation>
<country xml:lang="fr">Émirats arabes unis</country>
<wicri:regionArea>Department of Physiology, Zayed Bin Sultan Center for Health Sciences, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain</wicri:regionArea>
<wicri:noRegion>Al Ain</wicri:noRegion>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2020">2020</date>
<idno type="RBID">pubmed:32009281</idno>
<idno type="pmid">32009281</idno>
<idno type="doi">10.1002/ptr.6625</idno>
<idno type="wicri:Area/Main/Corpus">000231</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">000231</idno>
<idno type="wicri:Area/Main/Curation">000231</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">000231</idno>
<idno type="wicri:Area/Main/Exploration">000231</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Phytochemical drug candidates for the modulation of peroxisome proliferator-activated receptor γ in inflammatory bowel diseases.</title>
<author>
<name sortKey="Venkataraman, Balaji" sort="Venkataraman, Balaji" uniqKey="Venkataraman B" first="Balaji" last="Venkataraman">Balaji Venkataraman</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Physiology, Zayed Bin Sultan Center for Health Sciences, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates.</nlm:affiliation>
<country xml:lang="fr">Émirats arabes unis</country>
<wicri:regionArea>Department of Physiology, Zayed Bin Sultan Center for Health Sciences, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain</wicri:regionArea>
<wicri:noRegion>Al Ain</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Ojha, Shreesh" sort="Ojha, Shreesh" uniqKey="Ojha S" first="Shreesh" last="Ojha">Shreesh Ojha</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Pharmacology and Therapeutics, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates.</nlm:affiliation>
<country xml:lang="fr">Émirats arabes unis</country>
<wicri:regionArea>Department of Pharmacology and Therapeutics, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain</wicri:regionArea>
<wicri:noRegion>Al Ain</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Belur, Prasanna D" sort="Belur, Prasanna D" uniqKey="Belur P" first="Prasanna D" last="Belur">Prasanna D. Belur</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Chemical Engineering, National Institute of Technology Karnataka, Mangalore, India.</nlm:affiliation>
<country xml:lang="fr">Inde</country>
<wicri:regionArea>Department of Chemical Engineering, National Institute of Technology Karnataka, Mangalore</wicri:regionArea>
<wicri:noRegion>Mangalore</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Bhongade, Bhoomendra" sort="Bhongade, Bhoomendra" uniqKey="Bhongade B" first="Bhoomendra" last="Bhongade">Bhoomendra Bhongade</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Pharmaceutical Chemistry, RAK College of Pharmaceutical Sciences, RAK Medical & Health Sciences University, Ras Al Khaimah, United Arab Emirates.</nlm:affiliation>
<country xml:lang="fr">Émirats arabes unis</country>
<wicri:regionArea>Department of Pharmaceutical Chemistry, RAK College of Pharmaceutical Sciences, RAK Medical & Health Sciences University, Ras Al Khaimah</wicri:regionArea>
<wicri:noRegion>Ras Al Khaimah</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Raj, Vishnu" sort="Raj, Vishnu" uniqKey="Raj V" first="Vishnu" last="Raj">Vishnu Raj</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Physiology, Zayed Bin Sultan Center for Health Sciences, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates.</nlm:affiliation>
<country xml:lang="fr">Émirats arabes unis</country>
<wicri:regionArea>Department of Physiology, Zayed Bin Sultan Center for Health Sciences, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain</wicri:regionArea>
<wicri:noRegion>Al Ain</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Collin, Peter D" sort="Collin, Peter D" uniqKey="Collin P" first="Peter D" last="Collin">Peter D. Collin</name>
<affiliation wicri:level="2">
<nlm:affiliation>Coastside Bio Resources, Deer Isle, Maine.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<placeName>
<region type="state">Maine (État)</region>
</placeName>
<wicri:cityArea>Coastside Bio Resources, Deer Isle</wicri:cityArea>
</affiliation>
</author>
<author>
<name sortKey="Adrian, Thomas E" sort="Adrian, Thomas E" uniqKey="Adrian T" first="Thomas E" last="Adrian">Thomas E. Adrian</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Basic Medical Sciences, Mohamed Bin Rashid University of Medicine and Health Sciences, Dubai, United Arab Emirates.</nlm:affiliation>
<country xml:lang="fr">Émirats arabes unis</country>
<wicri:regionArea>Department of Basic Medical Sciences, Mohamed Bin Rashid University of Medicine and Health Sciences, Dubai</wicri:regionArea>
<wicri:noRegion>Dubai</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Subramanya, Sandeep B" sort="Subramanya, Sandeep B" uniqKey="Subramanya S" first="Sandeep B" last="Subramanya">Sandeep B. Subramanya</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Physiology, Zayed Bin Sultan Center for Health Sciences, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates.</nlm:affiliation>
<country xml:lang="fr">Émirats arabes unis</country>
<wicri:regionArea>Department of Physiology, Zayed Bin Sultan Center for Health Sciences, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain</wicri:regionArea>
<wicri:noRegion>Al Ain</wicri:noRegion>
</affiliation>
</author>
</analytic>
<series>
<title level="j">Phytotherapy research : PTR</title>
<idno type="eISSN">1099-1573</idno>
<imprint>
<date when="2020" type="published">2020</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Anti-Inflammatory Agents (pharmacology)</term>
<term>Anti-Inflammatory Agents (therapeutic use)</term>
<term>Humans (MeSH)</term>
<term>Inflammatory Bowel Diseases (drug therapy)</term>
<term>Inflammatory Bowel Diseases (pathology)</term>
<term>PPAR gamma (metabolism)</term>
</keywords>
<keywords scheme="KwdFr" xml:lang="fr">
<term>Anti-inflammatoires (pharmacologie)</term>
<term>Anti-inflammatoires (usage thérapeutique)</term>
<term>Humains (MeSH)</term>
<term>Maladies inflammatoires intestinales (anatomopathologie)</term>
<term>Maladies inflammatoires intestinales (traitement médicamenteux)</term>
<term>Récepteur PPAR gamma (métabolisme)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="metabolism" xml:lang="en">
<term>PPAR gamma</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="pharmacology" xml:lang="en">
<term>Anti-Inflammatory Agents</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="therapeutic use" xml:lang="en">
<term>Anti-Inflammatory Agents</term>
</keywords>
<keywords scheme="MESH" qualifier="anatomopathologie" xml:lang="fr">
<term>Maladies inflammatoires intestinales</term>
</keywords>
<keywords scheme="MESH" qualifier="drug therapy" xml:lang="en">
<term>Inflammatory Bowel Diseases</term>
</keywords>
<keywords scheme="MESH" qualifier="métabolisme" xml:lang="fr">
<term>Récepteur PPAR gamma</term>
</keywords>
<keywords scheme="MESH" qualifier="pathology" xml:lang="en">
<term>Inflammatory Bowel Diseases</term>
</keywords>
<keywords scheme="MESH" qualifier="pharmacologie" xml:lang="fr">
<term>Anti-inflammatoires</term>
</keywords>
<keywords scheme="MESH" qualifier="traitement médicamenteux" xml:lang="fr">
<term>Maladies inflammatoires intestinales</term>
</keywords>
<keywords scheme="MESH" qualifier="usage thérapeutique" xml:lang="fr">
<term>Anti-inflammatoires</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Humans</term>
</keywords>
<keywords scheme="MESH" xml:lang="fr">
<term>Humains</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Plant-based compounds or phytochemicals such as alkaloids, glycosides, flavonoids, volatile oils, tannins, resins, and polyphenols have been used extensively in traditional medicine for centuries and more recently in Western alternative medicine. Extensive evidence suggests that consumption of dietary polyphenolic compounds lowers the risk of inflammatory diseases. The anti-inflammatory properties of several phytochemicals are mediated through ligand-inducible peroxisome proliferator-activated receptors (PPARs), particularly the PPARγ transcription factor. Inflammatory bowel disease (IBD) is represented by ulcerative colitis, which occurs in the mucosa of the colon and rectum, and Crohn's disease (CD) that can involve any segment of gastrointestinal tract. Because of the lack of cost-effective pharmaceutical treatment options, many IBD patients seek and use alternative and unconventional therapies to alleviate their symptoms. PPARγ plays a role in the inhibition of inflammatory cytokine expression and activation of anti-inflammatory immune cells. The phytochemicals reported here are ligands that activate PPARγ, which in turn modulates inflammatory responses. PPARγ is highly expressed in the gut making it a potential therapeutic target for IBDs. This review summarizes the effects of the currently published phytochemicals that modulate the PPARγ pathway and reduce or eliminate colonic inflammation.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" IndexingMethod="Curated" Owner="NLM">
<PMID Version="1">32009281</PMID>
<DateCompleted>
<Year>2020</Year>
<Month>08</Month>
<Day>07</Day>
</DateCompleted>
<DateRevised>
<Year>2020</Year>
<Month>08</Month>
<Day>07</Day>
</DateRevised>
<Article PubModel="Print-Electronic">
<Journal>
<ISSN IssnType="Electronic">1099-1573</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>34</Volume>
<Issue>7</Issue>
<PubDate>
<Year>2020</Year>
<Month>Jul</Month>
</PubDate>
</JournalIssue>
<Title>Phytotherapy research : PTR</Title>
<ISOAbbreviation>Phytother Res</ISOAbbreviation>
</Journal>
<ArticleTitle>Phytochemical drug candidates for the modulation of peroxisome proliferator-activated receptor γ in inflammatory bowel diseases.</ArticleTitle>
<Pagination>
<MedlinePgn>1530-1549</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1002/ptr.6625</ELocationID>
<Abstract>
<AbstractText>Plant-based compounds or phytochemicals such as alkaloids, glycosides, flavonoids, volatile oils, tannins, resins, and polyphenols have been used extensively in traditional medicine for centuries and more recently in Western alternative medicine. Extensive evidence suggests that consumption of dietary polyphenolic compounds lowers the risk of inflammatory diseases. The anti-inflammatory properties of several phytochemicals are mediated through ligand-inducible peroxisome proliferator-activated receptors (PPARs), particularly the PPARγ transcription factor. Inflammatory bowel disease (IBD) is represented by ulcerative colitis, which occurs in the mucosa of the colon and rectum, and Crohn's disease (CD) that can involve any segment of gastrointestinal tract. Because of the lack of cost-effective pharmaceutical treatment options, many IBD patients seek and use alternative and unconventional therapies to alleviate their symptoms. PPARγ plays a role in the inhibition of inflammatory cytokine expression and activation of anti-inflammatory immune cells. The phytochemicals reported here are ligands that activate PPARγ, which in turn modulates inflammatory responses. PPARγ is highly expressed in the gut making it a potential therapeutic target for IBDs. This review summarizes the effects of the currently published phytochemicals that modulate the PPARγ pathway and reduce or eliminate colonic inflammation.</AbstractText>
<CopyrightInformation>© 2020 John Wiley & Sons, Ltd.</CopyrightInformation>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Venkataraman</LastName>
<ForeName>Balaji</ForeName>
<Initials>B</Initials>
<AffiliationInfo>
<Affiliation>Department of Physiology, Zayed Bin Sultan Center for Health Sciences, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Ojha</LastName>
<ForeName>Shreesh</ForeName>
<Initials>S</Initials>
<AffiliationInfo>
<Affiliation>Department of Pharmacology and Therapeutics, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Belur</LastName>
<ForeName>Prasanna D</ForeName>
<Initials>PD</Initials>
<AffiliationInfo>
<Affiliation>Department of Chemical Engineering, National Institute of Technology Karnataka, Mangalore, India.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Bhongade</LastName>
<ForeName>Bhoomendra</ForeName>
<Initials>B</Initials>
<AffiliationInfo>
<Affiliation>Department of Pharmaceutical Chemistry, RAK College of Pharmaceutical Sciences, RAK Medical & Health Sciences University, Ras Al Khaimah, United Arab Emirates.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Raj</LastName>
<ForeName>Vishnu</ForeName>
<Initials>V</Initials>
<AffiliationInfo>
<Affiliation>Department of Physiology, Zayed Bin Sultan Center for Health Sciences, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Collin</LastName>
<ForeName>Peter D</ForeName>
<Initials>PD</Initials>
<AffiliationInfo>
<Affiliation>Coastside Bio Resources, Deer Isle, Maine.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Adrian</LastName>
<ForeName>Thomas E</ForeName>
<Initials>TE</Initials>
<AffiliationInfo>
<Affiliation>Department of Basic Medical Sciences, Mohamed Bin Rashid University of Medicine and Health Sciences, Dubai, United Arab Emirates.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Subramanya</LastName>
<ForeName>Sandeep B</ForeName>
<Initials>SB</Initials>
<Identifier Source="ORCID">https://orcid.org/0000-0002-4802-500X</Identifier>
<AffiliationInfo>
<Affiliation>Department of Physiology, Zayed Bin Sultan Center for Health Sciences, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates.</Affiliation>
</AffiliationInfo>
</Author>
</AuthorList>
<Language>eng</Language>
<GrantList CompleteYN="Y">
<Grant>
<GrantID>31M384</GrantID>
<Agency>United Arab Emirates University, CMHS Faculty grant</Agency>
<Country></Country>
</Grant>
</GrantList>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D016454">Review</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2020</Year>
<Month>02</Month>
<Day>03</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>England</Country>
<MedlineTA>Phytother Res</MedlineTA>
<NlmUniqueID>8904486</NlmUniqueID>
<ISSNLinking>0951-418X</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D000893">Anti-Inflammatory Agents</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D047495">PPAR gamma</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D000893" MajorTopicYN="N">Anti-Inflammatory Agents</DescriptorName>
<QualifierName UI="Q000494" MajorTopicYN="N">pharmacology</QualifierName>
<QualifierName UI="Q000627" MajorTopicYN="Y">therapeutic use</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D006801" MajorTopicYN="N">Humans</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D015212" MajorTopicYN="N">Inflammatory Bowel Diseases</DescriptorName>
<QualifierName UI="Q000188" MajorTopicYN="Y">drug therapy</QualifierName>
<QualifierName UI="Q000473" MajorTopicYN="N">pathology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D047495" MajorTopicYN="N">PPAR gamma</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
</MeshHeadingList>
<KeywordList Owner="NOTNLM">
<Keyword MajorTopicYN="N">PPARγ</Keyword>
<Keyword MajorTopicYN="N">colitis</Keyword>
<Keyword MajorTopicYN="N">inflammatory bowel disease</Keyword>
<Keyword MajorTopicYN="N">phytochemicals</Keyword>
</KeywordList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2019</Year>
<Month>09</Month>
<Day>07</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="revised">
<Year>2019</Year>
<Month>12</Month>
<Day>23</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2020</Year>
<Month>01</Month>
<Day>14</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2020</Year>
<Month>2</Month>
<Day>6</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2020</Year>
<Month>8</Month>
<Day>8</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2020</Year>
<Month>2</Month>
<Day>4</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">32009281</ArticleId>
<ArticleId IdType="doi">10.1002/ptr.6625</ArticleId>
</ArticleIdList>
<ReferenceList>
<Title>REFERENCES</Title>
<Reference>
<Citation>Adachi, M., Kurotani, R., Morimura, K., Shah, Y., Sanford, M., Madison, B. B., … Gonzalez, F. J. (2006). Peroxisome proliferator activated receptor gamma in colonic epithelial cells protects against experimental inflammatory bowel disease. Gut, 55(8), 1104-1113. https://doi.org/10.1136/gut.2005.081745</Citation>
</Reference>
<Reference>
<Citation>Agostini, M., Schoenmakers, E., Beig, J., Fairall, L., Szatmari, I., Rajanayagam, O., … Savage, D. B. (2018). A pharmacogenetic approach to the treatment of patients with PPARG mutations. Diabetes, 67(6), 1086-1092. https://doi.org/10.2337/db17-1236</Citation>
</Reference>
<Reference>
<Citation>Arafa, H. M., Hemeida, R. A., El-Bahrawy, A. I., & Hamada, F. M. (2009). Prophylactic role of curcumin in dextran sulfate sodium (DSS)-induced ulcerative colitis murine model. Food and Chemical Toxicology, 47(6), 1311-1317. https://doi.org/10.1016/j.fct.2009.03.003</Citation>
</Reference>
<Reference>
<Citation>Atri, C., Guerfali, F. Z., & Laouini, D. (2018). Role of human macrophage polarization in inflammation during infectious diseases. International Journal of Molecular Sciences, 19(6), 1801-1815. https://doi.org/10.3390/ijms19061801</Citation>
</Reference>
<Reference>
<Citation>Avila-Roman, J., Talero, E., Alcaide, A., Reyes Cde, L., Zubia, E., Garcia-Maurino, S., & Motilva, V. (2014). Preventive effect of the microalga Chlamydomonas debaryana on the acute phase of experimental colitis in rats. The British Journal of Nutrition, 112(7), 1055-1064. https://doi.org/10.1017/S0007114514001895</Citation>
</Reference>
<Reference>
<Citation>Avila-Roman, J., Talero, E., de Los Reyes, C., Garcia-Maurino, S., & Motilva, V. (2018). Microalgae-derived oxylipins decrease inflammatory mediators by regulating the subcellular location of NFkappaB and PPAR-gamma. Pharmacological Research, 128, 220-230. https://doi.org/10.1016/j.phrs.2017.10.009</Citation>
</Reference>
<Reference>
<Citation>Avila-Roman, J., Talero, E., Rodriguez-Luna, A., Garcia-Maurino, S., & Motilva, V. (2016). Anti-inflammatory effects of an oxylipin-containing lyophilised biomass from a microalga in a murine recurrent colitis model. The British Journal of Nutrition, 116(12), 2044-2052. https://doi.org/10.1017/S0007114516004189</Citation>
</Reference>
<Reference>
<Citation>Babu, P. V., Liu, D., & Gilbert, E. R. (2013). Recent advances in understanding the anti-diabetic actions of dietary flavonoids. The Journal of Nutritional Biochemistry, 24(11), 1777-1789. https://doi.org/10.1016/j.jnutbio.2013.06.003</Citation>
</Reference>
<Reference>
<Citation>Bajracharya, G. B. (2015). Diversity, pharmacology and synthesis of bergenin and its derivatives: Potential materials for therapeutic usages. Fitoterapia, 101, 133-152. https://doi.org/10.1016/j.fitote.2015.01.001</Citation>
</Reference>
<Reference>
<Citation>Bassaganya-Riera, J., DiGuardo, M., Climent, M., Vives, C., Carbo, A., Jouni, Z. E., … Hontecillas, R. (2011). Activation of PPARgamma and delta by dietary punicic acid ameliorates intestinal inflammation in mice. The British Journal of Nutrition, 106(6), 878-886. https://doi.org/10.1017/S0007114511001188</Citation>
</Reference>
<Reference>
<Citation>Bassaganya-Riera, J., & Hontecillas, R. (2006). CLA and n-3 PUFA differentially modulate clinical activity and colonic PPAR-responsive gene expression in a pig model of experimental IBD. Clinical Nutrition, 25(3), 454-465. https://doi.org/10.1016/j.clnu.2005.12.008</Citation>
</Reference>
<Reference>
<Citation>Bassaganya-Riera, J., Reynolds, K., Martino-Catt, S., Cui, Y., Hennighausen, L., Gonzalez, F., … Hontecillas, R. (2004). Activation of PPAR gamma and delta by conjugated linoleic acid mediates protection from experimental inflammatory bowel disease. Gastroenterology, 127(3), 777-791.</Citation>
</Reference>
<Reference>
<Citation>Bassaganya-Riera, J., Viladomiu, M., Pedragosa, M., De Simone, C., Carbo, A., Shaykhutdinov, R., … Hontecillas, R. (2012). Probiotic bacteria produce conjugated linoleic acid locally in the gut that targets macrophage PPAR gamma to suppress colitis. PLoS One, 7(2), e31238. https://doi.org/10.1371/journal.pone.0031238</Citation>
</Reference>
<Reference>
<Citation>Bassaganya-Riera, J., Viladomiu, M., Pedragosa, M., De Simone, C., & Hontecillas, R. (2012). Immunoregulatory mechanisms underlying prevention of colitis-associated colorectal cancer by probiotic bacteria. PLoS One, 7(4), e34676. https://doi.org/10.1371/journal.pone.0034676</Citation>
</Reference>
<Reference>
<Citation>Bento, A. F., Marcon, R., Dutra, R. C., Claudino, R. F., Cola, M., Leite, D. F., & Calixto, J. B. (2011). Beta-caryophyllene inhibits dextran sulfate sodium-induced colitis in mice through CB2 receptor activation and PPARgamma pathway. The American Journal of Pathology, 178(3), 1153-1166. https://doi.org/10.1016/j.ajpath.2010.11.052</Citation>
</Reference>
<Reference>
<Citation>Bertin, B., Dubuquoy, L., Colombel, J. F., & Desreumaux, P. (2013). PPAR-gamma in ulcerative colitis: A novel target for intervention. Current Drug Targets, 14(12), 1501-1507.</Citation>
</Reference>
<Reference>
<Citation>Bhullar, K. S., & Rupasinghe, H. P. (2013). Polyphenols: Multipotent therapeutic agents in neurodegenerative diseases. Oxidative Medicine and Cellular Longevity, 2013, 891748. doi:https://doi.org/10.1155/2013/891748, 1, 18</Citation>
</Reference>
<Reference>
<Citation>Billerey-Larmonier, C., Uno, J. K., Larmonier, N., Midura, A. J., Timmermann, B., Ghishan, F. K., & Kiela, P. R. (2008). Protective effects of dietary curcumin in mouse model of chemically induced colitis are strain dependent. Inflammatory Bowel Diseases, 14(6), 780-793. https://doi.org/10.1002/ibd.20348</Citation>
</Reference>
<Reference>
<Citation>Biswas, S. K., & Mantovani, A. (2010). Macrophage plasticity and interaction with lymphocyte subsets: Cancer as a paradigm. Nature Immunology, 11(10), 889-896. https://doi.org/10.1038/ni.1937</Citation>
</Reference>
<Reference>
<Citation>Borniquel, S., Jadert, C., & Lundberg, J. O. (2012). Dietary conjugated linoleic acid activates PPARgamma and the intestinal trefoil factor in SW480 cells and mice with dextran sulfate sodium-induced colitis. The Journal of Nutrition, 142(12), 2135-2140. https://doi.org/10.3945/jn.112.163931</Citation>
</Reference>
<Reference>
<Citation>Borody, T. J., & Khoruts, A. (2011). Fecal microbiota transplantation and emerging applications. Nature Reviews. Gastroenterology & Hepatology, 9(2), 88-96. https://doi.org/10.1038/nrgastro.2011.244</Citation>
</Reference>
<Reference>
<Citation>Bots, S., Gecse, K., Barclay, M., & D'Haens, G. (2018). Combination immunosuppression in IBD. Inflammatory Bowel Diseases, 24(3), 539-545. https://doi.org/10.1093/ibd/izx065</Citation>
</Reference>
<Reference>
<Citation>Boussetta, T., Raad, H., Letteron, P., Gougerot-Pocidalo, M. A., Marie, J. C., Driss, F., & El-Benna, J. (2009). Punicic acid a conjugated linolenic acid inhibits TNFalpha-induced neutrophil hyperactivation and protects from experimental colon inflammation in rats. PLoS One, 4(7), e6458. https://doi.org/10.1371/journal.pone.0006458</Citation>
</Reference>
<Reference>
<Citation>Braissant, O., Foufelle, F., Scotto, C., Dauca, M., & Wahli, W. (1996). Differential expression of peroxisome proliferator-activated receptors (PPARs): Tissue distribution of PPAR-alpha, -beta, and -gamma in the adult rat. Endocrinology, 137(1), 354-366. https://doi.org/10.1210/endo.137.1.8536636</Citation>
</Reference>
<Reference>
<Citation>Burstein, S. (2015). Cannabidiol (CBD) and its analogs: A review of their effects on inflammation. Bioorganic & Medicinal Chemistry, 23(7), 1377-1385. https://doi.org/10.1016/j.bmc.2015.01.059</Citation>
</Reference>
<Reference>
<Citation>Byndloss, M. X., Olsan, E. E., Rivera-Chavez, F., Tiffany, C. R., Cevallos, S. A., Lokken, K. L., … Baumler, A. J. (2017). Microbiota-activated PPAR-gamma signaling inhibits dysbiotic Enterobacteriaceae expansion. Science, 357(6351), 570-575. https://doi.org/10.1126/science.aam9949</Citation>
</Reference>
<Reference>
<Citation>Camacho-Barquero, L., Villegas, I., Sanchez-Calvo, J. M., Talero, E., Sanchez-Fidalgo, S., Motilva, V., & Alarcon de la Lastra, C. (2007). Curcumin, a Curcuma longa constituent, acts on MAPK p38 pathway modulating COX-2 and iNOS expression in chronic experimental colitis. International Immunopharmacology, 7(3), 333-342. https://doi.org/10.1016/j.intimp.2006.11.006</Citation>
</Reference>
<Reference>
<Citation>Camuesco, D., Galvez, J., Nieto, A., Comalada, M., Rodriguez-Cabezas, M. E., Concha, A., … Zarzuelo, A. (2005). Dietary olive oil supplemented with fish oil, rich in EPA and DHA (n-3) polyunsaturated fatty acids, attenuates colonic inflammation in rats with DSS-induced colitis. The Journal of Nutrition, 135(4), 687-694.</Citation>
</Reference>
<Reference>
<Citation>Carrera-Quintanar, L., Lopez Roa, R. I., Quintero-Fabian, S., Sanchez-Sanchez, M. A., Vizmanos, B., & Ortuno-Sahagun, D. (2018). Phytochemicals that influence gut microbiota as prophylactics and for the treatment of obesity and inflammatory diseases. Mediators of Inflammation, 2018, 9734845. https://doi.org/10.1155/2018/9734845</Citation>
</Reference>
<Reference>
<Citation>Celinski, K., Dworzanski, T., Korolczuk, A., Piasecki, R., Slomka, M., Madro, A., & Fornal, R. (2011). Effects of peroxisome proliferator-activated receptors-gamma ligands on dextran sodium sulphate-induced colitis in rats. Journal of Physiology and Pharmacology, 62(3), 347-356.</Citation>
</Reference>
<Reference>
<Citation>Cesari, I. M., Carvalho, E., Figueiredo Rodrigues, M., Mendonca Bdos, S., Amoedo, N. D., & Rumjanek, F. D. (2014). Methyl jasmonate: Putative mechanisms of action on cancer cells cycle, metabolism, and apoptosis. Int J Cell Biol, 2014, 572097. https://doi.org/10.1155/2014/572097</Citation>
</Reference>
<Reference>
<Citation>Chen, H. W., Huang, C. S., Li, C. C., Lin, A. H., Huang, Y. J., Wang, T. S., … Lii, C. K. (2014). Bioavailability of andrographolide and protection against carbon tetrachloride-induced oxidative damage in rats. Toxicology and Applied Pharmacology, 280(1), 1-9. https://doi.org/10.1016/j.taap.2014.07.024</Citation>
</Reference>
<Reference>
<Citation>Cho, J. Y., Chang, H. J., Lee, S. K., Kim, H. J., Hwang, J. K., & Chun, H. S. (2007). Amelioration of dextran sulfate sodium-induced colitis in mice by oral administration of beta-caryophyllene, a sesquiterpene. Life Sciences, 80(10), 932-939. https://doi.org/10.1016/j.lfs.2006.11.038</Citation>
</Reference>
<Reference>
<Citation>Cho, J. Y., Kim, H. Y., Kim, S. K., Park, J. H. Y., Lee, H. J., & Chun, H. S. (2015). Beta-caryophyllene attenuates dextran sulfate sodium-induced colitis in mice via modulation of gene expression associated mainly with colon inflammation. Toxicology Reports, 2, 1039-1045. https://doi.org/10.1016/j.toxrep.2015.07.018</Citation>
</Reference>
<Reference>
<Citation>Cho, M., So, I., Chun, J. N., & Jeon, J. H. (2016). The antitumor effects of geraniol: Modulation of cancer hallmark pathways (review). International Journal of Oncology, 48(5), 1772-1782. https://doi.org/10.3892/ijo.2016.3427</Citation>
</Reference>
<Reference>
<Citation>Choi, Y. H., Bae, J. K., Chae, H. S., Choi, Y. O., Nhoek, P., Choi, J. S., & Chin, Y. W. (2016). Isoliquiritigenin ameliorates dextran sulfate sodium-induced colitis through the inhibition of MAPK pathway. International Immunopharmacology, 31, 223-232. https://doi.org/10.1016/j.intimp.2015.12.024</Citation>
</Reference>
<Reference>
<Citation>Choo, J., Lee, Y., Yan, X. J., Noh, T. H., Kim, S. J., Son, S., … Im, E. (2015). A novel peroxisome proliferator-activated receptor (PPAR)gamma agonist 2-hydroxyethyl 5-chloro-4,5-didehydrojasmonate exerts anti-inflammatory effects in colitis. The Journal of Biological Chemistry, 290(42), 25609-25619. https://doi.org/10.1074/jbc.M115.673046</Citation>
</Reference>
<Reference>
<Citation>Ciudin, A., Hernandez, C., & Simo, R. (2012). Update on cardiovascular safety of PPARgamma agonists and relevance to medicinal chemistry and clinical pharmacology. Current Topics in Medicinal Chemistry, 12(6), 585-604.</Citation>
</Reference>
<Reference>
<Citation>Cooney, J. M., Barnett, M. P., Dommels, Y. E., Brewster, D., Butts, C. A., McNabb, W. C., … Roy, N. C. (2016). A combined omics approach to evaluate the effects of dietary curcumin on colon inflammation in the Mdr1a(−/−) mouse model of inflammatory bowel disease. The Journal of Nutritional Biochemistry, 27, 181-192. https://doi.org/10.1016/j.jnutbio.2015.08.030</Citation>
</Reference>
<Reference>
<Citation>Croasdell, A., Duffney, P. F., Kim, N., Lacy, S. H., Sime, P. J., & Phipps, R. P. (2015). PPARgamma and the innate immune system mediate the resolution of inflammation. PPAR Research, 2015, 549691. https://doi.org/10.1155/2015/549691</Citation>
</Reference>
<Reference>
<Citation>De Fazio, L., Spisni, E., Cavazza, E., Strillacci, A., Candela, M., Centanni, M., … Valerii, M. C. (2016). Dietary geraniol by oral or enema administration strongly reduces dysbiosis and systemic inflammation in dextran sulfate sodium-treated mice. Frontiers in Pharmacology, 7, 38. https://doi.org/10.3389/fphar.2016.00038</Citation>
</Reference>
<Reference>
<Citation>De Filippis, D., Esposito, G., Cirillo, C., Cipriano, M., De Winter, B. Y., Scuderi, C., … Iuvone, T. (2011). Cannabidiol reduces intestinal inflammation through the control of neuroimmune axis. PLoS One, 6(12), e28159. https://doi.org/10.1371/journal.pone.0028159</Citation>
</Reference>
<Reference>
<Citation>Deguchi, Y., Andoh, A., Inatomi, O., Yagi, Y., Bamba, S., Araki, Y., … Fujiyama, Y. (2007). Curcumin prevents the development of dextran sulfate sodium (DSS)-induced experimental colitis. Digestive Diseases and Sciences, 52(11), 2993-2998. https://doi.org/10.1007/s10620-006-9138-9</Citation>
</Reference>
<Reference>
<Citation>Desreumaux, P., Dubuquoy, L., Nutten, S., Peuchmaur, M., Englaro, W., Schoonjans, K., … Auwerx, J. (2001). Attenuation of colon inflammation through activators of the retinoid X receptor (RXR)/peroxisome proliferator-activated receptor gamma (PPARgamma) heterodimer. A basis for new therapeutic strategies. The Journal of Experimental Medicine, 193(7), 827-838.</Citation>
</Reference>
<Reference>
<Citation>Dieterich, W., Schink, M., & Zopf, Y. (2018). Microbiota in the gastrointestinal tract. Med Sci (Basel), 6(4), pii: E116. https://doi.org/10.3390/medsci6040116</Citation>
</Reference>
<Reference>
<Citation>Dubuquoy, L., Rousseaux, C., Thuru, X., Peyrin-Biroulet, L., Romano, O., Chavatte, P., … Desreumaux, P. (2006). PPARgamma as a new therapeutic target in inflammatory bowel diseases. Gut, 55(9), 1341-1349. https://doi.org/10.1136/gut.2006.093484</Citation>
</Reference>
<Reference>
<Citation>Ebrahimi, A., & Schluesener, H. (2012). Natural polyphenols against neurodegenerative disorders: Potentials and pitfalls. Ageing Research Reviews, 11(2), 329-345. https://doi.org/10.1016/j.arr.2012.01.006</Citation>
</Reference>
<Reference>
<Citation>Espin, J. C., Gonzalez-Sarrias, A., & Tomas-Barberan, F. A. (2017). The gut microbiota: A key factor in the therapeutic effects of (poly)phenols. Biochemical Pharmacology, 139, 82-93. https://doi.org/10.1016/j.bcp.2017.04.033</Citation>
</Reference>
<Reference>
<Citation>Esposito, E., Mazzon, E., Paterniti, I., Dal Toso, R., Pressi, G., Caminiti, R., & Cuzzocrea, S. (2010). PPAR-alpha contributes to the anti-inflammatory activity of verbascoside in a model of inflammatory bowel disease in mice. PPAR Research, 2010, 917312. https://doi.org/10.1155/2010/917312</Citation>
</Reference>
<Reference>
<Citation>Finkelstein, R. (2013). Abscisic acid synthesis and response. Arabidopsis Book, 11, e0166. https://doi.org/10.1199/tab.0166</Citation>
</Reference>
<Reference>
<Citation>Fuhr, L., Rousseau, M., Plauth, A., Schroeder, F. C., & Sauer, S. (2015). Amorfrutins are natural PPARgamma agonists with potent anti-inflammatory properties. Journal of Natural Products, 78(5), 1160-1164. https://doi.org/10.1021/np500747y</Citation>
</Reference>
<Reference>
<Citation>Gao, Z., Yu, C., Liang, H., Wang, X., Liu, Y., Li, X., … Fan, H. (2018). Andrographolide derivative CX-10 ameliorates dextran sulphate sodium-induced ulcerative colitis in mice: Involvement of NF-kappaB and MAPK signalling pathways. International Immunopharmacology, 57, 82-90. https://doi.org/10.1016/j.intimp.2018.02.012</Citation>
</Reference>
<Reference>
<Citation>Gonzalez, R., Ballester, I., Lopez-Posadas, R., Suarez, M. D., Zarzuelo, A., Martinez-Augustin, O., & Sanchez de Medina, F. (2011). Effects of flavonoids and other polyphenols on inflammation. Critical Reviews in Food Science and Nutrition, 51(4), 331-362. https://doi.org/10.1080/10408390903584094</Citation>
</Reference>
<Reference>
<Citation>Gopu, B., Dileep, R., Rani, M. U., Kumar, C. S., Kumar, M. V., & Reddy, A. G. (2015). Protective role of curcumin and flunixin against acetic acid-induced inflammatory bowel disease via modulating inflammatory mediators and cytokine profile in rats. Journal of Environmental Pathology, Toxicology and Oncology, 34(4), 309-320.</Citation>
</Reference>
<Reference>
<Citation>Goto, T., Takahashi, N., Hirai, S., & Kawada, T. (2010). Various terpenoids derived from herbal and dietary plants function as PPAR modulators and regulate carbohydrate and lipid metabolism. PPAR Research, 2010, 483958. https://doi.org/10.1155/2010/483958</Citation>
</Reference>
<Reference>
<Citation>Guo, M., Ding, S., Zhao, C., Gu, X., He, X., Huang, K., … Xu, W. (2015). Red ginseng and semen coicis can improve the structure of gut microbiota and relieve the symptoms of ulcerative colitis. Journal of Ethnopharmacology, 162, 7-13. https://doi.org/10.1016/j.jep.2014.12.029</Citation>
</Reference>
<Reference>
<Citation>Guri, A. J., Hontecillas, R., & Bassaganya-Riera, J. (2010). Abscisic acid ameliorates experimental IBD by downregulating cellular adhesion molecule expression and suppressing immune cell infiltration. Clinical Nutrition, 29(6), 824-831. https://doi.org/10.1016/j.clnu.2010.02.009</Citation>
</Reference>
<Reference>
<Citation>Hanai, H., Iida, T., Takeuchi, K., Watanabe, F., Maruyama, Y., Andoh, A., … Koide, Y. (2006). Curcumin maintenance therapy for ulcerative colitis: Randomized, multicenter, double-blind, placebo-controlled trial. Clinical Gastroenterology and Hepatology, 4(12), 1502-1506. https://doi.org/10.1016/j.cgh.2006.08.008</Citation>
</Reference>
<Reference>
<Citation>Harbord, M., Eliakim, R., Bettenworth, D., Karmiris, K., Katsanos, K., Kopylov, U., … Colitis, O. (2017). Third European evidence-based consensus on diagnosis and management of ulcerative colitis. Part 2: Current management. Journal of Crohn's & Colitis, 11(7), 769-784. https://doi.org/10.1093/ecco-jcc/jjx009</Citation>
</Reference>
<Reference>
<Citation>Hasan, A. U., Rahman, A., & Kobori, H. (2019). Interactions between host PPARs and gut microbiota in health and disease. International Journal of Molecular Sciences, 20(2), pii: E387. https://doi.org/10.3390/ijms20020387</Citation>
</Reference>
<Reference>
<Citation>Hasan, N., & Yang, H. (2019). Factors affecting the composition of the gut microbiota, and its modulation. PeerJ, 7, e7502. https://doi.org/10.7717/peerj.7502</Citation>
</Reference>
<Reference>
<Citation>Hausmann, M., Obermeier, F., Paper, D. H., Balan, K., Dunger, N., Menzel, K., … Rogler, G. (2007). In vivo treatment with the herbal phenylethanoid acteoside ameliorates intestinal inflammation in dextran sulphate sodium-induced colitis. Clinical and Experimental Immunology, 148(2), 373-381. https://doi.org/10.1111/j.1365-2249.2007.03350.x</Citation>
</Reference>
<Reference>
<Citation>He, J., Zhou, S., Li, X., Wang, C., Yu, Y., Chen, X., & Lu, Y. (2018). Pharmacokinetic evaluation of beta-caryophyllene alcohol in rats and beagle dogs. Xenobiotica, 48(8), 845-850. https://doi.org/10.1080/00498254.2017.1367441</Citation>
</Reference>
<Reference>
<Citation>He, X., Zheng, Z., Yang, X., Lu, Y., Chen, N., & Chen, W. (2012). Tetramethylpyrazine attenuates PPAR-gamma antagonist-deteriorated oxazolone-induced colitis in mice. Molecular Medicine Reports, 5(3), 645-650. https://doi.org/10.3892/mmr.2011.721</Citation>
</Reference>
<Reference>
<Citation>Head, K., & Jurenka, J. S. (2004). Inflammatory bowel disease. Part II: Crohn's disease-Pathophysiology and conventional and alternative treatment options. Alternative Medicine Review, 9(4), 360-401.</Citation>
</Reference>
<Reference>
<Citation>Heming, M., Gran, S., Jauch, S. L., Fischer-Riepe, L., Russo, A., Klotz, L., … Barczyk-Kahlert, K. (2018). Peroxisome proliferator-activated receptor-gamma modulates the response of macrophages to lipopolysaccharide and glucocorticoids. Frontiers in Immunology, 9, 893. https://doi.org/10.3389/fimmu.2018.00893</Citation>
</Reference>
<Reference>
<Citation>Hirai, S., Takahashi, N., Goto, T., Lin, S., Uemura, T., Yu, R., & Kawada, T. (2010). Functional food targeting the regulation of obesity-induced inflammatory responses and pathologies. Mediators of Inflammation, 2010, 367838. https://doi.org/10.1155/2010/367838</Citation>
</Reference>
<Reference>
<Citation>Home, P. (2011). Safety of PPAR agonists. Diabetes Care, 34(Suppl 2), S215-S219. https://doi.org/10.2337/dc11-s233</Citation>
</Reference>
<Reference>
<Citation>Hontecillas, R., & Bassaganya-Riera, J. (2012). Expression of PPAR gamma in intestinal epithelial cells is dispensable for the prevention of colitis by dietary abscisic acid. ESPEN J, 7(5), e189-e195. https://doi.org/10.1016/j.clnme.2012.07.002</Citation>
</Reference>
<Reference>
<Citation>Hontecillas, R., Wannemeulher, M. J., Zimmerman, D. R., Hutto, D. L., Wilson, J. H., Ahn, D. U., & Bassaganya-Riera, J. (2002). Nutritional regulation of porcine bacterial-induced colitis by conjugated linoleic acid. The Journal of Nutrition, 132(7), 2019-2027.</Citation>
</Reference>
<Reference>
<Citation>Hou, Y. C., Hsiu, S. L., Ching, H., Lin, Y. T., Tsai, S. Y., Wen, K. C., & Chao, P. D. (2005). Profound difference of metabolic pharmacokinetics between pure glycyrrhizin and glycyrrhizin in licorice decoction. Life Sciences, 76(10), 1167-1176. https://doi.org/10.1016/j.lfs.2004.10.020</Citation>
</Reference>
<Reference>
<Citation>Inoue, H., Jiang, X. F., Katayama, T., Osada, S., Umesono, K., & Namura, S. (2003). Brain protection by resveratrol and fenofibrate against stroke requires peroxisome proliferator-activated receptor alpha in mice. Neuroscience Letters, 352(3), 203-206.</Citation>
</Reference>
<Reference>
<Citation>Iranshahy, M., Javadi, B., Iranshahi, M., Jahanbakhsh, S. P., Mahyari, S., Hassani, F. V., & Karimi, G. (2017). A review of traditional uses, phytochemistry and pharmacology of Portulaca oleracea L. Journal of Ethnopharmacology, 205, 158-172. https://doi.org/10.1016/j.jep.2017.05.004</Citation>
</Reference>
<Reference>
<Citation>Jia, Q., Ivanov, I., Zlatev, Z. Z., Alaniz, R. C., Weeks, B. R., Callaway, E. S., … Chapkin, R. S. (2011). Dietary fish oil and curcumin combine to modulate colonic cytokinetics and gene expression in dextran sodium sulphate-treated mice. The British Journal of Nutrition, 106(4), 519-529. https://doi.org/10.1017/S0007114511000390</Citation>
</Reference>
<Reference>
<Citation>Jian, Y. T., Mai, G. F., Wang, J. D., Zhang, Y. L., Luo, R. C., & Fang, Y. X. (2005). Preventive and therapeutic effects of NF-kappaB inhibitor curcumin in rats colitis induced by trinitrobenzene sulfonic acid. World Journal of Gastroenterology, 11(12), 1747-1752.</Citation>
</Reference>
<Reference>
<Citation>Jian, Y. T., Wang, J. D., Mai, G. F., Zhang, Y. L., & Lai, Z. S. (2004). Modulation of intestinal mucosal inflammatory factors by curcumin in rats with colitis. Di Yi Jun Yi Da Xue Xue Bao, 24(12), 1353-1358.</Citation>
</Reference>
<Reference>
<Citation>Jiang, H., Deng, C. S., Zhang, M., & Xia, J. (2006). Curcumin-attenuated trinitrobenzene sulphonic acid induces chronic colitis by inhibiting expression of cyclooxygenase-2. World Journal of Gastroenterology, 12(24), 3848-3853.</Citation>
</Reference>
<Reference>
<Citation>Ju, S., Ge, Y., Li, P., Tian, X., Wang, H., Zheng, X., & Ju, S. (2018). Dietary quercetin ameliorates experimental colitis in mouse by remodeling the function of colonic macrophages via a heme oxygenase-1-dependent pathway. Cell Cycle, 17(1), 53-63. https://doi.org/10.1080/15384101.2017.1387701</Citation>
</Reference>
<Reference>
<Citation>Kao, N. J., Hu, J. Y., Wu, C. S., & Kong, Z. L. (2016). Curcumin represses the activity of inhibitor-kappaB kinase in dextran sulfate sodium-induced colitis by S-nitrosylation. International Immunopharmacology, 38, 1-7. https://doi.org/10.1016/j.intimp.2016.05.015</Citation>
</Reference>
<Reference>
<Citation>Kedia, S., Bhatia, V., Thareja, S., Garg, S., Mouli, V. P., Bopanna, S., … Ahuja, V. (2017). Low dose oral curcumin is not effective in induction of remission in mild to moderate ulcerative colitis: Results from a randomized double blind placebo controlled trial. World J Gastrointest Pharmacol Ther, 8(2), 147-154. https://doi.org/10.4292/wjgpt.v8.i2.147</Citation>
</Reference>
<Reference>
<Citation>Keihanian, F., Saeidinia, A., Bagheri, R. K., Johnston, T. P., & Sahebkar, A. (2017). Curcumin, hemostasis, thrombosis and coagulation. Journal of Cellular Physiology, 233, 4497-4511. https://doi.org/10.1002/jcp.26249</Citation>
</Reference>
<Reference>
<Citation>Kelly, D., Campbell, J. I., King, T. P., Grant, G., Jansson, E. A., Coutts, A. G., … Conway, S. (2004). Commensal anaerobic gut bacteria attenuate inflammation by regulating nuclear-cytoplasmic shuttling of PPAR-gamma and RelA. Nature Immunology, 5(1), 104-112. https://doi.org/10.1038/ni1018</Citation>
</Reference>
<Reference>
<Citation>Kho, Z. Y., & Lal, S. K. (2018). The human gut microbiome-A potential controller of wellness and disease. Frontiers in Microbiology, 9, 1835. https://doi.org/10.3389/fmicb.2018.01835</Citation>
</Reference>
<Reference>
<Citation>Kim, D. H. (2015). Gut microbiota-mediated drug-antibiotic interactions. Drug Metabolism and Disposition, 43(10), 1581-1589. https://doi.org/10.1124/dmd.115.063867</Citation>
</Reference>
<Reference>
<Citation>Kim, Y., Lim, H. J., Jang, H. J., Lee, S., Jung, K., Lee, S. W., … Rho, M. C. (2018). Portulaca oleracea extracts and their active compounds ameliorate inflammatory bowel diseases in vitro and in vivo by modulating TNF-alpha, IL-6 and IL-1beta signalling. Food Research International, 106, 335-343. https://doi.org/10.1016/j.foodres.2017.12.058</Citation>
</Reference>
<Reference>
<Citation>Kliewer, S. A., Sundseth, S. S., Jones, S. A., Brown, P. J., Wisely, G. B., Koble, C. S., … Lehmann, J. M. (1997). Fatty acids and eicosanoids regulate gene expression through direct interactions with peroxisome proliferator-activated receptors alpha and gamma. Proceedings of the National Academy of Sciences of the United States of America, 94(9), 4318-4323.</Citation>
</Reference>
<Reference>
<Citation>Kliewer, S. A., Umesono, K., Noonan, D. J., Heyman, R. A., & Evans, R. M. (1992). Convergence of 9-cis retinoic acid and peroxisome proliferator signalling pathways through heterodimer formation of their receptors. Nature, 358(6389), 771-774. https://doi.org/10.1038/358771a0</Citation>
</Reference>
<Reference>
<Citation>Koh, A., De Vadder, F., Kovatcheva-Datchary, P., & Backhed, F. (2016). From dietary fiber to host physiology: Short-chain fatty acids as key bacterial metabolites. Cell, 165(6), 1332-1345. https://doi.org/10.1016/j.cell.2016.05.041</Citation>
</Reference>
<Reference>
<Citation>Kohno, H., Suzuki, R., Sugie, S., & Tanaka, T. (2005). Suppression of colitis-related mouse colon carcinogenesis by a COX-2 inhibitor and PPAR ligands. BMC Cancer, 5, 46. https://doi.org/10.1186/1471-2407-5-46</Citation>
</Reference>
<Reference>
<Citation>Kong, R., Luo, H., Wang, N., Li, J., Xu, S., Chen, K., … Lu, J. (2018). Portulaca extract attenuates development of dextran sulfate sodium induced colitis in mice through activation of PPARgamma. PPAR Research, 2018, 6079101. https://doi.org/10.1155/2018/6079101</Citation>
</Reference>
<Reference>
<Citation>Kudo, T., Okamura, S., Zhang, Y., Masuo, T., & Mori, M. (2011). Topical application of glycyrrhizin preparation ameliorates experimentally induced colitis in rats. World Journal of Gastroenterology, 17(17), 2223-2228. https://doi.org/10.3748/wjg.v17.i17.2223</Citation>
</Reference>
<Reference>
<Citation>Lambert, J. D., Hong, J., Yang, G. Y., Liao, J., & Yang, C. S. (2005). Inhibition of carcinogenesis by polyphenols: Evidence from laboratory investigations. The American Journal of Clinical Nutrition, 81(1 Suppl), 284S-291S.</Citation>
</Reference>
<Reference>
<Citation>Lang, A., Salomon, N., Wu, J. C., Kopylov, U., Lahat, A., Har-Noy, O., … Ben-Horin, S. (2015). Curcumin in combination with mesalamine induces remission in patients with mild-to-moderate ulcerative colitis in a randomized controlled trial. Clinical Gastroenterology and Hepatology, 13(8), 1444-1449 e1441. https://doi.org/10.1016/j.cgh.2015.02.019</Citation>
</Reference>
<Reference>
<Citation>Larmonier, C. B., Uno, J. K., Lee, K. M., Karrasch, T., Laubitz, D., Thurston, R., … Kiela, P. R. (2008). Limited effects of dietary curcumin on Th-1 driven colitis in IL-10 deficient mice suggest an IL-10-dependent mechanism of protection. American Journal of Physiology. Gastrointestinal and Liver Physiology, 295(5), G1079-G1091. https://doi.org/10.1152/ajpgi.90365.2008</Citation>
</Reference>
<Reference>
<Citation>Larrosa, M., Yanez-Gascon, M. J., Selma, M. V., Gonzalez-Sarrias, A., Toti, S., Ceron, J. J., … Espin, J. C. (2009). Effect of a low dose of dietary resveratrol on colon microbiota, inflammation and tissue damage in a DSS-induced colitis rat model. Journal of Agricultural and Food Chemistry, 57(6), 2211-2220. https://doi.org/10.1021/jf803638d</Citation>
</Reference>
<Reference>
<Citation>Lee, D., Albenberg, L., Compher, C., Baldassano, R., Piccoli, D., Lewis, J. D., & Wu, G. D. (2015). Diet in the pathogenesis and treatment of inflammatory bowel diseases. Gastroenterology, 148(6), 1087-1106. https://doi.org/10.1053/j.gastro.2015.01.007</Citation>
</Reference>
<Reference>
<Citation>Lee, Y., Jeong, S., Kim, W., Kim, H., Yoon, J. H., Jeong, S. H., & Jung, Y. (2013). Glycyrrhizin enhances therapeutic activity of a colon-specific methylprednisolone prodrug against experimental colitis. Digestive Diseases and Sciences, 58(5), 1226-1234. https://doi.org/10.1007/s10620-012-2495-7</Citation>
</Reference>
<Reference>
<Citation>Lefebvre, A. M., Chen, I., Desreumaux, P., Najib, J., Fruchart, J. C., Geboes, K., … Auwerx, J. (1998). Activation of the peroxisome proliferator-activated receptor gamma promotes the development of colon tumors in C57BL/6J-APCMin/+ mice. Nature Medicine, 4(9), 1053-1057. https://doi.org/10.1038/2036</Citation>
</Reference>
<Reference>
<Citation>Lewis, S. N., Bassaganya-Riera, J., & Bevan, D. R. (2010). Virtual screening as a technique for PPAR modulator discovery. PPAR Research, 2010, 861238. https://doi.org/10.1155/2010/861238</Citation>
</Reference>
<Reference>
<Citation>Lewis, S. N., Brannan, L., Guri, A. J., Lu, P., Hontecillas, R., Bassaganya-Riera, J., & Bevan, D. R. (2011). Dietary alpha-eleostearic acid ameliorates experimental inflammatory bowel disease in mice by activating peroxisome proliferator-activated receptor-gamma. PLoS One, 6(8), e24031. https://doi.org/10.1371/journal.pone.0024031</Citation>
</Reference>
<Reference>
<Citation>Li, C. P., Li, J. H., He, S. Y., Chen, O., & Shi, L. (2015). Effect of curcumin on p38MAPK expression in DSS-induced murine ulcerative colitis. Genetics and Molecular Research, 14(2), 3450-3458. https://doi.org/10.4238/2015.April.15.8</Citation>
</Reference>
<Reference>
<Citation>Li, H. B., & Chen, F. (2005). Isolation and purification of baicalein, wogonin and oroxylin a from the medicinal plant Scutellaria baicalensis by high-speed counter-current chromatography. Journal of Chromatography. A, 1074(1-2), 107-110. https://doi.org/10.1016/j.chroma.2005.03.088</Citation>
</Reference>
<Reference>
<Citation>Linard, C., Gremy, O., & Benderitter, M. (2008). Reduction of peroxisome proliferation-activated receptor gamma expression by gamma-irradiation as a mechanism contributing to inflammatory response in rat colon: Modulation by the 5-aminosalicylic acid agonist. The Journal of Pharmacology and Experimental Therapeutics, 324(3), 911-920. https://doi.org/10.1124/jpet.107.129122</Citation>
</Reference>
<Reference>
<Citation>Ling, S., & Xu, J. W. (2016). Biological activities of 2,3,5,4'-tetrahydroxystilbene-2-O-beta-D-glucoside in antiaging and antiaging-related disease treatments. Oxidative Medicine and Cellular Longevity, 2016, 4973239. https://doi.org/10.1155/2016/4973239</Citation>
</Reference>
<Reference>
<Citation>Lipinski, C. A., Lombardo, F., Dominy, B. W., & Feeney, P. J. (2001). Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings. Advanced Drug Delivery Reviews, 46(1-3), 3-26.</Citation>
</Reference>
<Reference>
<Citation>Liu, L., Liu, Y. L., Liu, G. X., Chen, X., Yang, K., Yang, Y. X., … Gan, H. T. (2013). Curcumin ameliorates dextran sulfate sodium-induced experimental colitis by blocking STAT3 signaling pathway. International Immunopharmacology, 17(2), 314-320. https://doi.org/10.1016/j.intimp.2013.06.020</Citation>
</Reference>
<Reference>
<Citation>Liu, R. H. (2004). Potential synergy of phytochemicals in cancer prevention: Mechanism of action. The Journal of Nutrition, 134(12 Suppl), 3479S-3485S.</Citation>
</Reference>
<Reference>
<Citation>Liu, W., Guo, W., Guo, L., Gu, Y., Cai, P., Xie, N., … Xu, Q. (2014). Andrographolide sulfonate ameliorates experimental colitis in mice by inhibiting Th1/Th17 response. International Immunopharmacology, 20(2), 337-345. https://doi.org/10.1016/j.intimp.2014.03.015</Citation>
</Reference>
<Reference>
<Citation>Liu, Y., Xiang, J., Liu, M., Wang, S., Lee, R. J., & Ding, H. (2011). Protective effects of glycyrrhizic acid by rectal treatment on a TNBS-induced rat colitis model. The Journal of Pharmacy and Pharmacology, 63(3), 439-446. https://doi.org/10.1111/j.2042-7158.2010.01185.x</Citation>
</Reference>
<Reference>
<Citation>Lopes de Oliveira, G. A., Alarcon de la Lastra, C., Rosillo, M. A., Castejon Martinez, M. L., Sanchez-Hidalgo, M., Rolim Medeiros, J. V., & Villegas, I. (2019). Preventive effect of bergenin against the development of TNBS-induced acute colitis in rats is associated with inflammatory mediators inhibition and NLRP3/ASC inflammasome signaling pathways. Chemico-Biological Interactions, 297, 25-33. https://doi.org/10.1016/j.cbi.2018.10.020</Citation>
</Reference>
<Reference>
<Citation>Lopresti, A. L. (2018). The problem of curcumin and its bioavailability: Could its gastrointestinal influence contribute to its overall health-enhancing effects? Advances in Nutrition, 9(1), 41-50. https://doi.org/10.1093/advances/nmx011</Citation>
</Reference>
<Reference>
<Citation>Lu, Y., Zhu, M., Chen, W., Yin, L., Zhu, J., Chen, N., & Chen, W. (2014). Tetramethylpyrazine improves oxazolone-induced colitis by inhibiting the NF-kappaB pathway. Clinical and Investigative Medicine, 37(1), E1-E9.</Citation>
</Reference>
<Reference>
<Citation>Lubbad, A., Oriowo, M. A., & Khan, I. (2009). Curcumin attenuates inflammation through inhibition of TLR-4 receptor in experimental colitis. Molecular and Cellular Biochemistry, 322(1-2), 127-135. https://doi.org/10.1007/s11010-008-9949-4</Citation>
</Reference>
<Reference>
<Citation>Manach, C., Scalbert, A., Morand, C., Remesy, C., & Jimenez, L. (2004). Polyphenols: Food sources and bioavailability. The American Journal of Clinical Nutrition, 79(5), 727-747.</Citation>
</Reference>
<Reference>
<Citation>Martelli, L., Ragazzi, E., di Mario, F., Martelli, M., Castagliuolo, I., Dal Maschio, M., … Brun, P. (2007). A potential role for the vanilloid receptor TRPV1 in the therapeutic effect of curcumin in dinitrobenzene sulphonic acid-induced colitis in mice. Neurogastroenterology and Motility, 19(8), 668-674. https://doi.org/10.1111/j.1365-2982.2007.00928.x</Citation>
</Reference>
<Reference>
<Citation>Martin, H. (2010). Role of PPAR-gamma in inflammation. Prospects for therapeutic intervention by food components. Mutation Research, 690(1-2), 57-63.</Citation>
</Reference>
<Reference>
<Citation>Martins, N., Petropoulos, S., & Ferreira, I. C. (2016). Chemical composition and bioactive compounds of garlic (Allium sativum L.) as affected by pre- and post-harvest conditions: A review. Food Chemistry, 211, 41-50. https://doi.org/10.1016/j.foodchem.2016.05.029</Citation>
</Reference>
<Reference>
<Citation>Mazzon, E., Esposito, E., Di Paola, R., Riccardi, L., Caminiti, R., Dal Toso, R., … Cuzzocrea, S. (2009). Effects of verbascoside biotechnologically produced by Syringa vulgaris plant cell cultures in a rodent model of colitis. Naunyn-Schmiedeberg's Archives of Pharmacology, 380(1), 79-94. https://doi.org/10.1007/s00210-009-0400-5</Citation>
</Reference>
<Reference>
<Citation>Medicherla, K., Sahu, B. D., Kuncha, M., Kumar, J. M., Sudhakar, G., & Sistla, R. (2015). Oral administration of geraniol ameliorates acute experimental murine colitis by inhibiting pro-inflammatory cytokines and NF-kappaB signaling. Food & Function, 6(9), 2984-2995. https://doi.org/10.1039/c5fo00405e</Citation>
</Reference>
<Reference>
<Citation>Meeran, M. F. N., Al Taee, H., Azimullah, S., Tariq, S., Adeghate, E., & Ojha, S. (2019). Beta-caryophyllene, a natural bicyclic sesquiterpene attenuates doxorubicin-induced chronic cardiotoxicity via activation of myocardial cannabinoid type-2 (CB2) receptors in rats. Chemico-Biological Interactions, 304, 158-167. https://doi.org/10.1016/j.cbi.2019.02.028</Citation>
</Reference>
<Reference>
<Citation>M'Koma, A. E. (2013). Inflammatory bowel disease: An expanding global health problem. Clin Med Insights Gastroenterol, 6, 33-47. https://doi.org/10.4137/CGast.S12731</Citation>
</Reference>
<Reference>
<Citation>Monsalve, F. A., Pyarasani, R. D., Delgado-Lopez, F., & Moore-Carrasco, R. (2013). Peroxisome proliferator-activated receptor targets for the treatment of metabolic diseases. Mediators of Inflammation, 2013, 549627-549618. https://doi.org/10.1155/2013/549627</Citation>
</Reference>
<Reference>
<Citation>Mosser, D. M., & Edwards, J. P. (2008). Exploring the full spectrum of macrophage activation. Nature Reviews. Immunology, 8(12), 958-969. https://doi.org/10.1038/nri2448</Citation>
</Reference>
<Reference>
<Citation>Mouzaoui, S., Rahim, I., & Djerdjouri, B. (2012). Aminoguanidine and curcumin attenuated tumor necrosis factor (TNF)-alpha-induced oxidative stress, colitis and hepatotoxicity in mice. International Immunopharmacology, 12(1), 302-311. https://doi.org/10.1016/j.intimp.2011.10.010</Citation>
</Reference>
<Reference>
<Citation>Nishiumi, S., Miyamoto, S., Kawabata, K., Ohnishi, K., Mukai, R., Murakami, A., … Terao, J. (2011). Dietary flavonoids as cancer-preventive and therapeutic biofactors. Frontiers in Bioscience (Scholar Edition), 3, 1332-1362.</Citation>
</Reference>
<Reference>
<Citation>Nolte, R. T., Wisely, G. B., Westin, S., Cobb, J. E., Lambert, M. H., Kurokawa, R., … Milburn, M. V. (1998). Ligand binding and co-activator assembly of the peroxisome proliferator-activated receptor-gamma. Nature, 395(6698), 137-143. https://doi.org/10.1038/25931</Citation>
</Reference>
<Reference>
<Citation>Nones, K., Dommels, Y. E., Martell, S., Butts, C., McNabb, W. C., Park, Z. A., … Roy, N. C. (2009). The effects of dietary curcumin and rutin on colonic inflammation and gene expression in multidrug resistance gene-deficient (mdr1a−/−) mice, a model of inflammatory bowel diseases. The British Journal of Nutrition, 101(2), 169-181. https://doi.org/10.1017/S0007114508009847</Citation>
</Reference>
<Reference>
<Citation>Nunes, S., Danesi, F., Del Rio, D., & Silva, P. (2018). Resveratrol and inflammatory bowel disease: The evidence so far. Nutrition Research Reviews, 31(1), 85-97. https://doi.org/10.1017/S095442241700021X</Citation>
</Reference>
<Reference>
<Citation>Ortuno Sahagun, D., Marquez-Aguirre, A. L., Quintero-Fabian, S., Lopez-Roa, R. I., & Rojas-Mayorquin, A. E. (2012). Modulation of PPAR-gamma by nutraceutics as complementary treatment for obesity-related disorders and inflammatory diseases. PPAR Research, 2012, 318613-318617. https://doi.org/10.1155/2012/318613</Citation>
</Reference>
<Reference>
<Citation>Panes, J., & Alfaro, I. (2017). New treatment strategies for ulcerative colitis. Expert Review of Clinical Immunology, 13(10), 963-973. https://doi.org/10.1080/1744666X.2017.1343668</Citation>
</Reference>
<Reference>
<Citation>Pavan, B., Dalpiaz, A., Marani, L., Beggiato, S., Ferraro, L., Canistro, D., … Spisni, E. (2018). Geraniol pharmacokinetics, bioavailability and its multiple effects on the liver antioxidant and xenobiotic-metabolizing enzymes. Frontiers in Pharmacology, 9, 18. https://doi.org/10.3389/fphar.2018.00018</Citation>
</Reference>
<Reference>
<Citation>Peng, F., Du, Q., Peng, C., Wang, N., Tang, H., Xie, X., … Chen, J. (2015). A review: The pharmacology of isoliquiritigenin. Phytotherapy Research, 29(7), 969-977. https://doi.org/10.1002/ptr.5348</Citation>
</Reference>
<Reference>
<Citation>Peyrin-Biroulet, L., Beisner, J., Wang, G., Nuding, S., Oommen, S. T., Kelly, D., … Chamaillard, M. (2010). Peroxisome proliferator-activated receptor gamma activation is required for maintenance of innate antimicrobial immunity in the colon. Proceedings of the National Academy of Sciences of the United States of America, 107(19), 8772-8777. https://doi.org/10.1073/pnas.0905745107</Citation>
</Reference>
<Reference>
<Citation>Ranaware, A. M., Banik, K., Deshpande, V., Padmavathi, G., Roy, N. K., Sethi, G., … Kunnumakkara, A. B. (2018). Magnolol: A neolignan from the Magnolia family for the prevention and treatment of cancer. International Journal of Molecular Sciences, 19(8), pii: E2362. https://doi.org/10.3390/ijms19082362</Citation>
</Reference>
<Reference>
<Citation>Reddy, R. C., Narala, V. R., Keshamouni, V. G., Milam, J. E., Newstead, M. W., & Standiford, T. J. (2008). Sepsis-induced inhibition of neutrophil chemotaxis is mediated by activation of peroxisome proliferator-activated receptor-{gamma}. Blood, 112(10), 4250-4258. https://doi.org/10.1182/blood-2007-12-128967</Citation>
</Reference>
<Reference>
<Citation>Reinglas, J., Gonczi, L., Kurt, Z., Bessissow, T., & Lakatos, P. L. (2018). Positioning of old and new biologicals and small molecules in the treatment of inflammatory bowel diseases. World Journal of Gastroenterology, 24(32), 3567-3582. https://doi.org/10.3748/wjg.v24.i32.3567</Citation>
</Reference>
<Reference>
<Citation>Rubin, D. C., Shaker, A., & Levin, M. S. (2012). Chronic intestinal inflammation: Inflammatory bowel disease and colitis-associated colon cancer. Frontiers in Immunology, 3, 107. https://doi.org/10.3389/fimmu.2012.00107</Citation>
</Reference>
<Reference>
<Citation>Salaritabar, A., Darvishi, B., Hadjiakhoondi, F., Manayi, A., Sureda, A., Nabavi, S. F., … Bishayee, A. (2017). Therapeutic potential of flavonoids in inflammatory bowel disease: A comprehensive review. World Journal of Gastroenterology, 23(28), 5097-5114. https://doi.org/10.3748/wjg.v23.i28.5097</Citation>
</Reference>
<Reference>
<Citation>Salh, B., Assi, K., Templeman, V., Parhar, K., Owen, D., Gomez-Munoz, A., & Jacobson, K. (2003). Curcumin attenuates DNB-induced murine colitis. American Journal of Physiology. Gastrointestinal and Liver Physiology, 285(1), G235-G243. https://doi.org/10.1152/ajpgi.00449.2002</Citation>
</Reference>
<Reference>
<Citation>Santangelo, C., Vari, R., Scazzocchio, B., Di Benedetto, R., Filesi, C., & Masella, R. (2007). Polyphenols, intracellular signalling and inflammation. Annali dell'Istituto Superiore di Sanità, 43(4), 394-405.</Citation>
</Reference>
<Reference>
<Citation>Saxena, A., Kaur, K., Hegde, S., Kalekhan, F. M., Baliga, M. S., & Fayad, R. (2014). Dietary agents and phytochemicals in the prevention and treatment of experimental ulcerative colitis. Journal of Traditional and Complementary Medicine, 4(4), 203-217. https://doi.org/10.4103/2225-4110.139111</Citation>
</Reference>
<Reference>
<Citation>Scalbert, A., Manach, C., Morand, C., Remesy, C., & Jimenez, L. (2005). Dietary polyphenols and the prevention of diseases. Critical Reviews in Food Science and Nutrition, 45(4), 287-306. https://doi.org/10.1080/1040869059096</Citation>
</Reference>
<Reference>
<Citation>Serra, D., Almeida, L. M., & Dinis, T. C. (2016). Anti-inflammatory protection afforded by cyanidin-3-glucoside and resveratrol in human intestinal cells via Nrf2 and PPAR-gamma: Comparison with 5-aminosalicylic acid. Chemico-Biological Interactions, 260, 102-109. https://doi.org/10.1016/j.cbi.2016.11.003</Citation>
</Reference>
<Reference>
<Citation>Sethuraman, S. N., Swaminathan, S., Nelson, S. B., Palaninathan, P. S., Gopalan, T. K., & Velayudham, P. (2015). Modulation of PPARgamma and TNFalpha by emu oil and glycyrrhizin in ulcerative colitis. Inflammopharmacology, 23(1), 47-56. https://doi.org/10.1007/s10787-014-0226-8</Citation>
</Reference>
<Reference>
<Citation>Shabbir, M. A., Khan, M. R., Saeed, M., Pasha, I., Khalil, A. A., & Siraj, N. (2017). Punicic acid: A striking health substance to combat metabolic syndromes in humans. Lipids in Health and Disease, 16(1), 99. https://doi.org/10.1186/s12944-017-0489-3</Citation>
</Reference>
<Reference>
<Citation>Shan, M., Yu, S., Yan, H., Guo, S., Xiao, W., Wang, Z., … Li, S. F. Y. (2017). A review on the phytochemistry, pharmacology, pharmacokinetics and toxicology of geniposide, a natural product. Molecules, 22(10), pii: E1689. https://doi.org/10.3390/molecules22101689</Citation>
</Reference>
<Reference>
<Citation>Shapiro, H., Singer, P., Halpern, Z., & Bruck, R. (2007). Polyphenols in the treatment of inflammatory bowel disease and acute pancreatitis. Gut, 56(3), 426-435. https://doi.org/10.1136/gut.2006.094599</Citation>
</Reference>
<Reference>
<Citation>Shapouri-Moghaddam, A., Mohammadian, S., Vazini, H., Taghadosi, M., Esmaeili, S. A., Mardani, F., … Sahebkar, A. (2018). Macrophage plasticity, polarization, and function in health and disease. Journal of Cellular Physiology, 233(9), 6425-6440. https://doi.org/10.1002/jcp.26429</Citation>
</Reference>
<Reference>
<Citation>Shen, P., Zhang, Z., He, Y., Gu, C., Zhu, K., Li, S., … Cao, Y. (2018). Magnolol treatment attenuates dextran sulphate sodium-induced murine experimental colitis by regulating inflammation and mucosal damage. Life Sciences, 196, 69-76. https://doi.org/10.1016/j.lfs.2018.01.016</Citation>
</Reference>
<Reference>
<Citation>Shi, L., Lin, Q., Li, X., Nie, Y., Sun, S., Deng, X., … Luo, F. (2017). Alliin, a garlic organosulfur compound, ameliorates gut inflammation through MAPK-NF-kappaB/AP-1/STAT-1 inactivation and PPAR-gamma activation. Molecular Nutrition & Food Research, 61(9). https://doi.org/10.1002/mnfr.201601013</Citation>
</Reference>
<Reference>
<Citation>Shi, L., Lin, Q., Yang, T., Nie, Y., Li, X., Liu, B., … Luo, F. (2016). Oral administration of Lentinus edodes beta-glucans ameliorates DSS-induced ulcerative colitis in mice via MAPK-Elk-1 and MAPK-PPARgamma pathways. Food & Function, 7(11), 4614-4627. https://doi.org/10.1039/c6fo01043a</Citation>
</Reference>
<Reference>
<Citation>Simeoli, R., Mattace Raso, G., Lama, A., Pirozzi, C., Santoro, A., Di Guida, F., … Meli, R. (2015). Preventive and therapeutic effects of Lactobacillus paracasei B21060-based synbiotic treatment on gut inflammation and barrier integrity in colitic mice. The Journal of Nutrition, 145(6), 1202-1210. https://doi.org/10.3945/jn.114.205989</Citation>
</Reference>
<Reference>
<Citation>Singla, V., Pratap Mouli, V., Garg, S. K., Rai, T., Choudhury, B. N., Verma, P., … Ahuja, V. (2014). Induction with NCB-02 (curcumin) enema for mild-to-moderate distal ulcerative colitis-A randomized, placebo-controlled, pilot study. Journal of Crohn's & Colitis, 8(3), 208-214. https://doi.org/10.1016/j.crohns.2013.08.006</Citation>
</Reference>
<Reference>
<Citation>Soubh, A. A., Abdallah, D. M., & El-Abhar, H. S. (2015). Geraniol ameliorates TNBS-induced colitis: Involvement of Wnt/beta-catenin, p38MAPK, NFkappaB, and PPARgamma signaling pathways. Life Sciences, 136, 142-150. https://doi.org/10.1016/j.lfs.2015.07.004</Citation>
</Reference>
<Reference>
<Citation>Spinks, E. A., & Fenwick, G. R. (1990). The determination of glycyrrhizin in selected UK liquorice products. Food Additives and Contaminants, 7(6), 769-778. https://doi.org/10.1080/02652039009373939</Citation>
</Reference>
<Reference>
<Citation>Su, C. G., Wen, X., Bailey, S. T., Jiang, W., Rangwala, S. M., Keilbaugh, S. A., … Wu, G. D. (1999). A novel therapy for colitis utilizing PPAR-gamma ligands to inhibit the epithelial inflammatory response. The Journal of Clinical Investigation, 104(4), 383-389. https://doi.org/10.1172/JCI7145</Citation>
</Reference>
<Reference>
<Citation>Sugimoto, K., Hanai, H., Tozawa, K., Aoshi, T., Uchijima, M., Nagata, T., & Koide, Y. (2002). Curcumin prevents and ameliorates trinitrobenzene sulfonic acid-induced colitis in mice. Gastroenterology, 123(6), 1912-1922. https://doi.org/10.1053/gast.2002.37050</Citation>
</Reference>
<Reference>
<Citation>Sun, Y., Li, L., Xie, R., Wang, B., Jiang, K., & Cao, H. (2019). Stress triggers flare of inflammatory bowel disease in children and adults. Frontiers in Pediatrics, 7, 432. https://doi.org/10.3389/fped.2019.00432</Citation>
</Reference>
<Reference>
<Citation>Toden, S., Theiss, A. L., Wang, X., & Goel, A. (2017). Essential turmeric oils enhance anti-inflammatory efficacy of curcumin in dextran sulfate sodium-induced colitis. Scientific Reports, 7(1), 814. https://doi.org/10.1038/s41598-017-00812-6</Citation>
</Reference>
<Reference>
<Citation>Tontonoz, P., & Spiegelman, B. M. (2008). Fat and beyond: The diverse biology of PPARgamma. Annual Review of Biochemistry, 77, 289-312. https://doi.org/10.1146/annurev.biochem.77.061307.091829</Citation>
</Reference>
<Reference>
<Citation>Topcu-Tarladacalisir, Y., Akpolat, M., Uz, Y. H., Kizilay, G., Sapmaz-Metin, M., Cerkezkayabekir, A., & Omurlu, I. K. (2013). Effects of curcumin on apoptosis and oxidoinflammatory regulation in a rat model of acetic acid-induced colitis: The roles of c-Jun N-terminal kinase and p38 mitogen-activated protein kinase. Journal of Medicinal Food, 16(4), 296-305. https://doi.org/10.1089/jmf.2012.2550</Citation>
</Reference>
<Reference>
<Citation>Uddin, M. K., Juraimi, A. S., Ali, M. E., & Ismail, M. R. (2012). Evaluation of antioxidant properties and mineral composition of Purslane (Portulaca oleracea L.) at different growth stages. International Journal of Molecular Sciences, 13(8), 10257-10267. https://doi.org/10.3390/ijms130810257</Citation>
</Reference>
<Reference>
<Citation>Ukil, A., Maity, S., Karmakar, S., Datta, N., Vedasiromoni, J. R., & Das, P. K. (2003). Curcumin, the major component of food flavour turmeric, reduces mucosal injury in trinitrobenzene sulphonic acid-induced colitis. British Journal of Pharmacology, 139(2), 209-218. https://doi.org/10.1038/sj.bjp.0705241</Citation>
</Reference>
<Reference>
<Citation>Ung, V. Y., Foshaug, R. R., MacFarlane, S. M., Churchill, T. A., Doyle, J. S., Sydora, B. C., & Fedorak, R. N. (2010). Oral administration of curcumin emulsified in carboxymethyl cellulose has a potent anti-inflammatory effect in the IL-10 gene-deficient mouse model of IBD. Digestive Diseases and Sciences, 55(5), 1272-1277. https://doi.org/10.1007/s10620-009-0843-z</Citation>
</Reference>
<Reference>
<Citation>Vetuschi, A., Pompili, S., Gaudio, E., Latella, G., & Sferra, R. (2018). PPAR-gamma with its anti-inflammatory and anti-fibrotic action could be an effective therapeutic target in IBD. European Review for Medical and Pharmacological Sciences, 22(24), 8839-8848. https://doi.org/10.26355/eurrev_201812_16652</Citation>
</Reference>
<Reference>
<Citation>Vikram, P., Chiruvella, K. K., Ripain, I. H., & Arifullah, M. (2014). A recent review on phytochemical constituents and medicinal properties of kesum (Polygonum minus Huds.). Asian Pacific Journal of Tropical Biomedicine, 4(6), 430-435. https://doi.org/10.12980/APJTB.4.2014C1255</Citation>
</Reference>
<Reference>
<Citation>Vitali, R., Palone, F., Cucchiara, S., Negroni, A., Cavone, L., Costanzo, M., … Stronati, L. (2013). Dipotassium glycyrrhizate inhibits HMGB1-dependent inflammation and ameliorates colitis in mice. PLoS One, 8(6), e66527. https://doi.org/10.1371/journal.pone.0066527</Citation>
</Reference>
<Reference>
<Citation>Vitali, R., Palone, F., Pierdomenico, M., Negroni, A., Cucchiara, S., Aloi, M., … Stronati, L. (2015). Dipotassium glycyrrhizate via HMGB1 or AMPK signaling suppresses oxidative stress during intestinal inflammation. Biochemical Pharmacology, 97(3), 292-299. https://doi.org/10.1016/j.bcp.2015.07.039</Citation>
</Reference>
<Reference>
<Citation>Walle, T. (2011). Bioavailability of resveratrol. Annals of the new York Academy of Sciences, 1215, 9-15. https://doi.org/10.1111/j.1749-6632.2010.05842.x</Citation>
</Reference>
<Reference>
<Citation>Wang, K., Li, Y. F., Lv, Q., Li, X. M., Dai, Y., & Wei, Z. F. (2017). Bergenin, acting as an agonist of PPARgamma, ameliorates experimental colitis in mice through improving expression of SIRT1, and therefore inhibiting NF-kappaB-mediated macrophage activation. Frontiers in Pharmacology, 8, 981. https://doi.org/10.3389/fphar.2017.00981</Citation>
</Reference>
<Reference>
<Citation>Wang, L., Waltenberger, B., Pferschy-Wenzig, E. M., Blunder, M., Liu, X., Malainer, C., … Atanasov, A. G. (2014). Natural product agonists of peroxisome proliferator-activated receptor gamma (PPARgamma): A review. Biochemical Pharmacology, 92(1), 73-89. https://doi.org/10.1016/j.bcp.2014.07.018</Citation>
</Reference>
<Reference>
<Citation>Wang, X., Sun, Y., Zhao, Y., Ding, Y., Zhang, X., Kong, L., … Zhao, L. (2016). Oroxyloside prevents dextran sulfate sodium-induced experimental colitis in mice by inhibiting NF-kappaB pathway through PPARgamma activation. Biochemical Pharmacology, 106, 70-81. https://doi.org/10.1016/j.bcp.2016.02.019</Citation>
</Reference>
<Reference>
<Citation>Wang, X., Zhao, L., Han, T., Chen, S., & Wang, J. (2008). Protective effects of 2,3,5,4′-tetrahydroxystilbene-2-O-beta-d-glucoside, an active component of Polygonum multiflorum Thunb, on experimental colitis in mice. European Journal of Pharmacology, 578(2-3), 339-348. https://doi.org/10.1016/j.ejphar.2007.09.013</Citation>
</Reference>
<Reference>
<Citation>Weidner, C., de Groot, J. C., Prasad, A., Freiwald, A., Quedenau, C., Kliem, M., … Sauer, S. (2012). Amorfrutins are potent antidiabetic dietary natural products. Proceedings of the National Academy of Sciences of the United States of America, 109(19), 7257-7262. https://doi.org/10.1073/pnas.1116971109</Citation>
</Reference>
<Reference>
<Citation>Wu, M., Wu, Y., Deng, B., Li, J., Cao, H., Qu, Y., … Zhong, G. (2016). Isoliquiritigenin decreases the incidence of colitis-associated colorectal cancer by modulating the intestinal microbiota. Oncotarget, 7(51), 85318-85331. https://doi.org/10.18632/oncotarget.13347</Citation>
</Reference>
<Reference>
<Citation>Wu, X. M., & Tan, R. X. (2019). Interaction between gut microbiota and ethnomedicine constituents. Natural Product Reports, 36(5), 788-809. https://doi.org/10.1039/c8np00041g</Citation>
</Reference>
<Reference>
<Citation>Xiang, L., Liu, Y., Xie, C., Li, X., Yu, Y., Ye, M., & Chen, S. (2016). The chemical and genetic characteristics of Szechuan pepper (Zanthoxylum bungeanum and Z. armatum) cultivars and their suitable habitat. Frontiers in Plant Science, 7, 467. https://doi.org/10.3389/fpls.2016.00467</Citation>
</Reference>
<Reference>
<Citation>Xu, B., Li, Y. L., Xu, M., Yu, C. C., Lian, M. Q., Tang, Z. Y., … Lin, Y. (2017). Geniposide ameliorates TNBS-induced experimental colitis in rats via reducing inflammatory cytokine release and restoring impaired intestinal barrier function. Acta Pharmacologica Sinica, 38(5), 688-698. https://doi.org/10.1038/aps.2016.168</Citation>
</Reference>
<Reference>
<Citation>Yamazaki, K., Shimizu, M., Okuno, M., Matsushima-Nishiwaki, R., Kanemura, N., Araki, H., … Moriwaki, H. (2007). Synergistic effects of RXR alpha and PPAR gamma ligands to inhibit growth in human colon cancer cells-Phosphorylated RXR alpha is a critical target for colon cancer management. Gut, 56(11), 1557-1563. https://doi.org/10.1136/gut.2007.129858</Citation>
</Reference>
<Reference>
<Citation>Yang, J. Y., Zhong, X., Yum, H. W., Lee, H. J., Kundu, J. K., Na, H. K., & Surh, Y. J. (2013). Curcumin inhibits STAT3 signaling in the colon of dextran sulfate sodium-treated mice. J Cancer Prev, 18(2), 186-191.</Citation>
</Reference>
<Reference>
<Citation>Yang, M., Wang, J., Yang, C., Han, H., Rong, W., & Zhang, G. (2017). Oral administration of curcumin attenuates visceral hyperalgesia through inhibiting phosphorylation of TRPV1 in rat model of ulcerative colitis. Molecular Pain, 13, 1744806917726416. https://doi.org/10.1177/1744806917726416</Citation>
</Reference>
<Reference>
<Citation>Yang, X., Yan, Y., Li, J., Tang, Z., Sun, J., Zhang, H., … Liu, L. (2016). Protective effects of ethanol extract from Portulaca oleracea L on dextran sulphate sodium-induced mice ulcerative colitis involving anti-inflammatory and antioxidant. American Journal of Translational Research, 8(5), 2138-2148.</Citation>
</Reference>
<Reference>
<Citation>Yang, X. Y., Wang, L. H., Chen, T., Hodge, D. R., Resau, J. H., DaSilva, L., & Farrar, W. L. (2000). Activation of human T lymphocytes is inhibited by peroxisome proliferator-activated receptor gamma (PPARgamma) agonists. PPARgamma co-association with transcription factor NFAT. The Journal of Biological Chemistry, 275(7), 4541-4544.</Citation>
</Reference>
<Reference>
<Citation>Yang, Y., Yan, H., Jing, M., Zhang, Z., Zhang, G., Sun, Y., … Xu, L. (2016). Andrographolide derivative AL-1 ameliorates TNBS-induced colitis in mice: Involvement of NF-small ka, cyrillicB and PPAR-gamma signaling pathways. Scientific Reports, 6, 29716. https://doi.org/10.1038/srep29716</Citation>
</Reference>
<Reference>
<Citation>Yin, Y., Hou, G., Li, E., Wang, Q., & Kang, J. (2014). PPARgamma agonists regulate tobacco smoke-induced toll like receptor 4 expression in alveolar macrophages. Respiratory Research, 15, 28. https://doi.org/10.1186/1465-9921-15-28</Citation>
</Reference>
<Reference>
<Citation>Yuan, G. F., Chen, X. E., & Li, D. (2014). Conjugated linolenic acids and their bioactivities: A review. Food & Function, 5(7), 1360-1368. https://doi.org/10.1039/c4fo00037d</Citation>
</Reference>
<Reference>
<Citation>Yuan, H., Ji, W. S., Wu, K. X., Jiao, J. X., Sun, L. H., & Feng, Y. T. (2006). Anti-inflammatory effect of diammonium glycyrrhizinate in a rat model of ulcerative colitis. World Journal of Gastroenterology, 12(28), 4578-4581.</Citation>
</Reference>
<Reference>
<Citation>Yun, S. H., Han, S. H., & Park, J. I. (2018). Peroxisome proliferator-activated receptor gamma and PGC-1alpha in cancer: Dual actions as tumor promoter and suppressor. PPAR Research, 2018, 6727421. https://doi.org/10.1155/2018/6727421</Citation>
</Reference>
<Reference>
<Citation>Zeng, C., Xiao, J. H., Chang, M. J., & Wang, J. L. (2011). Beneficial effects of THSG on acetic acid-induced experimental colitis: Involvement of upregulation of PPAR-gamma and inhibition of the Nf-Kappab inflammatory pathway. Molecules, 16(10), 8552-8568. https://doi.org/10.3390/molecules16108552</Citation>
</Reference>
<Reference>
<Citation>Zeng, Z., Zhan, L., Liao, H., Chen, L., & Lv, X. (2013). Curcumin improves TNBS-induced colitis in rats by inhibiting IL-27 expression via the TLR4/NF-kappaB signaling pathway. Planta Medica, 79(2), 102-109. https://doi.org/10.1055/s-0032-1328057</Citation>
</Reference>
<Reference>
<Citation>Zhang, M., Deng, C., Zheng, J., Xia, J., & Sheng, D. (2006). Curcumin inhibits trinitrobenzene sulphonic acid-induced colitis in rats by activation of peroxisome proliferator-activated receptor gamma. International Immunopharmacology, 6(8), 1233-1242. https://doi.org/10.1016/j.intimp.2006.02.013</Citation>
</Reference>
<Reference>
<Citation>Zhang, X., Wu, J., Ye, B., Wang, Q., Xie, X., & Shen, H. (2016). Protective effect of curcumin on TNBS-induced intestinal inflammation is mediated through the JAK/STAT pathway. BMC Complementary and Alternative Medicine, 16(1), 299. https://doi.org/10.1186/s12906-016-1273-z</Citation>
</Reference>
<Reference>
<Citation>Zhang, Y., Fu, L. T., & Tang, F. (2018). The protective effects of magnolol on acute trinitrobenzene sulfonic acidinduced colitis in rats. Molecular Medicine Reports, 17(3), 3455-3464. https://doi.org/10.3892/mmr.2017.8321</Citation>
</Reference>
<Reference>
<Citation>Zhang, Z., Shen, P., Liu, J., Gu, C., Lu, X., Li, Y., … Zhang, N. (2017). In vivo study of the efficacy of the essential oil of Zanthoxylum bungeanum pericarp in dextran sulfate sodium-induced murine experimental colitis. Journal of Agricultural and Food Chemistry, 65(16), 3311-3319. https://doi.org/10.1021/acs.jafc.7b01323</Citation>
</Reference>
<Reference>
<Citation>Zhao, H., Zhang, X., Chen, X., Li, Y., Ke, Z., Tang, T., … Yang, J. (2014). Isoliquiritigenin, a flavonoid from licorice, blocks M2 macrophage polarization in colitis-associated tumorigenesis through downregulating PGE2 and IL-6. Toxicology and Applied Pharmacology, 279(3), 311-321. https://doi.org/10.1016/j.taap.2014.07.001</Citation>
</Reference>
<Reference>
<Citation>Zhao, H. M., Han, F., Xu, R., Huang, X. Y., Cheng, S. M., Huang, M. F., … Liu, D. Y. (2017). Therapeutic effect of curcumin on experimental colitis mediated by inhibiting CD8+CD11c+ cells. World Journal of Gastroenterology, 23(10), 1804-1815. https://doi.org/10.3748/wjg.v23.i10.1804</Citation>
</Reference>
<Reference>
<Citation>Zhao, H. M., Xu, R., Huang, X. Y., Cheng, S. M., Huang, M. F., Yue, H. Y., … Liu, D. Y. (2016). Curcumin improves regulatory T cells in gut-associated lymphoid tissue of colitis mice. World Journal of Gastroenterology, 22(23), 5374-5383. https://doi.org/10.3748/wjg.v22.i23.5374</Citation>
</Reference>
<Reference>
<Citation>Zhao, Y., Liu, Y., & Chen, K. (2016). Mechanisms and clinical application of Tetramethylpyrazine (an interesting natural compound isolated from Ligusticum Wallichii): Current status and perspective. Oxidative Medicine and Cellular Longevity, 2016, 2124638. https://doi.org/10.1155/2016/2124638</Citation>
</Reference>
<Reference>
<Citation>Zhu, Q., Zheng, P., Zhou, J., Chen, X., Feng, Y., Wang, W., … He, Q. (2018). Andrographolide affects Th1/Th2/Th17 responses of peripheral blood mononuclear cells from ulcerative colitis patients. Molecular Medicine Reports, 18(1), 622-626. https://doi.org/10.3892/mmr.2018.8992</Citation>
</Reference>
<Reference>
<Citation>Zingarelli, B., Sheehan, M., Hake, P. W., O'Connor, M., Denenberg, A., & Cook, J. A. (2003). Peroxisome proliferator activator receptor-gamma ligands, 15-deoxy-delta(12,14)-prostaglandin J2 and ciglitazone, reduce systemic inflammation in polymicrobial sepsis by modulation of signal transduction pathways. Journal of Immunology, 171(12), 6827-6837.</Citation>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>Inde</li>
<li>Émirats arabes unis</li>
<li>États-Unis</li>
</country>
<region>
<li>Maine (État)</li>
</region>
</list>
<tree>
<country name="Émirats arabes unis">
<noRegion>
<name sortKey="Venkataraman, Balaji" sort="Venkataraman, Balaji" uniqKey="Venkataraman B" first="Balaji" last="Venkataraman">Balaji Venkataraman</name>
</noRegion>
<name sortKey="Adrian, Thomas E" sort="Adrian, Thomas E" uniqKey="Adrian T" first="Thomas E" last="Adrian">Thomas E. Adrian</name>
<name sortKey="Bhongade, Bhoomendra" sort="Bhongade, Bhoomendra" uniqKey="Bhongade B" first="Bhoomendra" last="Bhongade">Bhoomendra Bhongade</name>
<name sortKey="Ojha, Shreesh" sort="Ojha, Shreesh" uniqKey="Ojha S" first="Shreesh" last="Ojha">Shreesh Ojha</name>
<name sortKey="Raj, Vishnu" sort="Raj, Vishnu" uniqKey="Raj V" first="Vishnu" last="Raj">Vishnu Raj</name>
<name sortKey="Subramanya, Sandeep B" sort="Subramanya, Sandeep B" uniqKey="Subramanya S" first="Sandeep B" last="Subramanya">Sandeep B. Subramanya</name>
</country>
<country name="Inde">
<noRegion>
<name sortKey="Belur, Prasanna D" sort="Belur, Prasanna D" uniqKey="Belur P" first="Prasanna D" last="Belur">Prasanna D. Belur</name>
</noRegion>
</country>
<country name="États-Unis">
<region name="Maine (État)">
<name sortKey="Collin, Peter D" sort="Collin, Peter D" uniqKey="Collin P" first="Peter D" last="Collin">Peter D. Collin</name>
</region>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/PlantImRecepV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000084 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 000084 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    PlantImRecepV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:32009281
   |texte=   Phytochemical drug candidates for the modulation of peroxisome proliferator-activated receptor γ in inflammatory bowel diseases.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:32009281" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a PlantImRecepV1 

Wicri

This area was generated with Dilib version V0.6.38.
Data generation: Sat Nov 21 12:33:18 2020. Site generation: Sat Nov 21 12:33:47 2020