Serveur d'exploration sur les récepteurs immunitaires végétaux

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Co-incidence of Damage and Microbial Patterns Controls Localized Immune Responses in Roots.

Identifieur interne : 000220 ( Main/Corpus ); précédent : 000219; suivant : 000221

Co-incidence of Damage and Microbial Patterns Controls Localized Immune Responses in Roots.

Auteurs : Feng Zhou ; Aurélia Emonet ; Valérie Dénervaud Tendon ; Peter Marhavy ; Dousheng Wu ; Thomas Lahaye ; Niko Geldner

Source :

RBID : pubmed:32032516

English descriptors

Abstract

Recognition of microbe-associated molecular patterns (MAMPs) is crucial for the plant's immune response. How this sophisticated perception system can be usefully deployed in roots, continuously exposed to microbes, remains a mystery. By analyzing MAMP receptor expression and response at cellular resolution in Arabidopsis, we observed that differentiated outer cell layers show low expression of pattern-recognition receptors (PRRs) and lack MAMP responsiveness. Yet, these cells can be gated to become responsive by neighbor cell damage. Laser ablation of small cell clusters strongly upregulates PRR expression in their vicinity, and elevated receptor expression is sufficient to induce responsiveness in non-responsive cells. Finally, localized damage also leads to immune responses to otherwise non-immunogenic, beneficial bacteria. Damage-gating is overridden by receptor overexpression, which antagonizes colonization. Our findings that cellular damage can "switch on" local immune responses helps to conceptualize how MAMP perception can be used despite the presence of microbial patterns in the soil.

DOI: 10.1016/j.cell.2020.01.013
PubMed: 32032516
PubMed Central: PMC7042715

Links to Exploration step

pubmed:32032516

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Co-incidence of Damage and Microbial Patterns Controls Localized Immune Responses in Roots.</title>
<author>
<name sortKey="Zhou, Feng" sort="Zhou, Feng" uniqKey="Zhou F" first="Feng" last="Zhou">Feng Zhou</name>
<affiliation>
<nlm:affiliation>Department of Plant Molecular Biology, Biophore, UNIL-Sorge, University of Lausanne, 1015 Lausanne, Switzerland. Electronic address: feng.zhou@unil.ch.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Emonet, Aurelia" sort="Emonet, Aurelia" uniqKey="Emonet A" first="Aurélia" last="Emonet">Aurélia Emonet</name>
<affiliation>
<nlm:affiliation>Department of Plant Molecular Biology, Biophore, UNIL-Sorge, University of Lausanne, 1015 Lausanne, Switzerland.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Denervaud Tendon, Valerie" sort="Denervaud Tendon, Valerie" uniqKey="Denervaud Tendon V" first="Valérie" last="Dénervaud Tendon">Valérie Dénervaud Tendon</name>
<affiliation>
<nlm:affiliation>Department of Plant Molecular Biology, Biophore, UNIL-Sorge, University of Lausanne, 1015 Lausanne, Switzerland.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Marhavy, Peter" sort="Marhavy, Peter" uniqKey="Marhavy P" first="Peter" last="Marhavy">Peter Marhavy</name>
<affiliation>
<nlm:affiliation>Department of Plant Molecular Biology, Biophore, UNIL-Sorge, University of Lausanne, 1015 Lausanne, Switzerland.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Wu, Dousheng" sort="Wu, Dousheng" uniqKey="Wu D" first="Dousheng" last="Wu">Dousheng Wu</name>
<affiliation>
<nlm:affiliation>ZMBP-General Genetics, University of Tübingen, Auf der Morgenstelle 32, 72076 Tübingen, Germany.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Lahaye, Thomas" sort="Lahaye, Thomas" uniqKey="Lahaye T" first="Thomas" last="Lahaye">Thomas Lahaye</name>
<affiliation>
<nlm:affiliation>ZMBP-General Genetics, University of Tübingen, Auf der Morgenstelle 32, 72076 Tübingen, Germany.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Geldner, Niko" sort="Geldner, Niko" uniqKey="Geldner N" first="Niko" last="Geldner">Niko Geldner</name>
<affiliation>
<nlm:affiliation>Department of Plant Molecular Biology, Biophore, UNIL-Sorge, University of Lausanne, 1015 Lausanne, Switzerland. Electronic address: niko.geldner@unil.ch.</nlm:affiliation>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2020">2020</date>
<idno type="RBID">pubmed:32032516</idno>
<idno type="pmid">32032516</idno>
<idno type="doi">10.1016/j.cell.2020.01.013</idno>
<idno type="pmc">PMC7042715</idno>
<idno type="wicri:Area/Main/Corpus">000220</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">000220</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Co-incidence of Damage and Microbial Patterns Controls Localized Immune Responses in Roots.</title>
<author>
<name sortKey="Zhou, Feng" sort="Zhou, Feng" uniqKey="Zhou F" first="Feng" last="Zhou">Feng Zhou</name>
<affiliation>
<nlm:affiliation>Department of Plant Molecular Biology, Biophore, UNIL-Sorge, University of Lausanne, 1015 Lausanne, Switzerland. Electronic address: feng.zhou@unil.ch.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Emonet, Aurelia" sort="Emonet, Aurelia" uniqKey="Emonet A" first="Aurélia" last="Emonet">Aurélia Emonet</name>
<affiliation>
<nlm:affiliation>Department of Plant Molecular Biology, Biophore, UNIL-Sorge, University of Lausanne, 1015 Lausanne, Switzerland.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Denervaud Tendon, Valerie" sort="Denervaud Tendon, Valerie" uniqKey="Denervaud Tendon V" first="Valérie" last="Dénervaud Tendon">Valérie Dénervaud Tendon</name>
<affiliation>
<nlm:affiliation>Department of Plant Molecular Biology, Biophore, UNIL-Sorge, University of Lausanne, 1015 Lausanne, Switzerland.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Marhavy, Peter" sort="Marhavy, Peter" uniqKey="Marhavy P" first="Peter" last="Marhavy">Peter Marhavy</name>
<affiliation>
<nlm:affiliation>Department of Plant Molecular Biology, Biophore, UNIL-Sorge, University of Lausanne, 1015 Lausanne, Switzerland.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Wu, Dousheng" sort="Wu, Dousheng" uniqKey="Wu D" first="Dousheng" last="Wu">Dousheng Wu</name>
<affiliation>
<nlm:affiliation>ZMBP-General Genetics, University of Tübingen, Auf der Morgenstelle 32, 72076 Tübingen, Germany.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Lahaye, Thomas" sort="Lahaye, Thomas" uniqKey="Lahaye T" first="Thomas" last="Lahaye">Thomas Lahaye</name>
<affiliation>
<nlm:affiliation>ZMBP-General Genetics, University of Tübingen, Auf der Morgenstelle 32, 72076 Tübingen, Germany.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Geldner, Niko" sort="Geldner, Niko" uniqKey="Geldner N" first="Niko" last="Geldner">Niko Geldner</name>
<affiliation>
<nlm:affiliation>Department of Plant Molecular Biology, Biophore, UNIL-Sorge, University of Lausanne, 1015 Lausanne, Switzerland. Electronic address: niko.geldner@unil.ch.</nlm:affiliation>
</affiliation>
</author>
</analytic>
<series>
<title level="j">Cell</title>
<idno type="eISSN">1097-4172</idno>
<imprint>
<date when="2020" type="published">2020</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Arabidopsis (growth & development)</term>
<term>Arabidopsis (immunology)</term>
<term>Arabidopsis (microbiology)</term>
<term>Arabidopsis (radiation effects)</term>
<term>Arabidopsis Proteins (metabolism)</term>
<term>Arabidopsis Proteins (radiation effects)</term>
<term>Ascorbate Peroxidases (metabolism)</term>
<term>Ascorbate Peroxidases (radiation effects)</term>
<term>Flagellin (pharmacology)</term>
<term>Gene Expression Regulation, Plant (drug effects)</term>
<term>Gene Expression Regulation, Plant (radiation effects)</term>
<term>Laser Therapy (methods)</term>
<term>Membrane Proteins (metabolism)</term>
<term>Membrane Proteins (radiation effects)</term>
<term>Microscopy, Confocal (MeSH)</term>
<term>Plant Diseases (immunology)</term>
<term>Plant Diseases (microbiology)</term>
<term>Plant Roots (growth & development)</term>
<term>Plant Roots (immunology)</term>
<term>Plant Roots (microbiology)</term>
<term>Plant Roots (radiation effects)</term>
<term>Protein Kinases (metabolism)</term>
<term>Protein Kinases (radiation effects)</term>
<term>Receptors, Pattern Recognition (metabolism)</term>
<term>Receptors, Pattern Recognition (radiation effects)</term>
<term>Signal Transduction (drug effects)</term>
<term>Signal Transduction (radiation effects)</term>
<term>Time-Lapse Imaging (MeSH)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="metabolism" xml:lang="en">
<term>Arabidopsis Proteins</term>
<term>Ascorbate Peroxidases</term>
<term>Membrane Proteins</term>
<term>Protein Kinases</term>
<term>Receptors, Pattern Recognition</term>
</keywords>
<keywords scheme="MESH" qualifier="drug effects" xml:lang="en">
<term>Gene Expression Regulation, Plant</term>
<term>Signal Transduction</term>
</keywords>
<keywords scheme="MESH" qualifier="growth & development" xml:lang="en">
<term>Arabidopsis</term>
<term>Plant Roots</term>
</keywords>
<keywords scheme="MESH" qualifier="immunology" xml:lang="en">
<term>Arabidopsis</term>
<term>Plant Diseases</term>
<term>Plant Roots</term>
</keywords>
<keywords scheme="MESH" qualifier="methods" xml:lang="en">
<term>Laser Therapy</term>
</keywords>
<keywords scheme="MESH" qualifier="microbiology" xml:lang="en">
<term>Arabidopsis</term>
<term>Plant Diseases</term>
<term>Plant Roots</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="pharmacology" xml:lang="en">
<term>Flagellin</term>
</keywords>
<keywords scheme="MESH" qualifier="radiation effects" xml:lang="en">
<term>Arabidopsis</term>
<term>Arabidopsis Proteins</term>
<term>Ascorbate Peroxidases</term>
<term>Gene Expression Regulation, Plant</term>
<term>Membrane Proteins</term>
<term>Plant Roots</term>
<term>Protein Kinases</term>
<term>Receptors, Pattern Recognition</term>
<term>Signal Transduction</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Microscopy, Confocal</term>
<term>Time-Lapse Imaging</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Recognition of microbe-associated molecular patterns (MAMPs) is crucial for the plant's immune response. How this sophisticated perception system can be usefully deployed in roots, continuously exposed to microbes, remains a mystery. By analyzing MAMP receptor expression and response at cellular resolution in Arabidopsis, we observed that differentiated outer cell layers show low expression of pattern-recognition receptors (PRRs) and lack MAMP responsiveness. Yet, these cells can be gated to become responsive by neighbor cell damage. Laser ablation of small cell clusters strongly upregulates PRR expression in their vicinity, and elevated receptor expression is sufficient to induce responsiveness in non-responsive cells. Finally, localized damage also leads to immune responses to otherwise non-immunogenic, beneficial bacteria. Damage-gating is overridden by receptor overexpression, which antagonizes colonization. Our findings that cellular damage can "switch on" local immune responses helps to conceptualize how MAMP perception can be used despite the presence of microbial patterns in the soil.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">32032516</PMID>
<DateCompleted>
<Year>2020</Year>
<Month>08</Month>
<Day>21</Day>
</DateCompleted>
<DateRevised>
<Year>2020</Year>
<Month>08</Month>
<Day>21</Day>
</DateRevised>
<Article PubModel="Print">
<Journal>
<ISSN IssnType="Electronic">1097-4172</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>180</Volume>
<Issue>3</Issue>
<PubDate>
<Year>2020</Year>
<Month>02</Month>
<Day>06</Day>
</PubDate>
</JournalIssue>
<Title>Cell</Title>
<ISOAbbreviation>Cell</ISOAbbreviation>
</Journal>
<ArticleTitle>Co-incidence of Damage and Microbial Patterns Controls Localized Immune Responses in Roots.</ArticleTitle>
<Pagination>
<MedlinePgn>440-453.e18</MedlinePgn>
</Pagination>
<ELocationID EIdType="pii" ValidYN="Y">S0092-8674(20)30060-X</ELocationID>
<ELocationID EIdType="doi" ValidYN="Y">10.1016/j.cell.2020.01.013</ELocationID>
<Abstract>
<AbstractText>Recognition of microbe-associated molecular patterns (MAMPs) is crucial for the plant's immune response. How this sophisticated perception system can be usefully deployed in roots, continuously exposed to microbes, remains a mystery. By analyzing MAMP receptor expression and response at cellular resolution in Arabidopsis, we observed that differentiated outer cell layers show low expression of pattern-recognition receptors (PRRs) and lack MAMP responsiveness. Yet, these cells can be gated to become responsive by neighbor cell damage. Laser ablation of small cell clusters strongly upregulates PRR expression in their vicinity, and elevated receptor expression is sufficient to induce responsiveness in non-responsive cells. Finally, localized damage also leads to immune responses to otherwise non-immunogenic, beneficial bacteria. Damage-gating is overridden by receptor overexpression, which antagonizes colonization. Our findings that cellular damage can "switch on" local immune responses helps to conceptualize how MAMP perception can be used despite the presence of microbial patterns in the soil.</AbstractText>
<CopyrightInformation>Copyright © 2020 The Author(s). Published by Elsevier Inc. All rights reserved.</CopyrightInformation>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Zhou</LastName>
<ForeName>Feng</ForeName>
<Initials>F</Initials>
<AffiliationInfo>
<Affiliation>Department of Plant Molecular Biology, Biophore, UNIL-Sorge, University of Lausanne, 1015 Lausanne, Switzerland. Electronic address: feng.zhou@unil.ch.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Emonet</LastName>
<ForeName>Aurélia</ForeName>
<Initials>A</Initials>
<AffiliationInfo>
<Affiliation>Department of Plant Molecular Biology, Biophore, UNIL-Sorge, University of Lausanne, 1015 Lausanne, Switzerland.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Dénervaud Tendon</LastName>
<ForeName>Valérie</ForeName>
<Initials>V</Initials>
<AffiliationInfo>
<Affiliation>Department of Plant Molecular Biology, Biophore, UNIL-Sorge, University of Lausanne, 1015 Lausanne, Switzerland.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Marhavy</LastName>
<ForeName>Peter</ForeName>
<Initials>P</Initials>
<AffiliationInfo>
<Affiliation>Department of Plant Molecular Biology, Biophore, UNIL-Sorge, University of Lausanne, 1015 Lausanne, Switzerland.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Wu</LastName>
<ForeName>Dousheng</ForeName>
<Initials>D</Initials>
<AffiliationInfo>
<Affiliation>ZMBP-General Genetics, University of Tübingen, Auf der Morgenstelle 32, 72076 Tübingen, Germany.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Lahaye</LastName>
<ForeName>Thomas</ForeName>
<Initials>T</Initials>
<AffiliationInfo>
<Affiliation>ZMBP-General Genetics, University of Tübingen, Auf der Morgenstelle 32, 72076 Tübingen, Germany.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Geldner</LastName>
<ForeName>Niko</ForeName>
<Initials>N</Initials>
<AffiliationInfo>
<Affiliation>Department of Plant Molecular Biology, Biophore, UNIL-Sorge, University of Lausanne, 1015 Lausanne, Switzerland. Electronic address: niko.geldner@unil.ch.</Affiliation>
</AffiliationInfo>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D013485">Research Support, Non-U.S. Gov't</PublicationType>
</PublicationTypeList>
</Article>
<MedlineJournalInfo>
<Country>United States</Country>
<MedlineTA>Cell</MedlineTA>
<NlmUniqueID>0413066</NlmUniqueID>
<ISSNLinking>0092-8674</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D029681">Arabidopsis Proteins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D008565">Membrane Proteins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D051192">Receptors, Pattern Recognition</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>12777-81-0</RegistryNumber>
<NameOfSubstance UI="D005408">Flagellin</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 1.11.1.11</RegistryNumber>
<NameOfSubstance UI="C555295">APX5 protein, Arabidopsis</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 1.11.1.11</RegistryNumber>
<NameOfSubstance UI="D060387">Ascorbate Peroxidases</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 2.7.-</RegistryNumber>
<NameOfSubstance UI="C587207">FRK1 protein, Arabidopsis</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 2.7.-</RegistryNumber>
<NameOfSubstance UI="D011494">Protein Kinases</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<CommentsCorrectionsList>
<CommentsCorrections RefType="CommentIn">
<RefSource>Nat Rev Immunol. 2020 Mar;20(3):140-141</RefSource>
<PMID Version="1">32047293</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="CommentIn">
<RefSource>Cell Host Microbe. 2020 Mar 11;27(3):308-310</RefSource>
<PMID Version="1">32164838</PMID>
</CommentsCorrections>
</CommentsCorrectionsList>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D017360" MajorTopicYN="N">Arabidopsis</DescriptorName>
<QualifierName UI="Q000254" MajorTopicYN="N">growth & development</QualifierName>
<QualifierName UI="Q000276" MajorTopicYN="Y">immunology</QualifierName>
<QualifierName UI="Q000382" MajorTopicYN="N">microbiology</QualifierName>
<QualifierName UI="Q000528" MajorTopicYN="N">radiation effects</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D029681" MajorTopicYN="N">Arabidopsis Proteins</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
<QualifierName UI="Q000528" MajorTopicYN="N">radiation effects</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D060387" MajorTopicYN="N">Ascorbate Peroxidases</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
<QualifierName UI="Q000528" MajorTopicYN="N">radiation effects</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D005408" MajorTopicYN="N">Flagellin</DescriptorName>
<QualifierName UI="Q000494" MajorTopicYN="N">pharmacology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D018506" MajorTopicYN="N">Gene Expression Regulation, Plant</DescriptorName>
<QualifierName UI="Q000187" MajorTopicYN="N">drug effects</QualifierName>
<QualifierName UI="Q000528" MajorTopicYN="N">radiation effects</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D053685" MajorTopicYN="N">Laser Therapy</DescriptorName>
<QualifierName UI="Q000379" MajorTopicYN="N">methods</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D008565" MajorTopicYN="N">Membrane Proteins</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
<QualifierName UI="Q000528" MajorTopicYN="N">radiation effects</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D018613" MajorTopicYN="N">Microscopy, Confocal</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D010935" MajorTopicYN="N">Plant Diseases</DescriptorName>
<QualifierName UI="Q000276" MajorTopicYN="Y">immunology</QualifierName>
<QualifierName UI="Q000382" MajorTopicYN="Y">microbiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D018517" MajorTopicYN="N">Plant Roots</DescriptorName>
<QualifierName UI="Q000254" MajorTopicYN="N">growth & development</QualifierName>
<QualifierName UI="Q000276" MajorTopicYN="Y">immunology</QualifierName>
<QualifierName UI="Q000382" MajorTopicYN="N">microbiology</QualifierName>
<QualifierName UI="Q000528" MajorTopicYN="N">radiation effects</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D011494" MajorTopicYN="N">Protein Kinases</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
<QualifierName UI="Q000528" MajorTopicYN="N">radiation effects</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D051192" MajorTopicYN="N">Receptors, Pattern Recognition</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
<QualifierName UI="Q000528" MajorTopicYN="N">radiation effects</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D015398" MajorTopicYN="N">Signal Transduction</DescriptorName>
<QualifierName UI="Q000187" MajorTopicYN="N">drug effects</QualifierName>
<QualifierName UI="Q000528" MajorTopicYN="N">radiation effects</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D059008" MajorTopicYN="N">Time-Lapse Imaging</DescriptorName>
</MeshHeading>
</MeshHeadingList>
<KeywordList Owner="NOTNLM">
<Keyword MajorTopicYN="Y">Arabidopsis</Keyword>
<Keyword MajorTopicYN="Y">damage-gating</Keyword>
<Keyword MajorTopicYN="Y">localized response</Keyword>
<Keyword MajorTopicYN="Y">microbe patterns</Keyword>
<Keyword MajorTopicYN="Y">pattern-recognition receptors</Keyword>
<Keyword MajorTopicYN="Y">root immunity</Keyword>
</KeywordList>
<CoiStatement>Declaration of Interests The authors declare no competing interests.</CoiStatement>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2019</Year>
<Month>08</Month>
<Day>22</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="revised">
<Year>2019</Year>
<Month>11</Month>
<Day>13</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2020</Year>
<Month>01</Month>
<Day>08</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2020</Year>
<Month>2</Month>
<Day>8</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2020</Year>
<Month>2</Month>
<Day>8</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2020</Year>
<Month>8</Month>
<Day>22</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">32032516</ArticleId>
<ArticleId IdType="pii">S0092-8674(20)30060-X</ArticleId>
<ArticleId IdType="doi">10.1016/j.cell.2020.01.013</ArticleId>
<ArticleId IdType="pmc">PMC7042715</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>Mol Cell. 2000 Jun;5(6):1003-11</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10911994</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2010 Sep;154(1):391-400</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20592040</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 1989 Dec 25;17(24):10509</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">2513561</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2011 Jun;156(2):726-40</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21474434</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>New Phytol. 2015 Apr;206(2):774-84</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25627577</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>EMBO J. 1989 Feb;8(2):351-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16453871</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell. 2019 May 2;177(4):942-956.e14</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">30955889</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Immunol Rev. 2007 Dec;220:60-81</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17979840</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Methods. 2012 Jul;9(7):671-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22930834</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2018 Sep 14;361(6407):1112-1115</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">30213912</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Annu Rev Phytopathol. 2004;42:107-34</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15283662</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Annu Rev Phytopathol. 2003;41:117-53</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12730389</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2017 Apr;173(4):2383-2398</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28242654</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Plants. 2015 Oct 05;1:15140</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27251392</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell. 2016 Jan 28;164(3):447-59</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26777403</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant J. 1998 Dec;16(6):735-43</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10069079</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Rev Microbiol. 2005 Apr;3(4):307-19</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15759041</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Sci Rep. 2019 Mar 12;9(1):4227</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">30862916</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Exp Bot. 2014 Dec;65(22):6487-98</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25205577</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>New Phytol. 2014 Dec;204(4):873-81</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25243759</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Annu Rev Plant Biol. 2009;60:379-406</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19400727</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2006 Jun 27;103(26):10104-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16785433</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2013 Aug 27;110(35):14498-503</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23940370</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Biotechnol. 2010 Apr;28(4):365-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20231819</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS One. 2013 Dec 20;8(12):e83043</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24376629</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Plant Microbe Interact. 2004 Jun;17(6):696-706</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15195952</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2017 Mar 23;543(7646):513-518</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28297714</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS Pathog. 2014 Nov 06;10(11):e1004491</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25375108</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS Genet. 2012 Jul;8(7):e1002784</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22792073</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2006 Feb;18(2):465-76</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16377758</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Environ Microbiol. 2013 Mar;15(3):736-50</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23278990</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Planta. 2012 Nov;236(5):1419-31</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22729825</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Cell. 2014 Apr 24;54(2):263-72</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24766890</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2010 Mar 18;464(7287):418-22</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20164835</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Biotechnol J. 2018 Jul;16(7):1349-1362</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">29265643</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Annu Rev Plant Biol. 2013;64:531-58</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23451777</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell Host Microbe. 2018 Jul 11;24(1):155-167.e5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">30001518</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Protoc. 2006;1(2):641-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17406292</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant J. 2007 Jun;50(5):886-901</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17461791</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2010 Aug 10;107(32):14502-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20663954</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Plant. 2015 Aug;8(8):1188-200</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26002145</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2019 Apr 12;364(6436):178-181</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">30975887</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Immunol. 2015 Apr;16(4):426-33</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25729922</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant J. 1999 May;18(3):265-76</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10377992</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2004 Dec;16(12):3496-507</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15548740</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 1993 Oct 22;262(5133):539-44</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8211181</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell. 2006 May 19;125(4):749-60</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16713565</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Elife. 2014 Sep 16;3:e03115</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25233277</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant J. 2010 Feb 1;61(3):519-28</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19891705</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell. 2006 Feb 24;124(4):803-14</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16497589</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2010 Mar;22(3):973-90</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20348432</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS One. 2017 Oct 3;12(10):e0185808</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28973025</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2012 Jun 19;109(25):10101-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22665765</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant J. 1999 May;18(3):277-84</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10377993</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>EMBO J. 2019 May 15;38(10):</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">31061171</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2019 Mar 22;363(6433):</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">30898901</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Adv Bioinformatics. 2008;2008:420747</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19956698</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Trends Plant Sci. 2007 Nov;12(11):522-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17928260</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Front Microbiol. 2019 Jul 16;10:1631</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">31379783</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant J. 2010 May;62(3):367-78</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20113440</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 1999 Jun 25;284(5423):2148-52</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10381874</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2004 Apr 15;428(6984):764-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15085136</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Gene. 1991 Dec 20;109(1):167-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">1661697</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2009 Jan 2;323(5910):95-101</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19095898</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Biol. 2019 Nov 18;29(22):3913-3920.e4</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">31668625</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2007 Dec 4;104(49):19613-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18042724</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Opin Plant Biol. 2017 Aug;38:155-163</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28622659</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Exp Bot. 2013 Mar;64(5):1237-48</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23095994</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genome Announc. 2014 Apr 24;2(2):</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24762936</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genes Dev. 2006 Mar 1;20(5):537-42</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16510871</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2014 Jan 10;343(6167):178-83</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24408432</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2004 Jun;135(2):1113-28</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15181213</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Microbiol Methods. 2001 Jul;45(3):187-95</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11348676</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2002 Feb 28;415(6875):977-83</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11875555</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Genet. 2018 Jan;50(1):138-150</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">29255260</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/PlantImRecepV1/Data/Main/Corpus
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000220 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Corpus/biblio.hfd -nk 000220 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    PlantImRecepV1
   |flux=    Main
   |étape=   Corpus
   |type=    RBID
   |clé=     pubmed:32032516
   |texte=   Co-incidence of Damage and Microbial Patterns Controls Localized Immune Responses in Roots.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Corpus/RBID.i   -Sk "pubmed:32032516" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Corpus/biblio.hfd   \
       | NlmPubMed2Wicri -a PlantImRecepV1 

Wicri

This area was generated with Dilib version V0.6.38.
Data generation: Sat Nov 21 12:33:18 2020. Site generation: Sat Nov 21 12:33:47 2020