Serveur d'exploration Glutathion S-transférase végétale

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Cyanidin-3-glucoside activates Nrf2-antioxidant response element and protects against glutamate-induced oxidative and endoplasmic reticulum stress in HT22 hippocampal neuronal cells.

Identifieur interne : 000189 ( Main/Exploration ); précédent : 000188; suivant : 000190

Cyanidin-3-glucoside activates Nrf2-antioxidant response element and protects against glutamate-induced oxidative and endoplasmic reticulum stress in HT22 hippocampal neuronal cells.

Auteurs : Monruedee Sukprasansap [Thaïlande] ; Pithi Chanvorachote [Thaïlande] ; Tewin Tencomnao [Thaïlande]

Source :

RBID : pubmed:32046712

Descripteurs français

English descriptors

Abstract

BACKGROUND

Cyanidin-3-glucoside (C3G), a major anthocyanin present in berries, exhibits a strong antioxidant and has been shown to possess a neuroprotection. Prolonged exposure to glutamate will lead to oxidative damage and endoplasmic reticulum stress which could play a key detrimental role in the development of neurodegenerative disorders (NDs). In the present study, we investigated the neuroprotective effect and underlying mechanisms of C3G on the reduction of oxidative/ER stress-induced apoptosis by glutamate in HT22 mouse hippocampal neuronal cells.

METHOD

Cells were pre-treated with C3G in various concentrations, followed by glutamate. Cell viability and toxicity were examined using MTT and LDH assays. The apoptotic and necrotic cell death were carried out by Annexin V-FITC/propidium iodide co-staining assays. Generation of intracellular reactive oxygen species (ROS) in cells was measured by flow cytometry using DCFH-DA probe. Expression of antioxidant genes was evaluated by Real-time polymerase chain reaction analysis. The possible signaling pathways and proteins involved were subsequently demonstrated by Western blot analysis.

RESULT

The pretreatment of the HT22 cells with C3G protected cell death from oxidative toxicity induced by glutamate. We demonstrated that treatment cells with glutamate caused several radical forms of ROS formation, and they were abolished by specific ROS inhibitors. Interestingly, C3G directly scavenged radical activity and inhibited intracellular ROS generation in our cell-based system. In addition, C3G pretreatment suppressed the up-regulation of specific ER proteins namely calpain, caspase-12 and C/EBP homologous proteins (CHOP) induced by glutamate-mediated oxidative and ER stress signal by up-regulating the expressions of survival proteins, including extracellular regulated protein kinase (ERK) and nuclear factor E2-related factor 2 (Nrf2). Furthermore, dramatically activated gene expression of endogenous antioxidant enzymes (i.e. superoxide dismutases (SODs), catalase (CAT) and glutathione peroxidase (GPx)), and phase II enzymes (glutathione-S-transferases (GSTs)) was found in C3G-treated with cells.

CONCLUSIONS

Our finding suggest that C3G could be a promising neuroprotectant via inhibition of glutamate-induced oxidative and ER stress signal and activation of ERK/Nrf2 antioxidant mechanism pathways.


DOI: 10.1186/s12906-020-2819-7
PubMed: 32046712
PubMed Central: PMC7076852


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Cyanidin-3-glucoside activates Nrf2-antioxidant response element and protects against glutamate-induced oxidative and endoplasmic reticulum stress in HT22 hippocampal neuronal cells.</title>
<author>
<name sortKey="Sukprasansap, Monruedee" sort="Sukprasansap, Monruedee" uniqKey="Sukprasansap M" first="Monruedee" last="Sukprasansap">Monruedee Sukprasansap</name>
<affiliation wicri:level="1">
<nlm:affiliation>Food Toxicology Unit, Institute of Nutrition, Mahidol University, Salaya campus, 25/25 Phuttamonthon 4 Road, Salaya, Nakhon Pathom, 73170, Thailand.</nlm:affiliation>
<country xml:lang="fr">Thaïlande</country>
<wicri:regionArea>Food Toxicology Unit, Institute of Nutrition, Mahidol University, Salaya campus, 25/25 Phuttamonthon 4 Road, Salaya, Nakhon Pathom, 73170</wicri:regionArea>
<wicri:noRegion>73170</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Chanvorachote, Pithi" sort="Chanvorachote, Pithi" uniqKey="Chanvorachote P" first="Pithi" last="Chanvorachote">Pithi Chanvorachote</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Pharmacology and Physiology, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok, 10330, Thailand.</nlm:affiliation>
<country xml:lang="fr">Thaïlande</country>
<wicri:regionArea>Department of Pharmacology and Physiology, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok, 10330</wicri:regionArea>
<wicri:noRegion>10330</wicri:noRegion>
</affiliation>
<affiliation wicri:level="1">
<nlm:affiliation>Cell-based Drug and Health Products Development Research Unit, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok, 10330, Thailand.</nlm:affiliation>
<country xml:lang="fr">Thaïlande</country>
<wicri:regionArea>Cell-based Drug and Health Products Development Research Unit, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok, 10330</wicri:regionArea>
<wicri:noRegion>10330</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Tencomnao, Tewin" sort="Tencomnao, Tewin" uniqKey="Tencomnao T" first="Tewin" last="Tencomnao">Tewin Tencomnao</name>
<affiliation wicri:level="1">
<nlm:affiliation>Age-Related Inflammation and Degeneration Research Unit, Department of Clinical Chemistry, Faculty of Allied Health Sciences, Chulalongkorn University, Bangkok, 10330, Thailand. tewin.t@chula.ac.th.</nlm:affiliation>
<country xml:lang="fr">Thaïlande</country>
<wicri:regionArea>Age-Related Inflammation and Degeneration Research Unit, Department of Clinical Chemistry, Faculty of Allied Health Sciences, Chulalongkorn University, Bangkok, 10330</wicri:regionArea>
<wicri:noRegion>10330</wicri:noRegion>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2020">2020</date>
<idno type="RBID">pubmed:32046712</idno>
<idno type="pmid">32046712</idno>
<idno type="doi">10.1186/s12906-020-2819-7</idno>
<idno type="pmc">PMC7076852</idno>
<idno type="wicri:Area/Main/Corpus">000215</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">000215</idno>
<idno type="wicri:Area/Main/Curation">000215</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">000215</idno>
<idno type="wicri:Area/Main/Exploration">000215</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Cyanidin-3-glucoside activates Nrf2-antioxidant response element and protects against glutamate-induced oxidative and endoplasmic reticulum stress in HT22 hippocampal neuronal cells.</title>
<author>
<name sortKey="Sukprasansap, Monruedee" sort="Sukprasansap, Monruedee" uniqKey="Sukprasansap M" first="Monruedee" last="Sukprasansap">Monruedee Sukprasansap</name>
<affiliation wicri:level="1">
<nlm:affiliation>Food Toxicology Unit, Institute of Nutrition, Mahidol University, Salaya campus, 25/25 Phuttamonthon 4 Road, Salaya, Nakhon Pathom, 73170, Thailand.</nlm:affiliation>
<country xml:lang="fr">Thaïlande</country>
<wicri:regionArea>Food Toxicology Unit, Institute of Nutrition, Mahidol University, Salaya campus, 25/25 Phuttamonthon 4 Road, Salaya, Nakhon Pathom, 73170</wicri:regionArea>
<wicri:noRegion>73170</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Chanvorachote, Pithi" sort="Chanvorachote, Pithi" uniqKey="Chanvorachote P" first="Pithi" last="Chanvorachote">Pithi Chanvorachote</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Pharmacology and Physiology, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok, 10330, Thailand.</nlm:affiliation>
<country xml:lang="fr">Thaïlande</country>
<wicri:regionArea>Department of Pharmacology and Physiology, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok, 10330</wicri:regionArea>
<wicri:noRegion>10330</wicri:noRegion>
</affiliation>
<affiliation wicri:level="1">
<nlm:affiliation>Cell-based Drug and Health Products Development Research Unit, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok, 10330, Thailand.</nlm:affiliation>
<country xml:lang="fr">Thaïlande</country>
<wicri:regionArea>Cell-based Drug and Health Products Development Research Unit, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok, 10330</wicri:regionArea>
<wicri:noRegion>10330</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Tencomnao, Tewin" sort="Tencomnao, Tewin" uniqKey="Tencomnao T" first="Tewin" last="Tencomnao">Tewin Tencomnao</name>
<affiliation wicri:level="1">
<nlm:affiliation>Age-Related Inflammation and Degeneration Research Unit, Department of Clinical Chemistry, Faculty of Allied Health Sciences, Chulalongkorn University, Bangkok, 10330, Thailand. tewin.t@chula.ac.th.</nlm:affiliation>
<country xml:lang="fr">Thaïlande</country>
<wicri:regionArea>Age-Related Inflammation and Degeneration Research Unit, Department of Clinical Chemistry, Faculty of Allied Health Sciences, Chulalongkorn University, Bangkok, 10330</wicri:regionArea>
<wicri:noRegion>10330</wicri:noRegion>
</affiliation>
</author>
</analytic>
<series>
<title level="j">BMC complementary medicine and therapies</title>
<idno type="eISSN">2662-7671</idno>
<imprint>
<date when="2020" type="published">2020</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Animals (MeSH)</term>
<term>Anthocyanins (pharmacology)</term>
<term>Antioxidants (metabolism)</term>
<term>Cell Line (MeSH)</term>
<term>Endoplasmic Reticulum Stress (drug effects)</term>
<term>Flow Cytometry (MeSH)</term>
<term>Glucosides (pharmacology)</term>
<term>Glutamic Acid (MeSH)</term>
<term>Hippocampus (cytology)</term>
<term>Mice (MeSH)</term>
<term>Molecular Structure (MeSH)</term>
<term>NF-E2-Related Factor 2 (metabolism)</term>
<term>Neurons (drug effects)</term>
<term>Neuroprotective Agents (pharmacology)</term>
<term>Plant Extracts (pharmacology)</term>
</keywords>
<keywords scheme="KwdFr" xml:lang="fr">
<term>Acide glutamique (MeSH)</term>
<term>Animaux (MeSH)</term>
<term>Anthocyanes (pharmacologie)</term>
<term>Antioxydants (métabolisme)</term>
<term>Cytométrie en flux (MeSH)</term>
<term>Extraits de plantes (pharmacologie)</term>
<term>Facteur-2 apparenté à NF-E2 (métabolisme)</term>
<term>Glucosides (pharmacologie)</term>
<term>Hippocampe (cytologie)</term>
<term>Lignée cellulaire (MeSH)</term>
<term>Neurones (effets des médicaments et des substances chimiques)</term>
<term>Neuroprotecteurs (pharmacologie)</term>
<term>Souris (MeSH)</term>
<term>Stress du réticulum endoplasmique (effets des médicaments et des substances chimiques)</term>
<term>Structure moléculaire (MeSH)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="metabolism" xml:lang="en">
<term>Antioxidants</term>
<term>NF-E2-Related Factor 2</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="pharmacology" xml:lang="en">
<term>Anthocyanins</term>
<term>Glucosides</term>
<term>Neuroprotective Agents</term>
<term>Plant Extracts</term>
</keywords>
<keywords scheme="MESH" qualifier="cytologie" xml:lang="fr">
<term>Hippocampe</term>
</keywords>
<keywords scheme="MESH" qualifier="cytology" xml:lang="en">
<term>Hippocampus</term>
</keywords>
<keywords scheme="MESH" qualifier="drug effects" xml:lang="en">
<term>Endoplasmic Reticulum Stress</term>
<term>Neurons</term>
</keywords>
<keywords scheme="MESH" qualifier="effets des médicaments et des substances chimiques" xml:lang="fr">
<term>Neurones</term>
<term>Stress du réticulum endoplasmique</term>
</keywords>
<keywords scheme="MESH" qualifier="métabolisme" xml:lang="fr">
<term>Antioxydants</term>
<term>Facteur-2 apparenté à NF-E2</term>
</keywords>
<keywords scheme="MESH" qualifier="pharmacologie" xml:lang="fr">
<term>Anthocyanes</term>
<term>Extraits de plantes</term>
<term>Glucosides</term>
<term>Neuroprotecteurs</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Animals</term>
<term>Cell Line</term>
<term>Flow Cytometry</term>
<term>Glutamic Acid</term>
<term>Mice</term>
<term>Molecular Structure</term>
</keywords>
<keywords scheme="MESH" xml:lang="fr">
<term>Acide glutamique</term>
<term>Animaux</term>
<term>Cytométrie en flux</term>
<term>Lignée cellulaire</term>
<term>Souris</term>
<term>Structure moléculaire</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">
<p>
<b>BACKGROUND</b>
</p>
<p>Cyanidin-3-glucoside (C3G), a major anthocyanin present in berries, exhibits a strong antioxidant and has been shown to possess a neuroprotection. Prolonged exposure to glutamate will lead to oxidative damage and endoplasmic reticulum stress which could play a key detrimental role in the development of neurodegenerative disorders (NDs). In the present study, we investigated the neuroprotective effect and underlying mechanisms of C3G on the reduction of oxidative/ER stress-induced apoptosis by glutamate in HT22 mouse hippocampal neuronal cells.</p>
</div>
<div type="abstract" xml:lang="en">
<p>
<b>METHOD</b>
</p>
<p>Cells were pre-treated with C3G in various concentrations, followed by glutamate. Cell viability and toxicity were examined using MTT and LDH assays. The apoptotic and necrotic cell death were carried out by Annexin V-FITC/propidium iodide co-staining assays. Generation of intracellular reactive oxygen species (ROS) in cells was measured by flow cytometry using DCFH-DA probe. Expression of antioxidant genes was evaluated by Real-time polymerase chain reaction analysis. The possible signaling pathways and proteins involved were subsequently demonstrated by Western blot analysis.</p>
</div>
<div type="abstract" xml:lang="en">
<p>
<b>RESULT</b>
</p>
<p>The pretreatment of the HT22 cells with C3G protected cell death from oxidative toxicity induced by glutamate. We demonstrated that treatment cells with glutamate caused several radical forms of ROS formation, and they were abolished by specific ROS inhibitors. Interestingly, C3G directly scavenged radical activity and inhibited intracellular ROS generation in our cell-based system. In addition, C3G pretreatment suppressed the up-regulation of specific ER proteins namely calpain, caspase-12 and C/EBP homologous proteins (CHOP) induced by glutamate-mediated oxidative and ER stress signal by up-regulating the expressions of survival proteins, including extracellular regulated protein kinase (ERK) and nuclear factor E2-related factor 2 (Nrf2). Furthermore, dramatically activated gene expression of endogenous antioxidant enzymes (i.e. superoxide dismutases (SODs), catalase (CAT) and glutathione peroxidase (GPx)), and phase II enzymes (glutathione-S-transferases (GSTs)) was found in C3G-treated with cells.</p>
</div>
<div type="abstract" xml:lang="en">
<p>
<b>CONCLUSIONS</b>
</p>
<p>Our finding suggest that C3G could be a promising neuroprotectant via inhibition of glutamate-induced oxidative and ER stress signal and activation of ERK/Nrf2 antioxidant mechanism pathways.</p>
</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">32046712</PMID>
<DateCompleted>
<Year>2020</Year>
<Month>08</Month>
<Day>17</Day>
</DateCompleted>
<DateRevised>
<Year>2020</Year>
<Month>08</Month>
<Day>17</Day>
</DateRevised>
<Article PubModel="Electronic">
<Journal>
<ISSN IssnType="Electronic">2662-7671</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>20</Volume>
<Issue>1</Issue>
<PubDate>
<Year>2020</Year>
<Month>Feb</Month>
<Day>11</Day>
</PubDate>
</JournalIssue>
<Title>BMC complementary medicine and therapies</Title>
<ISOAbbreviation>BMC Complement Med Ther</ISOAbbreviation>
</Journal>
<ArticleTitle>Cyanidin-3-glucoside activates Nrf2-antioxidant response element and protects against glutamate-induced oxidative and endoplasmic reticulum stress in HT22 hippocampal neuronal cells.</ArticleTitle>
<Pagination>
<MedlinePgn>46</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1186/s12906-020-2819-7</ELocationID>
<Abstract>
<AbstractText Label="BACKGROUND" NlmCategory="BACKGROUND">Cyanidin-3-glucoside (C3G), a major anthocyanin present in berries, exhibits a strong antioxidant and has been shown to possess a neuroprotection. Prolonged exposure to glutamate will lead to oxidative damage and endoplasmic reticulum stress which could play a key detrimental role in the development of neurodegenerative disorders (NDs). In the present study, we investigated the neuroprotective effect and underlying mechanisms of C3G on the reduction of oxidative/ER stress-induced apoptosis by glutamate in HT22 mouse hippocampal neuronal cells.</AbstractText>
<AbstractText Label="METHOD" NlmCategory="METHODS">Cells were pre-treated with C3G in various concentrations, followed by glutamate. Cell viability and toxicity were examined using MTT and LDH assays. The apoptotic and necrotic cell death were carried out by Annexin V-FITC/propidium iodide co-staining assays. Generation of intracellular reactive oxygen species (ROS) in cells was measured by flow cytometry using DCFH-DA probe. Expression of antioxidant genes was evaluated by Real-time polymerase chain reaction analysis. The possible signaling pathways and proteins involved were subsequently demonstrated by Western blot analysis.</AbstractText>
<AbstractText Label="RESULT" NlmCategory="RESULTS">The pretreatment of the HT22 cells with C3G protected cell death from oxidative toxicity induced by glutamate. We demonstrated that treatment cells with glutamate caused several radical forms of ROS formation, and they were abolished by specific ROS inhibitors. Interestingly, C3G directly scavenged radical activity and inhibited intracellular ROS generation in our cell-based system. In addition, C3G pretreatment suppressed the up-regulation of specific ER proteins namely calpain, caspase-12 and C/EBP homologous proteins (CHOP) induced by glutamate-mediated oxidative and ER stress signal by up-regulating the expressions of survival proteins, including extracellular regulated protein kinase (ERK) and nuclear factor E2-related factor 2 (Nrf2). Furthermore, dramatically activated gene expression of endogenous antioxidant enzymes (i.e. superoxide dismutases (SODs), catalase (CAT) and glutathione peroxidase (GPx)), and phase II enzymes (glutathione-S-transferases (GSTs)) was found in C3G-treated with cells.</AbstractText>
<AbstractText Label="CONCLUSIONS" NlmCategory="CONCLUSIONS">Our finding suggest that C3G could be a promising neuroprotectant via inhibition of glutamate-induced oxidative and ER stress signal and activation of ERK/Nrf2 antioxidant mechanism pathways.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Sukprasansap</LastName>
<ForeName>Monruedee</ForeName>
<Initials>M</Initials>
<AffiliationInfo>
<Affiliation>Food Toxicology Unit, Institute of Nutrition, Mahidol University, Salaya campus, 25/25 Phuttamonthon 4 Road, Salaya, Nakhon Pathom, 73170, Thailand.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Chanvorachote</LastName>
<ForeName>Pithi</ForeName>
<Initials>P</Initials>
<AffiliationInfo>
<Affiliation>Department of Pharmacology and Physiology, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok, 10330, Thailand.</Affiliation>
</AffiliationInfo>
<AffiliationInfo>
<Affiliation>Cell-based Drug and Health Products Development Research Unit, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok, 10330, Thailand.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Tencomnao</LastName>
<ForeName>Tewin</ForeName>
<Initials>T</Initials>
<AffiliationInfo>
<Affiliation>Age-Related Inflammation and Degeneration Research Unit, Department of Clinical Chemistry, Faculty of Allied Health Sciences, Chulalongkorn University, Bangkok, 10330, Thailand. tewin.t@chula.ac.th.</Affiliation>
</AffiliationInfo>
</Author>
</AuthorList>
<Language>eng</Language>
<GrantList CompleteYN="Y">
<Grant>
<GrantID>TT</GrantID>
<Agency>Thailand Research Fund</Agency>
<Country></Country>
</Grant>
</GrantList>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2020</Year>
<Month>02</Month>
<Day>11</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>England</Country>
<MedlineTA>BMC Complement Med Ther</MedlineTA>
<NlmUniqueID>101761232</NlmUniqueID>
<ISSNLinking>2662-7671</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D000872">Anthocyanins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D000975">Antioxidants</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D005960">Glucosides</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D051267">NF-E2-Related Factor 2</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D018696">Neuroprotective Agents</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="C495636">Nfe2l2 protein, mouse</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D010936">Plant Extracts</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>3KX376GY7L</RegistryNumber>
<NameOfSubstance UI="D018698">Glutamic Acid</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>7084-24-4</RegistryNumber>
<NameOfSubstance UI="C114438">cyanidin 3-O-glucoside</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D000818" MajorTopicYN="N">Animals</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D000872" MajorTopicYN="N">Anthocyanins</DescriptorName>
<QualifierName UI="Q000494" MajorTopicYN="Y">pharmacology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D000975" MajorTopicYN="N">Antioxidants</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D002460" MajorTopicYN="N">Cell Line</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D059865" MajorTopicYN="N">Endoplasmic Reticulum Stress</DescriptorName>
<QualifierName UI="Q000187" MajorTopicYN="Y">drug effects</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D005434" MajorTopicYN="N">Flow Cytometry</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D005960" MajorTopicYN="N">Glucosides</DescriptorName>
<QualifierName UI="Q000494" MajorTopicYN="Y">pharmacology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D018698" MajorTopicYN="N">Glutamic Acid</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D006624" MajorTopicYN="N">Hippocampus</DescriptorName>
<QualifierName UI="Q000166" MajorTopicYN="N">cytology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D051379" MajorTopicYN="N">Mice</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D015394" MajorTopicYN="N">Molecular Structure</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D051267" MajorTopicYN="N">NF-E2-Related Factor 2</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D009474" MajorTopicYN="N">Neurons</DescriptorName>
<QualifierName UI="Q000187" MajorTopicYN="Y">drug effects</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D018696" MajorTopicYN="N">Neuroprotective Agents</DescriptorName>
<QualifierName UI="Q000494" MajorTopicYN="Y">pharmacology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D010936" MajorTopicYN="N">Plant Extracts</DescriptorName>
<QualifierName UI="Q000494" MajorTopicYN="Y">pharmacology</QualifierName>
</MeshHeading>
</MeshHeadingList>
<KeywordList Owner="NOTNLM">
<Keyword MajorTopicYN="N">Anthocyanin</Keyword>
<Keyword MajorTopicYN="N">Antioxidant enzyme</Keyword>
<Keyword MajorTopicYN="N">Cyanidin-3-glucoside</Keyword>
<Keyword MajorTopicYN="N">ER stress</Keyword>
<Keyword MajorTopicYN="N">Glutamate</Keyword>
<Keyword MajorTopicYN="N">HT22 cells</Keyword>
<Keyword MajorTopicYN="N">Neuroprotective effect</Keyword>
<Keyword MajorTopicYN="N">Nrf2</Keyword>
<Keyword MajorTopicYN="N">Oxidative stress</Keyword>
</KeywordList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2019</Year>
<Month>06</Month>
<Day>10</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2020</Year>
<Month>01</Month>
<Day>17</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2020</Year>
<Month>2</Month>
<Day>13</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2020</Year>
<Month>2</Month>
<Day>13</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2020</Year>
<Month>8</Month>
<Day>18</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>epublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">32046712</ArticleId>
<ArticleId IdType="doi">10.1186/s12906-020-2819-7</ArticleId>
<ArticleId IdType="pii">10.1186/s12906-020-2819-7</ArticleId>
<ArticleId IdType="pmc">PMC7076852</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>Free Radic Res. 2011 Apr;45(4):483-95</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21250784</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Am J Physiol Cell Physiol. 2013 Apr 1;304(7):C636-55</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23364261</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Exp Mol Med. 2010 May 31;42(5):386-94</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20368688</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Agric Food Chem. 2008 Feb 13;56(3):705-12</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18211026</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Neurochem Res. 2012 Sep;37(9):1829-42</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22614926</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Neurotox Res. 2009 May;15(4):321-31</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19384566</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Agric Food Chem. 2000 Aug;48(8):3597-604</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10956156</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Chem Neuroanat. 2004 Sep;28(1-2):101-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15363495</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2000 Jan 6;403(6765):98-103</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10638761</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cancer Chemother Pharmacol. 2009 Nov;64(6):1261-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19363608</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS One. 2009 Aug 11;4(8):e6588</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19668370</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Brain Pathol. 1999 Jan;9(1):133-46</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9989456</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Cancer. 2010 Oct 29;9:285</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21034468</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Neurosci Res. 2008 Mar;86(4):937-46</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17941056</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Neurochem Int. 2013 Jun;62(8):1072-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23587562</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2002 Feb 8;277(6):4010-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11726647</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Agric Food Chem. 2005 May 18;53(10):3902-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15884815</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Free Radic Biol Med. 2012 Jan 15;52(2):314-27</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22085656</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell Death Differ. 2004 Apr;11(4):365-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14685161</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Int J Biochem Cell Biol. 2006 Mar;38(3):317-32</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16290097</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Toxicol Lett. 2015 Dec 15;239(3):152-60</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26422990</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Food Chem Toxicol. 2013 Jun;56:304-12</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23454146</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Sci Rep. 2016 Mar 11;6:22815</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26965389</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Neurotoxicology. 2014 Mar;41:102-11</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24486958</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Int J Biochem Cell Biol. 2007;39(1):44-84</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16978905</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Int J Biol Sci. 2007 Jul 13;3(5):335-41</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17657281</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Int J Mol Sci. 2015 Jun 17;16(6):13885-907</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26090715</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Agric Food Chem. 2002 Dec 18;50(26):7731-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12475297</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Brain Res. 2004 Mar 12;1000(1-2):32-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15053949</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biomed Environ Sci. 2014 Mar;27(3):186-96</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24709099</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Front Aging Neurosci. 2012 Apr 25;4:5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22539924</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Evid Based Complement Alternat Med. 2012;2012:285750</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23008739</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Exp Mol Med. 2010 Dec 31;42(12):811-22</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20959717</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Food Chem Toxicol. 2017 May;103:279-288</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28315776</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Free Radic Biol Med. 2002 Jul 15;33(2):182-91</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12106814</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2001 Mar 1;410(6824):37-40</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11242034</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Trends Pharmacol Sci. 2008 Dec;29(12):609-15</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18838179</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell Mol Biol Lett. 2010 Jun;15(2):234-41</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20140760</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS One. 2012;7(6):e39586</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22761832</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Neurosci. 2003 Apr 15;23(8):3394-406</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12716947</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Free Radic Res. 2006 Oct;40(10):1014-28</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17015246</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Neurosci. 2010 Dec 15;30(50):16938-48</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21159964</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Cell Mol Med. 2011 Oct;15(10):2025-39</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21722302</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Antioxidants (Basel). 2014 Oct 13;3(4):636-48</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26785231</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Drug Metab Rev. 2014 Nov;46(4):508-20</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25347327</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Int J Neurosci. 2013 Mar;123(3):155-62</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23134425</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell Death Differ. 2004 Apr;11(4):381-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14685163</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Neurosci Lett. 2006 Jan 30;393(2-3):165-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16229947</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell Mol Life Sci. 2000 Aug;57(8-9):1287-305</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11028919</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Arch Pharm Res. 2010 Aug;33(8):1269-75</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20803131</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Neurosci. 2004 Feb 4;24(5):1101-12</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14762128</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Int J Mol Sci. 2013 Dec 16;14(12):24438-75</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24351827</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Agric Food Chem. 2010 Apr 14;58(7):3950-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20128604</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Eur J Pharmacol. 2006 Sep 1;545(1):39-50</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16860790</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Neuropharmacology. 2007 Dec;53(8):891-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18031769</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Physiol Rev. 2018 Apr 1;98(2):813-880</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">29488822</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nutr Neurosci. 2005 Apr;8(2):111-20</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16053243</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Front Cell Neurosci. 2014 Jul 29;8:213</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25120434</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Apoptosis. 2016 Apr;21(4):432-42</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26801321</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Food Chem Toxicol. 2005 Oct;43(10):1557-66</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15964118</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>Thaïlande</li>
</country>
</list>
<tree>
<country name="Thaïlande">
<noRegion>
<name sortKey="Sukprasansap, Monruedee" sort="Sukprasansap, Monruedee" uniqKey="Sukprasansap M" first="Monruedee" last="Sukprasansap">Monruedee Sukprasansap</name>
</noRegion>
<name sortKey="Chanvorachote, Pithi" sort="Chanvorachote, Pithi" uniqKey="Chanvorachote P" first="Pithi" last="Chanvorachote">Pithi Chanvorachote</name>
<name sortKey="Chanvorachote, Pithi" sort="Chanvorachote, Pithi" uniqKey="Chanvorachote P" first="Pithi" last="Chanvorachote">Pithi Chanvorachote</name>
<name sortKey="Tencomnao, Tewin" sort="Tencomnao, Tewin" uniqKey="Tencomnao T" first="Tewin" last="Tencomnao">Tewin Tencomnao</name>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/PlantGlutaTransV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000189 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 000189 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    PlantGlutaTransV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:32046712
   |texte=   Cyanidin-3-glucoside activates Nrf2-antioxidant response element and protects against glutamate-induced oxidative and endoplasmic reticulum stress in HT22 hippocampal neuronal cells.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:32046712" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a PlantGlutaTransV1 

Wicri

This area was generated with Dilib version V0.6.38.
Data generation: Sat Nov 21 15:50:29 2020. Site generation: Sat Nov 21 15:50:53 2020