Serveur d'exploration Glutathion S-transférase végétale

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Redox Status, JA and ET Signaling Pathway Regulating Responses to Botrytis cinerea Infection Between the Resistant Cucumber Genotype and Its Susceptible Mutant.

Identifieur interne : 000059 ( Main/Exploration ); précédent : 000058; suivant : 000060

Redox Status, JA and ET Signaling Pathway Regulating Responses to Botrytis cinerea Infection Between the Resistant Cucumber Genotype and Its Susceptible Mutant.

Auteurs : Yuting Yang [République populaire de Chine] ; Xuewei Wang [République populaire de Chine] ; Panpan Chen [République populaire de Chine] ; Keke Zhou [République populaire de Chine] ; Wanyu Xue [République populaire de Chine] ; Kan Abid [Pakistan] ; Shuxia Chen [République populaire de Chine]

Source :

RBID : pubmed:33101327

Abstract

Botrytis cinerea is an important necrotrophic fungal pathogen with a broad host range and the ability to causing great economic losses in cucumber. However, the resistance mechanism against this pathogen in cucumber was not well understood. In this study, the microscopic observation of the spore growth, redox status measurements and transcriptome analysis were carried out after Botrytis cinerea infection in the resistant genotype No.26 and its susceptible mutant 26M. Results revealed shorter hypha, lower rate of spore germination, less acceleration of H2O2, O2-, and lower total glutathione content (GSH+GSSG) in No.26 than that in 26M, which were identified by the staining result of DAB and NBT. Transcriptome data showed that after pathogen infection, a total of 3901 and 789 different expression genes (DEGs) were identified in No.26 and 26M respectively. These DEGs were highly enriched in redox regulation pathway, hormone signaling pathway and plant-pathogen interaction pathway. The glutathione S-transferase genes, putative peroxidase gene, and NADPH oxidase were up-regulated in No.26 whereas these genes changed little in 26M after Botrytiscinerea infection. Jasmonic acid and ethylene biosynthesis and signaling pathways were distinctively activated in No.26 comparing with 26M upon infection. Much more plant defense related genes including mitogen-activated protein kinases, calmodulin, calmodulin-like protein, calcium-dependent protein kinase, and WRKY transcription factor were induced in No.26 than 26M after pathogen infection. Finally, a model was established which elucidated the resistance difference between resistant cucumber genotype and susceptible mutant after B. cinerea infection.

DOI: 10.3389/fpls.2020.559070
PubMed: 33101327
PubMed Central: PMC7546314


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Redox Status, JA and ET Signaling Pathway Regulating Responses to
<i>Botrytis cinerea</i>
Infection Between the Resistant Cucumber Genotype and Its Susceptible Mutant.</title>
<author>
<name sortKey="Yang, Yuting" sort="Yang, Yuting" uniqKey="Yang Y" first="Yuting" last="Yang">Yuting Yang</name>
<affiliation wicri:level="1">
<nlm:affiliation>College of Horticulture, Northwest A&F University, Shaanxi Engineering Research Center for Vegetables, Yangling, China.</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>College of Horticulture, Northwest A&F University, Shaanxi Engineering Research Center for Vegetables, Yangling</wicri:regionArea>
<wicri:noRegion>Yangling</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Wang, Xuewei" sort="Wang, Xuewei" uniqKey="Wang X" first="Xuewei" last="Wang">Xuewei Wang</name>
<affiliation wicri:level="1">
<nlm:affiliation>College of Horticulture, Northwest A&F University, Shaanxi Engineering Research Center for Vegetables, Yangling, China.</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>College of Horticulture, Northwest A&F University, Shaanxi Engineering Research Center for Vegetables, Yangling</wicri:regionArea>
<wicri:noRegion>Yangling</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Chen, Panpan" sort="Chen, Panpan" uniqKey="Chen P" first="Panpan" last="Chen">Panpan Chen</name>
<affiliation wicri:level="1">
<nlm:affiliation>College of Horticulture, Northwest A&F University, Shaanxi Engineering Research Center for Vegetables, Yangling, China.</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>College of Horticulture, Northwest A&F University, Shaanxi Engineering Research Center for Vegetables, Yangling</wicri:regionArea>
<wicri:noRegion>Yangling</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Zhou, Keke" sort="Zhou, Keke" uniqKey="Zhou K" first="Keke" last="Zhou">Keke Zhou</name>
<affiliation wicri:level="1">
<nlm:affiliation>College of Horticulture, Northwest A&F University, Shaanxi Engineering Research Center for Vegetables, Yangling, China.</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>College of Horticulture, Northwest A&F University, Shaanxi Engineering Research Center for Vegetables, Yangling</wicri:regionArea>
<wicri:noRegion>Yangling</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Xue, Wanyu" sort="Xue, Wanyu" uniqKey="Xue W" first="Wanyu" last="Xue">Wanyu Xue</name>
<affiliation wicri:level="1">
<nlm:affiliation>College of Horticulture, Northwest A&F University, Shaanxi Engineering Research Center for Vegetables, Yangling, China.</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>College of Horticulture, Northwest A&F University, Shaanxi Engineering Research Center for Vegetables, Yangling</wicri:regionArea>
<wicri:noRegion>Yangling</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Abid, Kan" sort="Abid, Kan" uniqKey="Abid K" first="Kan" last="Abid">Kan Abid</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Horticulture, The University of Haripur, Haripur, Pakistan.</nlm:affiliation>
<country xml:lang="fr">Pakistan</country>
<wicri:regionArea>Department of Horticulture, The University of Haripur, Haripur</wicri:regionArea>
<wicri:noRegion>Haripur</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Chen, Shuxia" sort="Chen, Shuxia" uniqKey="Chen S" first="Shuxia" last="Chen">Shuxia Chen</name>
<affiliation wicri:level="1">
<nlm:affiliation>College of Horticulture, Northwest A&F University, Shaanxi Engineering Research Center for Vegetables, Yangling, China.</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>College of Horticulture, Northwest A&F University, Shaanxi Engineering Research Center for Vegetables, Yangling</wicri:regionArea>
<wicri:noRegion>Yangling</wicri:noRegion>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2020">2020</date>
<idno type="RBID">pubmed:33101327</idno>
<idno type="pmid">33101327</idno>
<idno type="doi">10.3389/fpls.2020.559070</idno>
<idno type="pmc">PMC7546314</idno>
<idno type="wicri:Area/Main/Corpus">000016</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">000016</idno>
<idno type="wicri:Area/Main/Curation">000016</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">000016</idno>
<idno type="wicri:Area/Main/Exploration">000016</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Redox Status, JA and ET Signaling Pathway Regulating Responses to
<i>Botrytis cinerea</i>
Infection Between the Resistant Cucumber Genotype and Its Susceptible Mutant.</title>
<author>
<name sortKey="Yang, Yuting" sort="Yang, Yuting" uniqKey="Yang Y" first="Yuting" last="Yang">Yuting Yang</name>
<affiliation wicri:level="1">
<nlm:affiliation>College of Horticulture, Northwest A&F University, Shaanxi Engineering Research Center for Vegetables, Yangling, China.</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>College of Horticulture, Northwest A&F University, Shaanxi Engineering Research Center for Vegetables, Yangling</wicri:regionArea>
<wicri:noRegion>Yangling</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Wang, Xuewei" sort="Wang, Xuewei" uniqKey="Wang X" first="Xuewei" last="Wang">Xuewei Wang</name>
<affiliation wicri:level="1">
<nlm:affiliation>College of Horticulture, Northwest A&F University, Shaanxi Engineering Research Center for Vegetables, Yangling, China.</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>College of Horticulture, Northwest A&F University, Shaanxi Engineering Research Center for Vegetables, Yangling</wicri:regionArea>
<wicri:noRegion>Yangling</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Chen, Panpan" sort="Chen, Panpan" uniqKey="Chen P" first="Panpan" last="Chen">Panpan Chen</name>
<affiliation wicri:level="1">
<nlm:affiliation>College of Horticulture, Northwest A&F University, Shaanxi Engineering Research Center for Vegetables, Yangling, China.</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>College of Horticulture, Northwest A&F University, Shaanxi Engineering Research Center for Vegetables, Yangling</wicri:regionArea>
<wicri:noRegion>Yangling</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Zhou, Keke" sort="Zhou, Keke" uniqKey="Zhou K" first="Keke" last="Zhou">Keke Zhou</name>
<affiliation wicri:level="1">
<nlm:affiliation>College of Horticulture, Northwest A&F University, Shaanxi Engineering Research Center for Vegetables, Yangling, China.</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>College of Horticulture, Northwest A&F University, Shaanxi Engineering Research Center for Vegetables, Yangling</wicri:regionArea>
<wicri:noRegion>Yangling</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Xue, Wanyu" sort="Xue, Wanyu" uniqKey="Xue W" first="Wanyu" last="Xue">Wanyu Xue</name>
<affiliation wicri:level="1">
<nlm:affiliation>College of Horticulture, Northwest A&F University, Shaanxi Engineering Research Center for Vegetables, Yangling, China.</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>College of Horticulture, Northwest A&F University, Shaanxi Engineering Research Center for Vegetables, Yangling</wicri:regionArea>
<wicri:noRegion>Yangling</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Abid, Kan" sort="Abid, Kan" uniqKey="Abid K" first="Kan" last="Abid">Kan Abid</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Horticulture, The University of Haripur, Haripur, Pakistan.</nlm:affiliation>
<country xml:lang="fr">Pakistan</country>
<wicri:regionArea>Department of Horticulture, The University of Haripur, Haripur</wicri:regionArea>
<wicri:noRegion>Haripur</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Chen, Shuxia" sort="Chen, Shuxia" uniqKey="Chen S" first="Shuxia" last="Chen">Shuxia Chen</name>
<affiliation wicri:level="1">
<nlm:affiliation>College of Horticulture, Northwest A&F University, Shaanxi Engineering Research Center for Vegetables, Yangling, China.</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>College of Horticulture, Northwest A&F University, Shaanxi Engineering Research Center for Vegetables, Yangling</wicri:regionArea>
<wicri:noRegion>Yangling</wicri:noRegion>
</affiliation>
</author>
</analytic>
<series>
<title level="j">Frontiers in plant science</title>
<idno type="ISSN">1664-462X</idno>
<imprint>
<date when="2020" type="published">2020</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass></textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">
<i>Botrytis cinerea</i>
is an important necrotrophic fungal pathogen with a broad host range and the ability to causing great economic losses in cucumber. However, the resistance mechanism against this pathogen in cucumber was not well understood. In this study, the microscopic observation of the spore growth, redox status measurements and transcriptome analysis were carried out after
<i>Botrytis cinerea</i>
infection in the resistant genotype No.26 and its susceptible mutant 26M. Results revealed shorter hypha, lower rate of spore germination, less acceleration of H
<sub>2</sub>
O
<sub>2</sub>
, O
<sub>2</sub>
<sup>-</sup>
, and lower total glutathione content (GSH+GSSG) in No.26 than that in 26M, which were identified by the staining result of DAB and NBT. Transcriptome data showed that after pathogen infection, a total of 3901 and 789 different expression genes (DEGs) were identified in No.26 and 26M respectively. These DEGs were highly enriched in redox regulation pathway, hormone signaling pathway and plant-pathogen interaction pathway. The glutathione S-transferase genes, putative peroxidase gene, and NADPH oxidase were up-regulated in No.26 whereas these genes changed little in 26M after
<i>Botrytis</i>
<i>cinerea</i>
infection. Jasmonic acid and ethylene biosynthesis and signaling pathways were distinctively activated in No.26 comparing with 26M upon infection. Much more plant defense related genes including mitogen-activated protein kinases, calmodulin, calmodulin-like protein, calcium-dependent protein kinase, and WRKY transcription factor were induced in No.26 than 26M after pathogen infection. Finally, a model was established which elucidated the resistance difference between resistant cucumber genotype and susceptible mutant after
<i>B. cinerea</i>
infection.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="PubMed-not-MEDLINE" Owner="NLM">
<PMID Version="1">33101327</PMID>
<DateRevised>
<Year>2020</Year>
<Month>10</Month>
<Day>28</Day>
</DateRevised>
<Article PubModel="Electronic-eCollection">
<Journal>
<ISSN IssnType="Print">1664-462X</ISSN>
<JournalIssue CitedMedium="Print">
<Volume>11</Volume>
<PubDate>
<Year>2020</Year>
</PubDate>
</JournalIssue>
<Title>Frontiers in plant science</Title>
<ISOAbbreviation>Front Plant Sci</ISOAbbreviation>
</Journal>
<ArticleTitle>Redox Status, JA and ET Signaling Pathway Regulating Responses to
<i>Botrytis cinerea</i>
Infection Between the Resistant Cucumber Genotype and Its Susceptible Mutant.</ArticleTitle>
<Pagination>
<MedlinePgn>559070</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.3389/fpls.2020.559070</ELocationID>
<Abstract>
<AbstractText>
<i>Botrytis cinerea</i>
is an important necrotrophic fungal pathogen with a broad host range and the ability to causing great economic losses in cucumber. However, the resistance mechanism against this pathogen in cucumber was not well understood. In this study, the microscopic observation of the spore growth, redox status measurements and transcriptome analysis were carried out after
<i>Botrytis cinerea</i>
infection in the resistant genotype No.26 and its susceptible mutant 26M. Results revealed shorter hypha, lower rate of spore germination, less acceleration of H
<sub>2</sub>
O
<sub>2</sub>
, O
<sub>2</sub>
<sup>-</sup>
, and lower total glutathione content (GSH+GSSG) in No.26 than that in 26M, which were identified by the staining result of DAB and NBT. Transcriptome data showed that after pathogen infection, a total of 3901 and 789 different expression genes (DEGs) were identified in No.26 and 26M respectively. These DEGs were highly enriched in redox regulation pathway, hormone signaling pathway and plant-pathogen interaction pathway. The glutathione S-transferase genes, putative peroxidase gene, and NADPH oxidase were up-regulated in No.26 whereas these genes changed little in 26M after
<i>Botrytis</i>
<i>cinerea</i>
infection. Jasmonic acid and ethylene biosynthesis and signaling pathways were distinctively activated in No.26 comparing with 26M upon infection. Much more plant defense related genes including mitogen-activated protein kinases, calmodulin, calmodulin-like protein, calcium-dependent protein kinase, and WRKY transcription factor were induced in No.26 than 26M after pathogen infection. Finally, a model was established which elucidated the resistance difference between resistant cucumber genotype and susceptible mutant after
<i>B. cinerea</i>
infection.</AbstractText>
<CopyrightInformation>Copyright © 2020 Yang, Wang, Chen, Zhou, Xue, Abid and Chen.</CopyrightInformation>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Yang</LastName>
<ForeName>Yuting</ForeName>
<Initials>Y</Initials>
<AffiliationInfo>
<Affiliation>College of Horticulture, Northwest A&F University, Shaanxi Engineering Research Center for Vegetables, Yangling, China.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Wang</LastName>
<ForeName>Xuewei</ForeName>
<Initials>X</Initials>
<AffiliationInfo>
<Affiliation>College of Horticulture, Northwest A&F University, Shaanxi Engineering Research Center for Vegetables, Yangling, China.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Chen</LastName>
<ForeName>Panpan</ForeName>
<Initials>P</Initials>
<AffiliationInfo>
<Affiliation>College of Horticulture, Northwest A&F University, Shaanxi Engineering Research Center for Vegetables, Yangling, China.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Zhou</LastName>
<ForeName>Keke</ForeName>
<Initials>K</Initials>
<AffiliationInfo>
<Affiliation>College of Horticulture, Northwest A&F University, Shaanxi Engineering Research Center for Vegetables, Yangling, China.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Xue</LastName>
<ForeName>Wanyu</ForeName>
<Initials>W</Initials>
<AffiliationInfo>
<Affiliation>College of Horticulture, Northwest A&F University, Shaanxi Engineering Research Center for Vegetables, Yangling, China.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Abid</LastName>
<ForeName>Kan</ForeName>
<Initials>K</Initials>
<AffiliationInfo>
<Affiliation>Department of Horticulture, The University of Haripur, Haripur, Pakistan.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Chen</LastName>
<ForeName>Shuxia</ForeName>
<Initials>S</Initials>
<AffiliationInfo>
<Affiliation>College of Horticulture, Northwest A&F University, Shaanxi Engineering Research Center for Vegetables, Yangling, China.</Affiliation>
</AffiliationInfo>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2020</Year>
<Month>09</Month>
<Day>25</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>Switzerland</Country>
<MedlineTA>Front Plant Sci</MedlineTA>
<NlmUniqueID>101568200</NlmUniqueID>
<ISSNLinking>1664-462X</ISSNLinking>
</MedlineJournalInfo>
<KeywordList Owner="NOTNLM">
<Keyword MajorTopicYN="N">B. cinerea</Keyword>
<Keyword MajorTopicYN="N">cucumber</Keyword>
<Keyword MajorTopicYN="N">redox status</Keyword>
<Keyword MajorTopicYN="N">resistant</Keyword>
<Keyword MajorTopicYN="N">signaling pathway</Keyword>
</KeywordList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2020</Year>
<Month>05</Month>
<Day>06</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2020</Year>
<Month>09</Month>
<Day>04</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2020</Year>
<Month>10</Month>
<Day>26</Day>
<Hour>5</Hour>
<Minute>22</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2020</Year>
<Month>10</Month>
<Day>27</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2020</Year>
<Month>10</Month>
<Day>27</Day>
<Hour>6</Hour>
<Minute>1</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>epublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">33101327</ArticleId>
<ArticleId IdType="doi">10.3389/fpls.2020.559070</ArticleId>
<ArticleId IdType="pmc">PMC7546314</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>Plant Physiol Biochem. 2019 Oct;143:329-339</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">31539762</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Elife. 2015 Jun 15;4:e07295</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26076231</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant J. 2010 Jul 1;63(1):115-27</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20408997</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Annu Rev Cell Dev Biol. 2012;28:489-521</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22559264</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>BMC Genet. 2018 Aug 20;19(1):62</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">30126371</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2007 Jul;19(7):2225-45</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17616737</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Plant Microbe Interact. 2009 Jun;22(6):619-29</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19445587</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Front Plant Sci. 2011 Nov 08;2:76</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22639610</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Annu Rev Phytopathol. 2011;49:369-90</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21568704</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Phytopathology. 2006 Mar;96(3):299-307</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18944445</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Plant Microbe Interact. 2006 Jan;19(1):33-42</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16404951</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2012 Jan 3;109(1):297-302</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22087001</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Front Plant Sci. 2016 Dec 23;7:1945</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28066496</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant J. 2007 Jan;49(1):159-72</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17144898</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2002 Mar 28;416(6879):447-51</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11919636</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Annu Rev Phytopathol. 2012;50:267-94</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22726121</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2010 Apr 1;464(7289):788-91</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20360743</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Plant. 2013 May;6(3):686-703</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23142764</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant J. 2011 Sep;67(5):783-94</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21564353</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Agric Food Chem. 2018 Aug 29;66(34):8949-8956</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">30092129</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2004 Sep;16(9):2448-62</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15308753</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Trends Plant Sci. 2012 May;17(5):250-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22305233</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Free Radic Biol Med. 2007 Sep 15;43(6):883-98</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17697933</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant J. 2019 Apr;98(2):329-345</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">30604574</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Trends Plant Sci. 2006 May;11(5):247-53</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16616579</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell Physiol. 2007 Mar;48(3):414-23</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17251204</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2007 Aug 9;448(7154):661-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17637677</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Front Plant Sci. 2019 Jun 26;10:822</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">31297126</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2019 Nov;181(3):1314-1327</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">31548265</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Trends Plant Sci. 2009 Jul;14(7):373-82</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19559643</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2006 Jun;141(2):373-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16760490</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Sci Rep. 2019 Nov 18;9(1):17010</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">31740741</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Trends Plant Sci. 2002 Jul;7(7):301-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12119167</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Front Plant Sci. 2015 Aug 28;6:640</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26379679</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2011 Jan;155(1):2-18</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21205630</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Physiol Plant. 2014 Nov;152(3):486-500</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24684436</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2004 Dec;16(12):3386-99</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15539472</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Plant Pathol. 2003 Jul 1;4(4):225-36</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20569383</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>EMBO J. 2019 Dec 2;38(23):e101948</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">31559647</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Agric Food Chem. 2019 Jun 5;67(22):6116-6124</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">31084000</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant J. 2006 Oct;48(1):28-44</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16925600</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Protoc. 2006;1(6):3159-65</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17406579</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Signal Behav. 2011 Apr;6(4):607-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21499030</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Plant Pathol. 2014 Aug;15(6):550-62</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24320938</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2004 Jul;16(7):1938-50</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15208388</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant J. 2011 Sep;67(5):852-68</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21575089</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Int J Mol Sci. 2019 Jun 19;20(12):</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">31248143</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Free Radic Biol Med. 2018 Jul;122:171-180</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">29277443</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Front Plant Sci. 2012 May 29;3:108</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22661981</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Plant Pathol. 2007 Sep;8(5):561-80</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20507522</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Annu Rev Plant Biol. 2004;55:373-99</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15377225</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Sci Rep. 2016 Jul 22;6:30251</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27445230</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Exp Bot. 2014 Mar;65(5):1229-40</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24253197</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Front Microbiol. 2013 Sep 03;4:248</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24058359</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2012 Sep;24(9):3530-57</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23023172</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Agric Food Chem. 2017 Sep 13;65(36):8003-8010</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28813608</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2016 Aug;171(4):2771-82</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27268959</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2002 Feb;128(2):491-501</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11842153</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Biotechnol J. 2019 Aug;17(8):1567-1581</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">30672092</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Opin Biotechnol. 2019 Apr;56:215-222</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">30849592</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2005 Jul;17(7):2059-76</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15937231</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Front Plant Sci. 2019 Sep 18;10:1131</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">31620156</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2012 Feb;158(2):1034-45</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22128140</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Phytopathology. 2018 Nov;108(11):1287-1298</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">29869956</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2005 Jul;17(7):1866-75</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15987996</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 1999 May 25;96(11):6553-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10339626</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Sci. 2019 Jun;283:266-277</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">31128697</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Front Plant Sci. 2013 May 14;4:142</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23717322</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Exp Clin Cancer Res. 2007 Mar;26(1):39-50</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17550131</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Front Plant Sci. 2016 Dec 27;7:1964</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28083004</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2001 Jan 16;98(2):741-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11209069</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Sci Rep. 2015 Sep 23;5:14185</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26394921</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Food Chem. 2019 Aug 30;290:308-315</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">31000051</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Biol. 2000 Jun 29;10(13):751-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10898976</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2007 Aug 9;448(7154):666-71</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17637675</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Antioxid Redox Signal. 2013 Jun 1;18(16):2087-90</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23442120</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2005 Dec 15;438(7070):1013-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16355224</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Phytochemistry. 2015 Apr;112:54-62</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25264341</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant J. 2011 Nov;68(3):507-19</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21756272</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Plant Pathol. 2002 Sep 1;3(5):371-90</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20569344</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Opin Biotechnol. 2016 Feb;37:190-200</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26775114</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS Pathog. 2011 Jun;7(6):e1002107</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21738471</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant J. 2008 Aug;55(4):555-67</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18452590</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genes Dev. 2004 Jul 1;18(13):1577-91</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15231736</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Semin Cell Dev Biol. 2018 Aug;80:3-12</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28733165</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Sci. 2020 Jan;290:110289</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">31779900</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Ecotoxicol Environ Saf. 2009 Feb;72(2):596-602</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18801573</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Annu Rev Plant Physiol Plant Mol Biol. 1997 Jun;48:251-275</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15012264</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Sci Rep. 2016 Aug 10;6:30466</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27506379</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell Death Differ. 2006 Jan;13(1):84-95</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16003391</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>Pakistan</li>
<li>République populaire de Chine</li>
</country>
</list>
<tree>
<country name="République populaire de Chine">
<noRegion>
<name sortKey="Yang, Yuting" sort="Yang, Yuting" uniqKey="Yang Y" first="Yuting" last="Yang">Yuting Yang</name>
</noRegion>
<name sortKey="Chen, Panpan" sort="Chen, Panpan" uniqKey="Chen P" first="Panpan" last="Chen">Panpan Chen</name>
<name sortKey="Chen, Shuxia" sort="Chen, Shuxia" uniqKey="Chen S" first="Shuxia" last="Chen">Shuxia Chen</name>
<name sortKey="Wang, Xuewei" sort="Wang, Xuewei" uniqKey="Wang X" first="Xuewei" last="Wang">Xuewei Wang</name>
<name sortKey="Xue, Wanyu" sort="Xue, Wanyu" uniqKey="Xue W" first="Wanyu" last="Xue">Wanyu Xue</name>
<name sortKey="Zhou, Keke" sort="Zhou, Keke" uniqKey="Zhou K" first="Keke" last="Zhou">Keke Zhou</name>
</country>
<country name="Pakistan">
<noRegion>
<name sortKey="Abid, Kan" sort="Abid, Kan" uniqKey="Abid K" first="Kan" last="Abid">Kan Abid</name>
</noRegion>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/PlantGlutaTransV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000059 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 000059 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    PlantGlutaTransV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:33101327
   |texte=   Redox Status, JA and ET Signaling Pathway Regulating Responses to Botrytis cinerea Infection Between the Resistant Cucumber Genotype and Its Susceptible Mutant.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:33101327" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a PlantGlutaTransV1 

Wicri

This area was generated with Dilib version V0.6.38.
Data generation: Sat Nov 21 15:50:29 2020. Site generation: Sat Nov 21 15:50:53 2020