Serveur d'exploration Glutathion S-transférase végétale

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

iTRAQ protein profile analysis of sugar beet under salt stress: different coping mechanisms in leaves and roots.

Identifieur interne : 000007 ( Main/Exploration ); précédent : 000006; suivant : 000008

iTRAQ protein profile analysis of sugar beet under salt stress: different coping mechanisms in leaves and roots.

Auteurs : Junliang Li [République populaire de Chine] ; Jie Cui [République populaire de Chine] ; Dayou Cheng [République populaire de Chine] ; Cuihong Dai [République populaire de Chine] ; Tianjiao Liu [République populaire de Chine] ; Congyu Wang [République populaire de Chine] ; Chengfei Luo [République populaire de Chine]

Source :

RBID : pubmed:32698773

Abstract

BACKGROUND

Salinity is one of the most serious threats to world agriculture. An important sugar-yielding crop sugar beet, which shows some tolerance to salt via a mechanism that is poorly understood. Proteomics data can provide important clues that can contribute to finally understand this mechanism.

RESULTS

Differentially abundant proteins (DAPs) in sugar beet under salt stress treatment were identified in leaves (70 DAPs) and roots (76 DAPs). Functions of these DAPs were predicted, and included metabolism and cellular, environmental information and genetic information processing. We hypothesize that these processes work in concert to maintain cellular homeostasis. Some DAPs are closely related to salt resistance, such as choline monooxygenase, betaine aldehyde dehydrogenase, glutathione S-transferase (GST) and F-type H

CONCLUSIONS

During sugar beet adaptation to salt stress, leaves and roots cope using distinct mechanisms of molecular metabolism regulation. This study provides significant insights into the molecular mechanism underlying the response of higher plants to salt stress, and identified some candidate proteins involved in salt stress countermeasures.


DOI: 10.1186/s12870-020-02552-8
PubMed: 32698773
PubMed Central: PMC7376716


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">iTRAQ protein profile analysis of sugar beet under salt stress: different coping mechanisms in leaves and roots.</title>
<author>
<name sortKey="Li, Junliang" sort="Li, Junliang" uniqKey="Li J" first="Junliang" last="Li">Junliang Li</name>
<affiliation wicri:level="1">
<nlm:affiliation>School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, 150001, China.</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, 150001</wicri:regionArea>
<wicri:noRegion>150001</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Cui, Jie" sort="Cui, Jie" uniqKey="Cui J" first="Jie" last="Cui">Jie Cui</name>
<affiliation wicri:level="1">
<nlm:affiliation>School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, 150001, China. cuijie2006@163.com.</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, 150001</wicri:regionArea>
<wicri:noRegion>150001</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Cheng, Dayou" sort="Cheng, Dayou" uniqKey="Cheng D" first="Dayou" last="Cheng">Dayou Cheng</name>
<affiliation wicri:level="1">
<nlm:affiliation>School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, 150001, China.</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, 150001</wicri:regionArea>
<wicri:noRegion>150001</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Dai, Cuihong" sort="Dai, Cuihong" uniqKey="Dai C" first="Cuihong" last="Dai">Cuihong Dai</name>
<affiliation wicri:level="1">
<nlm:affiliation>School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, 150001, China.</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, 150001</wicri:regionArea>
<wicri:noRegion>150001</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Liu, Tianjiao" sort="Liu, Tianjiao" uniqKey="Liu T" first="Tianjiao" last="Liu">Tianjiao Liu</name>
<affiliation wicri:level="1">
<nlm:affiliation>School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, 150001, China.</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, 150001</wicri:regionArea>
<wicri:noRegion>150001</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Wang, Congyu" sort="Wang, Congyu" uniqKey="Wang C" first="Congyu" last="Wang">Congyu Wang</name>
<affiliation wicri:level="1">
<nlm:affiliation>School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, 150001, China.</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, 150001</wicri:regionArea>
<wicri:noRegion>150001</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Luo, Chengfei" sort="Luo, Chengfei" uniqKey="Luo C" first="Chengfei" last="Luo">Chengfei Luo</name>
<affiliation wicri:level="1">
<nlm:affiliation>School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, 150001, China.</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, 150001</wicri:regionArea>
<wicri:noRegion>150001</wicri:noRegion>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2020">2020</date>
<idno type="RBID">pubmed:32698773</idno>
<idno type="pmid">32698773</idno>
<idno type="doi">10.1186/s12870-020-02552-8</idno>
<idno type="pmc">PMC7376716</idno>
<idno type="wicri:Area/Main/Corpus">000085</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">000085</idno>
<idno type="wicri:Area/Main/Curation">000085</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">000085</idno>
<idno type="wicri:Area/Main/Exploration">000085</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">iTRAQ protein profile analysis of sugar beet under salt stress: different coping mechanisms in leaves and roots.</title>
<author>
<name sortKey="Li, Junliang" sort="Li, Junliang" uniqKey="Li J" first="Junliang" last="Li">Junliang Li</name>
<affiliation wicri:level="1">
<nlm:affiliation>School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, 150001, China.</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, 150001</wicri:regionArea>
<wicri:noRegion>150001</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Cui, Jie" sort="Cui, Jie" uniqKey="Cui J" first="Jie" last="Cui">Jie Cui</name>
<affiliation wicri:level="1">
<nlm:affiliation>School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, 150001, China. cuijie2006@163.com.</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, 150001</wicri:regionArea>
<wicri:noRegion>150001</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Cheng, Dayou" sort="Cheng, Dayou" uniqKey="Cheng D" first="Dayou" last="Cheng">Dayou Cheng</name>
<affiliation wicri:level="1">
<nlm:affiliation>School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, 150001, China.</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, 150001</wicri:regionArea>
<wicri:noRegion>150001</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Dai, Cuihong" sort="Dai, Cuihong" uniqKey="Dai C" first="Cuihong" last="Dai">Cuihong Dai</name>
<affiliation wicri:level="1">
<nlm:affiliation>School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, 150001, China.</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, 150001</wicri:regionArea>
<wicri:noRegion>150001</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Liu, Tianjiao" sort="Liu, Tianjiao" uniqKey="Liu T" first="Tianjiao" last="Liu">Tianjiao Liu</name>
<affiliation wicri:level="1">
<nlm:affiliation>School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, 150001, China.</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, 150001</wicri:regionArea>
<wicri:noRegion>150001</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Wang, Congyu" sort="Wang, Congyu" uniqKey="Wang C" first="Congyu" last="Wang">Congyu Wang</name>
<affiliation wicri:level="1">
<nlm:affiliation>School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, 150001, China.</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, 150001</wicri:regionArea>
<wicri:noRegion>150001</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Luo, Chengfei" sort="Luo, Chengfei" uniqKey="Luo C" first="Chengfei" last="Luo">Chengfei Luo</name>
<affiliation wicri:level="1">
<nlm:affiliation>School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, 150001, China.</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, 150001</wicri:regionArea>
<wicri:noRegion>150001</wicri:noRegion>
</affiliation>
</author>
</analytic>
<series>
<title level="j">BMC plant biology</title>
<idno type="eISSN">1471-2229</idno>
<imprint>
<date when="2020" type="published">2020</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass></textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">
<p>
<b>BACKGROUND</b>
</p>
<p>Salinity is one of the most serious threats to world agriculture. An important sugar-yielding crop sugar beet, which shows some tolerance to salt via a mechanism that is poorly understood. Proteomics data can provide important clues that can contribute to finally understand this mechanism.</p>
</div>
<div type="abstract" xml:lang="en">
<p>
<b>RESULTS</b>
</p>
<p>Differentially abundant proteins (DAPs) in sugar beet under salt stress treatment were identified in leaves (70 DAPs) and roots (76 DAPs). Functions of these DAPs were predicted, and included metabolism and cellular, environmental information and genetic information processing. We hypothesize that these processes work in concert to maintain cellular homeostasis. Some DAPs are closely related to salt resistance, such as choline monooxygenase, betaine aldehyde dehydrogenase, glutathione S-transferase (GST) and F-type H</p>
</div>
<div type="abstract" xml:lang="en">
<p>
<b>CONCLUSIONS</b>
</p>
<p>During sugar beet adaptation to salt stress, leaves and roots cope using distinct mechanisms of molecular metabolism regulation. This study provides significant insights into the molecular mechanism underlying the response of higher plants to salt stress, and identified some candidate proteins involved in salt stress countermeasures.</p>
</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="In-Process" Owner="NLM">
<PMID Version="1">32698773</PMID>
<DateRevised>
<Year>2020</Year>
<Month>07</Month>
<Day>25</Day>
</DateRevised>
<Article PubModel="Electronic">
<Journal>
<ISSN IssnType="Electronic">1471-2229</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>20</Volume>
<Issue>1</Issue>
<PubDate>
<Year>2020</Year>
<Month>Jul</Month>
<Day>22</Day>
</PubDate>
</JournalIssue>
<Title>BMC plant biology</Title>
<ISOAbbreviation>BMC Plant Biol</ISOAbbreviation>
</Journal>
<ArticleTitle>iTRAQ protein profile analysis of sugar beet under salt stress: different coping mechanisms in leaves and roots.</ArticleTitle>
<Pagination>
<MedlinePgn>347</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1186/s12870-020-02552-8</ELocationID>
<Abstract>
<AbstractText Label="BACKGROUND" NlmCategory="BACKGROUND">Salinity is one of the most serious threats to world agriculture. An important sugar-yielding crop sugar beet, which shows some tolerance to salt via a mechanism that is poorly understood. Proteomics data can provide important clues that can contribute to finally understand this mechanism.</AbstractText>
<AbstractText Label="RESULTS" NlmCategory="RESULTS">Differentially abundant proteins (DAPs) in sugar beet under salt stress treatment were identified in leaves (70 DAPs) and roots (76 DAPs). Functions of these DAPs were predicted, and included metabolism and cellular, environmental information and genetic information processing. We hypothesize that these processes work in concert to maintain cellular homeostasis. Some DAPs are closely related to salt resistance, such as choline monooxygenase, betaine aldehyde dehydrogenase, glutathione S-transferase (GST) and F-type H
<sup>+</sup>
-transporting ATPase. The expression pattern of ten DAPs encoding genes was consistent with the iTRAQ data.</AbstractText>
<AbstractText Label="CONCLUSIONS" NlmCategory="CONCLUSIONS">During sugar beet adaptation to salt stress, leaves and roots cope using distinct mechanisms of molecular metabolism regulation. This study provides significant insights into the molecular mechanism underlying the response of higher plants to salt stress, and identified some candidate proteins involved in salt stress countermeasures.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Li</LastName>
<ForeName>Junliang</ForeName>
<Initials>J</Initials>
<AffiliationInfo>
<Affiliation>School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, 150001, China.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Cui</LastName>
<ForeName>Jie</ForeName>
<Initials>J</Initials>
<Identifier Source="ORCID">http://orcid.org/0000-0002-3247-082X</Identifier>
<AffiliationInfo>
<Affiliation>School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, 150001, China. cuijie2006@163.com.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Cheng</LastName>
<ForeName>Dayou</ForeName>
<Initials>D</Initials>
<AffiliationInfo>
<Affiliation>School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, 150001, China.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Dai</LastName>
<ForeName>Cuihong</ForeName>
<Initials>C</Initials>
<AffiliationInfo>
<Affiliation>School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, 150001, China.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Liu</LastName>
<ForeName>Tianjiao</ForeName>
<Initials>T</Initials>
<AffiliationInfo>
<Affiliation>School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, 150001, China.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Wang</LastName>
<ForeName>Congyu</ForeName>
<Initials>C</Initials>
<AffiliationInfo>
<Affiliation>School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, 150001, China.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Luo</LastName>
<ForeName>Chengfei</ForeName>
<Initials>C</Initials>
<AffiliationInfo>
<Affiliation>School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, 150001, China.</Affiliation>
</AffiliationInfo>
</Author>
</AuthorList>
<Language>eng</Language>
<GrantList CompleteYN="Y">
<Grant>
<GrantID>31571731</GrantID>
<Agency>National Natural Science Foundation of China</Agency>
<Country></Country>
</Grant>
<Grant>
<GrantID>31771864</GrantID>
<Agency>National Natural Science Foundation of China</Agency>
<Country></Country>
</Grant>
</GrantList>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2020</Year>
<Month>07</Month>
<Day>22</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>England</Country>
<MedlineTA>BMC Plant Biol</MedlineTA>
<NlmUniqueID>100967807</NlmUniqueID>
<ISSNLinking>1471-2229</ISSNLinking>
</MedlineJournalInfo>
<CitationSubset>IM</CitationSubset>
<KeywordList Owner="NOTNLM">
<Keyword MajorTopicYN="N">Beta vulgaris</Keyword>
<Keyword MajorTopicYN="N">Differentially abundant protein species</Keyword>
<Keyword MajorTopicYN="N">Proteomics</Keyword>
<Keyword MajorTopicYN="N">Salt stress</Keyword>
<Keyword MajorTopicYN="N">iTRAQ</Keyword>
</KeywordList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2020</Year>
<Month>03</Month>
<Day>03</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2020</Year>
<Month>07</Month>
<Day>15</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2020</Year>
<Month>7</Month>
<Day>24</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2020</Year>
<Month>7</Month>
<Day>24</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2020</Year>
<Month>7</Month>
<Day>24</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>epublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">32698773</ArticleId>
<ArticleId IdType="doi">10.1186/s12870-020-02552-8</ArticleId>
<ArticleId IdType="pii">10.1186/s12870-020-02552-8</ArticleId>
<ArticleId IdType="pmc">PMC7376716</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>Plant Cell. 2011 Dec;23(12):4266-79</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22202891</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>New Phytol. 2011 Jan;189(2):415-27</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21039566</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 2019 Jan 8;47(D1):D1211-D1217</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">30252093</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 2005 Jan 1;33(Database issue):D433-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15608232</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Exp Bot. 2000 Feb;51(343):177-85</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10938824</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Sci Rep. 2018 Jun 22;8(1):9553</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">29934583</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Int J Mol Sci. 2018 Dec 04;19(12):</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">30518064</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Front Plant Sci. 2018 Jul 31;9:972</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">30108598</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Structure. 1995 Sep 15;3(9):853-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8535779</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2002 Apr 30;99(9):5866-71</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11972043</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proteomics. 2017 Sep;17(17-18):</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28771929</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2004 May;16(5):1132-42</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15075400</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2004 Mar;134(3):898-908</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15020753</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Chem Rev. 1996 Nov 7;96(7):2841-2888</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11848843</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Front Plant Sci. 2016 Apr 29;7:573</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27200046</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Gene. 2007 Aug 15;398(1-2):78-85</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17540516</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant J. 2008 Aug;55(3):455-66</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18410480</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Proteomics. 2017 Mar 6;156:75-84</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28099886</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proteomics. 2005 Jan;5(1):235-44</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15672456</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2007 Dec;145(4):1533-48</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17951457</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>New Phytol. 2019 Sep;223(4):1904-1917</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">31087404</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Plant Nutr. 1999;22(11):1745-61</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11542657</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell Environ. 2018 Mar;41(3):563-575</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">29216410</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Proteomics. 2015 Sep 8;127(Pt A):18-33</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25845583</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Ecotoxicol Environ Saf. 2005 Mar;60(3):324-49</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15590011</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Genet. 2000 May;25(1):25-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10802651</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2019 Jan;179(1):124-142</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">30381317</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Biotechnol. 2008 Dec;26(12):1367-72</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19029910</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proteomics. 2007 Feb;7(3):340-50</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17177251</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Ann Bot. 2003 Apr;91(5):503-27</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12646496</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Molecules. 2019 May 20;24(10):</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">31137473</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Proteome Res. 2011 Apr 1;10(4):1794-805</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21254760</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Plant Physiol. 2009 Jan 30;166(2):180-91</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18562042</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Planta. 2003 Jun;217(2):252-60</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12783333</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Plant Nutr. 2000;23(10):1449-70</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11594364</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Annu Rev Plant Biol. 2008;59:651-81</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18444910</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>BMC Plant Biol. 2019 Feb 6;19(1):57</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">30727960</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Annu Rev Plant Physiol Plant Mol Biol. 1998 Jun;49:727-760</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15012252</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>BMC Bioinformatics. 2012 Jun 18;13:134</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22708584</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2006 Jun 20;103(25):9732-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16772378</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Physiol Mol Biol Plants. 2019 Jul;25(4):807-820</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">31402811</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>DNA Repair (Amst). 2014 Sep;21:171-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24951183</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Exp Bot. 2003 Sep;54(390):2025-33</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12867545</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Plant Res. 1998 Mar;111(1101):167-77</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11541948</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant J. 2007 May;50(3):439-51</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17376161</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2016 Feb;170(2):1090-104</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26662273</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Exp Bot. 2007;58(13):3591-607</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17916636</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Int J Mol Sci. 2019 Jan 30;20(3):</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">30704074</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Int J Mol Sci. 2019 May 20;20(10):</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">31137512</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell Rep. 2012 Apr;31(4):671-85</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22076248</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2005 Apr 8;280(14):13962-72</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15677481</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Bacteriol. 1999 Jan;181(1):100-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9864318</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 2008 Jan;36(Database issue):D480-4</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18077471</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Int J Mol Sci. 2017 May 08;18(5):</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28481319</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Proteomics. 2016 Jun 30;143:286-297</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27233743</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Plant Res. 2016 May;129(3):527-38</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26860314</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>New Phytol. 2015 Nov;208(3):668-73</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26108441</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Mol Biol. 2006 Jan;60(1):137-51</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16463105</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochim Biophys Acta. 2010 Jan;1804(1):124-36</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19786127</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Gen Microbiol. 1990 Aug;136(8):1455-61</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22991739</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Exp Bot. 2005 Sep;56(419):2365-78</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16014366</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Exp Bot. 2013 Jan;64(1):119-27</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23186621</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Exp Bot. 2016 Jan;67(1):69-82</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26453745</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>République populaire de Chine</li>
</country>
</list>
<tree>
<country name="République populaire de Chine">
<noRegion>
<name sortKey="Li, Junliang" sort="Li, Junliang" uniqKey="Li J" first="Junliang" last="Li">Junliang Li</name>
</noRegion>
<name sortKey="Cheng, Dayou" sort="Cheng, Dayou" uniqKey="Cheng D" first="Dayou" last="Cheng">Dayou Cheng</name>
<name sortKey="Cui, Jie" sort="Cui, Jie" uniqKey="Cui J" first="Jie" last="Cui">Jie Cui</name>
<name sortKey="Dai, Cuihong" sort="Dai, Cuihong" uniqKey="Dai C" first="Cuihong" last="Dai">Cuihong Dai</name>
<name sortKey="Liu, Tianjiao" sort="Liu, Tianjiao" uniqKey="Liu T" first="Tianjiao" last="Liu">Tianjiao Liu</name>
<name sortKey="Luo, Chengfei" sort="Luo, Chengfei" uniqKey="Luo C" first="Chengfei" last="Luo">Chengfei Luo</name>
<name sortKey="Wang, Congyu" sort="Wang, Congyu" uniqKey="Wang C" first="Congyu" last="Wang">Congyu Wang</name>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/PlantGlutaTransV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000007 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 000007 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    PlantGlutaTransV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:32698773
   |texte=   iTRAQ protein profile analysis of sugar beet under salt stress: different coping mechanisms in leaves and roots.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:32698773" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a PlantGlutaTransV1 

Wicri

This area was generated with Dilib version V0.6.38.
Data generation: Sat Nov 21 15:50:29 2020. Site generation: Sat Nov 21 15:50:53 2020