Serveur d'exploration Glutathion S-transférase végétale

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Is there a role for tau glutathione transferases in tetrapyrrole metabolism and retrograde signalling in plants?

Identifieur interne : 000154 ( Main/Curation ); précédent : 000153; suivant : 000155

Is there a role for tau glutathione transferases in tetrapyrrole metabolism and retrograde signalling in plants?

Auteurs : Elodie Sylvestre-Gonon [France] ; Mathieu Schwartz [France] ; Jean-Michel Girardet [France] ; Arnaud Hecker [France] ; Nicolas Rouhier [France]

Source :

RBID : pubmed:32362257

Abstract

In plants, tetrapyrrole biosynthesis occurs in chloroplasts, the reactions being catalysed by stromal and membrane-bound enzymes. The tetrapyrrole moiety is a backbone for chlorophylls and cofactors such as sirohaems, haems and phytochromobilins. Owing to this diversity, the potential cytotoxicity of some precursors and the associated synthesis costs, a tight control exists to adjust the demand and the fluxes for each molecule. After synthesis, haems and phytochromobilins are incorporated into proteins found in other subcellular compartments. However, there is only very limited information about the chaperones and membrane transporters involved in the trafficking of these molecules. After summarizing evidence indicating that glutathione transferases (GST) may be part of the transport and/or degradation processes of porphyrin derivatives, we provide experimental data indicating that tau glutathione transferases (GSTU) bind protoporphyrin IX and haem moieties and use structural modelling to identify possible residues responsible for their binding in the active site hydrophobic pocket. Finally, we discuss the possible roles associated with the binding, catalytic transformation (i.e. glutathione conjugation) and/or transport of tetrapyrroles by GSTUs, considering their subcellular localization and capacity to interact with ABC transporters. This article is part of the theme issue 'Retrograde signalling from endosymbiotic organelles'.

DOI: 10.1098/rstb.2019.0404
PubMed: 32362257
PubMed Central: PMC7209958

Links toward previous steps (curation, corpus...)


Links to Exploration step

pubmed:32362257

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Is there a role for tau glutathione transferases in tetrapyrrole metabolism and retrograde signalling in plants?</title>
<author>
<name sortKey="Sylvestre Gonon, Elodie" sort="Sylvestre Gonon, Elodie" uniqKey="Sylvestre Gonon E" first="Elodie" last="Sylvestre-Gonon">Elodie Sylvestre-Gonon</name>
<affiliation wicri:level="1">
<nlm:affiliation>Université de Lorraine, INRAE, IAM, 54000 Nancy, France.</nlm:affiliation>
<country xml:lang="fr">France</country>
<wicri:regionArea>Université de Lorraine, INRAE, IAM, 54000 Nancy</wicri:regionArea>
</affiliation>
</author>
<author>
<name sortKey="Schwartz, Mathieu" sort="Schwartz, Mathieu" uniqKey="Schwartz M" first="Mathieu" last="Schwartz">Mathieu Schwartz</name>
<affiliation wicri:level="1">
<nlm:affiliation>Université de Lorraine, INRAE, IAM, 54000 Nancy, France.</nlm:affiliation>
<country xml:lang="fr">France</country>
<wicri:regionArea>Université de Lorraine, INRAE, IAM, 54000 Nancy</wicri:regionArea>
</affiliation>
</author>
<author>
<name sortKey="Girardet, Jean Michel" sort="Girardet, Jean Michel" uniqKey="Girardet J" first="Jean-Michel" last="Girardet">Jean-Michel Girardet</name>
<affiliation wicri:level="1">
<nlm:affiliation>Université de Lorraine, INRAE, IAM, 54000 Nancy, France.</nlm:affiliation>
<country xml:lang="fr">France</country>
<wicri:regionArea>Université de Lorraine, INRAE, IAM, 54000 Nancy</wicri:regionArea>
</affiliation>
</author>
<author>
<name sortKey="Hecker, Arnaud" sort="Hecker, Arnaud" uniqKey="Hecker A" first="Arnaud" last="Hecker">Arnaud Hecker</name>
<affiliation wicri:level="1">
<nlm:affiliation>Université de Lorraine, INRAE, IAM, 54000 Nancy, France.</nlm:affiliation>
<country xml:lang="fr">France</country>
<wicri:regionArea>Université de Lorraine, INRAE, IAM, 54000 Nancy</wicri:regionArea>
</affiliation>
</author>
<author>
<name sortKey="Rouhier, Nicolas" sort="Rouhier, Nicolas" uniqKey="Rouhier N" first="Nicolas" last="Rouhier">Nicolas Rouhier</name>
<affiliation wicri:level="1">
<nlm:affiliation>Université de Lorraine, INRAE, IAM, 54000 Nancy, France.</nlm:affiliation>
<country xml:lang="fr">France</country>
<wicri:regionArea>Université de Lorraine, INRAE, IAM, 54000 Nancy</wicri:regionArea>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2020">2020</date>
<idno type="RBID">pubmed:32362257</idno>
<idno type="pmid">32362257</idno>
<idno type="doi">10.1098/rstb.2019.0404</idno>
<idno type="pmc">PMC7209958</idno>
<idno type="wicri:Area/Main/Corpus">000154</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">000154</idno>
<idno type="wicri:Area/Main/Curation">000154</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">000154</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Is there a role for tau glutathione transferases in tetrapyrrole metabolism and retrograde signalling in plants?</title>
<author>
<name sortKey="Sylvestre Gonon, Elodie" sort="Sylvestre Gonon, Elodie" uniqKey="Sylvestre Gonon E" first="Elodie" last="Sylvestre-Gonon">Elodie Sylvestre-Gonon</name>
<affiliation wicri:level="1">
<nlm:affiliation>Université de Lorraine, INRAE, IAM, 54000 Nancy, France.</nlm:affiliation>
<country xml:lang="fr">France</country>
<wicri:regionArea>Université de Lorraine, INRAE, IAM, 54000 Nancy</wicri:regionArea>
</affiliation>
</author>
<author>
<name sortKey="Schwartz, Mathieu" sort="Schwartz, Mathieu" uniqKey="Schwartz M" first="Mathieu" last="Schwartz">Mathieu Schwartz</name>
<affiliation wicri:level="1">
<nlm:affiliation>Université de Lorraine, INRAE, IAM, 54000 Nancy, France.</nlm:affiliation>
<country xml:lang="fr">France</country>
<wicri:regionArea>Université de Lorraine, INRAE, IAM, 54000 Nancy</wicri:regionArea>
</affiliation>
</author>
<author>
<name sortKey="Girardet, Jean Michel" sort="Girardet, Jean Michel" uniqKey="Girardet J" first="Jean-Michel" last="Girardet">Jean-Michel Girardet</name>
<affiliation wicri:level="1">
<nlm:affiliation>Université de Lorraine, INRAE, IAM, 54000 Nancy, France.</nlm:affiliation>
<country xml:lang="fr">France</country>
<wicri:regionArea>Université de Lorraine, INRAE, IAM, 54000 Nancy</wicri:regionArea>
</affiliation>
</author>
<author>
<name sortKey="Hecker, Arnaud" sort="Hecker, Arnaud" uniqKey="Hecker A" first="Arnaud" last="Hecker">Arnaud Hecker</name>
<affiliation wicri:level="1">
<nlm:affiliation>Université de Lorraine, INRAE, IAM, 54000 Nancy, France.</nlm:affiliation>
<country xml:lang="fr">France</country>
<wicri:regionArea>Université de Lorraine, INRAE, IAM, 54000 Nancy</wicri:regionArea>
</affiliation>
</author>
<author>
<name sortKey="Rouhier, Nicolas" sort="Rouhier, Nicolas" uniqKey="Rouhier N" first="Nicolas" last="Rouhier">Nicolas Rouhier</name>
<affiliation wicri:level="1">
<nlm:affiliation>Université de Lorraine, INRAE, IAM, 54000 Nancy, France.</nlm:affiliation>
<country xml:lang="fr">France</country>
<wicri:regionArea>Université de Lorraine, INRAE, IAM, 54000 Nancy</wicri:regionArea>
</affiliation>
</author>
</analytic>
<series>
<title level="j">Philosophical transactions of the Royal Society of London. Series B, Biological sciences</title>
<idno type="eISSN">1471-2970</idno>
<imprint>
<date when="2020" type="published">2020</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass></textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">In plants, tetrapyrrole biosynthesis occurs in chloroplasts, the reactions being catalysed by stromal and membrane-bound enzymes. The tetrapyrrole moiety is a backbone for chlorophylls and cofactors such as sirohaems, haems and phytochromobilins. Owing to this diversity, the potential cytotoxicity of some precursors and the associated synthesis costs, a tight control exists to adjust the demand and the fluxes for each molecule. After synthesis, haems and phytochromobilins are incorporated into proteins found in other subcellular compartments. However, there is only very limited information about the chaperones and membrane transporters involved in the trafficking of these molecules. After summarizing evidence indicating that glutathione transferases (GST) may be part of the transport and/or degradation processes of porphyrin derivatives, we provide experimental data indicating that tau glutathione transferases (GSTU) bind protoporphyrin IX and haem moieties and use structural modelling to identify possible residues responsible for their binding in the active site hydrophobic pocket. Finally, we discuss the possible roles associated with the binding, catalytic transformation (i.e. glutathione conjugation) and/or transport of tetrapyrroles by GSTUs, considering their subcellular localization and capacity to interact with ABC transporters. This article is part of the theme issue 'Retrograde signalling from endosymbiotic organelles'.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="In-Process" Owner="NLM">
<PMID Version="1">32362257</PMID>
<DateRevised>
<Year>2020</Year>
<Month>08</Month>
<Day>10</Day>
</DateRevised>
<Article PubModel="Print-Electronic">
<Journal>
<ISSN IssnType="Electronic">1471-2970</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>375</Volume>
<Issue>1801</Issue>
<PubDate>
<Year>2020</Year>
<Month>06</Month>
<Day>22</Day>
</PubDate>
</JournalIssue>
<Title>Philosophical transactions of the Royal Society of London. Series B, Biological sciences</Title>
<ISOAbbreviation>Philos Trans R Soc Lond B Biol Sci</ISOAbbreviation>
</Journal>
<ArticleTitle>Is there a role for tau glutathione transferases in tetrapyrrole metabolism and retrograde signalling in plants?</ArticleTitle>
<Pagination>
<MedlinePgn>20190404</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1098/rstb.2019.0404</ELocationID>
<Abstract>
<AbstractText>In plants, tetrapyrrole biosynthesis occurs in chloroplasts, the reactions being catalysed by stromal and membrane-bound enzymes. The tetrapyrrole moiety is a backbone for chlorophylls and cofactors such as sirohaems, haems and phytochromobilins. Owing to this diversity, the potential cytotoxicity of some precursors and the associated synthesis costs, a tight control exists to adjust the demand and the fluxes for each molecule. After synthesis, haems and phytochromobilins are incorporated into proteins found in other subcellular compartments. However, there is only very limited information about the chaperones and membrane transporters involved in the trafficking of these molecules. After summarizing evidence indicating that glutathione transferases (GST) may be part of the transport and/or degradation processes of porphyrin derivatives, we provide experimental data indicating that tau glutathione transferases (GSTU) bind protoporphyrin IX and haem moieties and use structural modelling to identify possible residues responsible for their binding in the active site hydrophobic pocket. Finally, we discuss the possible roles associated with the binding, catalytic transformation (i.e. glutathione conjugation) and/or transport of tetrapyrroles by GSTUs, considering their subcellular localization and capacity to interact with ABC transporters. This article is part of the theme issue 'Retrograde signalling from endosymbiotic organelles'.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Sylvestre-Gonon</LastName>
<ForeName>Elodie</ForeName>
<Initials>E</Initials>
<AffiliationInfo>
<Affiliation>Université de Lorraine, INRAE, IAM, 54000 Nancy, France.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Schwartz</LastName>
<ForeName>Mathieu</ForeName>
<Initials>M</Initials>
<AffiliationInfo>
<Affiliation>Université de Lorraine, INRAE, IAM, 54000 Nancy, France.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Girardet</LastName>
<ForeName>Jean-Michel</ForeName>
<Initials>JM</Initials>
<AffiliationInfo>
<Affiliation>Université de Lorraine, INRAE, IAM, 54000 Nancy, France.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Hecker</LastName>
<ForeName>Arnaud</ForeName>
<Initials>A</Initials>
<AffiliationInfo>
<Affiliation>Université de Lorraine, INRAE, IAM, 54000 Nancy, France.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Rouhier</LastName>
<ForeName>Nicolas</ForeName>
<Initials>N</Initials>
<AffiliationInfo>
<Affiliation>Université de Lorraine, INRAE, IAM, 54000 Nancy, France.</Affiliation>
</AffiliationInfo>
</Author>
</AuthorList>
<Language>eng</Language>
<DataBankList CompleteYN="Y">
<DataBank>
<DataBankName>figshare</DataBankName>
<AccessionNumberList>
<AccessionNumber>10.6084/m9.figshare.c.4927782</AccessionNumber>
</AccessionNumberList>
</DataBank>
</DataBankList>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D013485">Research Support, Non-U.S. Gov't</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2020</Year>
<Month>05</Month>
<Day>04</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>England</Country>
<MedlineTA>Philos Trans R Soc Lond B Biol Sci</MedlineTA>
<NlmUniqueID>7503623</NlmUniqueID>
<ISSNLinking>0962-8436</ISSNLinking>
</MedlineJournalInfo>
<CitationSubset>IM</CitationSubset>
<KeywordList Owner="NOTNLM">
<Keyword MajorTopicYN="Y">glutathione conjugation</Keyword>
<Keyword MajorTopicYN="Y">glutathione transferase</Keyword>
<Keyword MajorTopicYN="Y">haem</Keyword>
<Keyword MajorTopicYN="Y">ligandin</Keyword>
<Keyword MajorTopicYN="Y">protoporphyrin</Keyword>
<Keyword MajorTopicYN="Y">tetrapyrrole</Keyword>
</KeywordList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="pmc-release">
<Year>2021</Year>
<Month>06</Month>
<Day>22</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2020</Year>
<Month>5</Month>
<Day>5</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2020</Year>
<Month>5</Month>
<Day>5</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2020</Year>
<Month>5</Month>
<Day>5</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">32362257</ArticleId>
<ArticleId IdType="doi">10.1098/rstb.2019.0404</ArticleId>
<ArticleId IdType="pmc">PMC7209958</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>Mol Carcinog. 2000 Nov;29(3):170-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11108662</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Drug Metab Rev. 2011 May;43(2):138-51</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21428697</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell. 2014 Aug 14;158(4):916-928</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25126794</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2003 Feb 7;299(5608):902-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12574634</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2013 Feb 26;110(9):3621-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23345435</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 1999 May 25;96(11):6541-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10339624</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Exp Parasitol. 2014 Mar;138:63-70</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24560769</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 1998 Feb;10(2):267-82</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9490749</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Front Plant Sci. 2019 May 22;10:608</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">31191562</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Microb Biotechnol. 2013 May;6(3):248-63</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23279857</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Annu Rev Plant Biol. 2007;58:321-46</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17227226</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 1995 Oct 20;270(42):24876-83</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">7559611</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2006 May 23;103(21):8030-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16698925</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Exp Bot. 2009;60(4):1207-18</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19174456</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Front Plant Sci. 2017 Aug 21;8:1457</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28878794</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 1985 Nov 25;260(27):14521-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">4055786</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Z Naturforsch C J Biosci. 2005 Mar-Apr;60(3-4):166-71</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15948579</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 1985 Aug 5;260(16):9191-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">3926764</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2006 Mar;140(3):856-68</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16428602</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Eur J Biochem. 1990 May 20;189(3):493-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">2351133</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Biol. 2011 May 24;21(10):897-903</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21565502</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Drug Metab Rev. 2011 May;43(2):266-80</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21425939</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Sci Rep. 2018 May 31;8(1):8472</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">29855494</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochim Biophys Acta. 2015 Feb;1854(2):166-77</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25479053</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Front Plant Sci. 2013 Feb 13;4:14</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23407626</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Photochem Photobiol Sci. 2008 Oct;7(10):1216-24</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18846286</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Chem Rev. 2009 Oct;109(10):4596-616</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19764719</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2001 Feb 13;98(4):2053-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11172074</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell. 1993 Sep 10;74(5):787-99</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">7690685</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2017 Jun;174(2):922-934</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28442501</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2011 Jan;23(1):364-80</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21239642</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>New Phytol. 2017 Feb;213(3):1168-1180</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27735068</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Mol Biol. 2009 Jan 23;385(3):984-1002</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19014949</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2008 Jul 18;283(29):20268-76</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18492666</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>FEBS Open Bio. 2016 Dec 22;7(2):122-132</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28174680</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Phytochemistry. 2010 Mar;71(4):338-50</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20079507</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 1986 Apr 25;261(12):5363-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">3957929</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2009 Aug 7;284(32):21249-56</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19520850</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2013 May;25(5):1840-54</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23723325</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2001 Feb;13(2):425-36</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11226195</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 1998 Nov 20;273(47):31388-94</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9813049</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>New Phytol. 2019 Jan;221(2):1060-1073</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">30204242</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochem J. 2010 Jan 15;425(2):425-34</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19860740</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Protein Sci. 2006 Feb;15(2):281-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16385005</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2018 Oct;30(10):2495-2511</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">30262551</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Protein Sci. 2018 Jan;27(1):112-128</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28836357</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>BMC Plant Biol. 2011 Jun 20;11:108</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21689410</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochimie. 2017 Apr;135:35-45</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28104507</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2017 Nov;29(11):2711-2726</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">29084873</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Front Pharmacol. 2014 Aug 20;5:192</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25191271</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2003 Jun 27;278(26):23930-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12692133</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2018 Jan;176(1):538-551</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">29122987</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Protein Chem. 2000 Aug;19(6):425-30</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11195966</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Front Plant Sci. 2016 Oct 19;7:1586</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27807442</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Front Plant Sci. 2013 Sep 20;4:371</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24065975</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochim Biophys Acta. 2016 Aug;1857(8):1313-1325</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26997501</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Exp Parasitol. 1995 Aug;81(1):117-24</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">7628559</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2011 Feb;23(2):785-805</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21317376</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2003 Jan 2;421(6918):79-83</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12511958</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Plant. 2012 Mar;5(2):387-400</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22201047</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochemistry. 2007 Jul 17;46(28):8414-24</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17585783</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell Environ. 2015 Feb;38(2):280-98</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24329537</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Exp Bot. 2018 Feb 12;69(4):751-767</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28992212</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant J. 1998 Mar;13(6):773-80</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9681016</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Front Plant Sci. 2018 Nov 15;9:1659</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">30510558</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2016 Jul 5;113(27):7539-44</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27247412</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 1975 Nov 25;250(22):8670-3</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">1184584</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 1985 Nov;82(21):7202-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">3864155</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochim Biophys Acta. 2015 Sep;1847(9):968-85</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25979235</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biol Chem. 2002 May;383(5):821-30</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12108547</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Front Plant Sci. 2016 Aug 31;7:1326</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27630653</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochim Biophys Acta. 2003 May 2;1621(2):226-33</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12726999</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochemistry. 2002 Jun 4;41(22):7008-20</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12033934</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant J. 2004 Jan;37(1):104-14</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14675436</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell Environ. 2019 Feb;42(2):618-632</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">30242849</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Hepatology. 1987 Sep-Oct;7(5):843-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">3653850</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Comput Biol Chem. 2016 Oct;64:237-249</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27475235</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2001 Mar 16;276(11):7952-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11115505</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochim Biophys Acta Gen Subj. 2018 Mar;1862(3):775-789</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">29031766</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Plants. 2018 Jul;4(7):440-452</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">29915331</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2005 Jul 15;280(28):26121-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15888443</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Exp Bot. 2012 Oct;63(16):5967-78</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22991161</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Plant. 2015 Jul;8(7):1125-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25958236</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2001 Jun;126(2):656-69</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11402195</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2002 Dec;130(4):1958-66</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12481078</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Eur J Biochem. 1997 May 15;246(1):32-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9210462</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2018 Sep 14;293(37):14557-14568</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">30012884</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Annu Rev Biochem. 2017 Jun 20;86:799-823</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28426241</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Haematologica. 2019 Sep;104(9):1756-1767</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">30765471</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/PlantGlutaTransV1/Data/Main/Curation
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000154 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Curation/biblio.hfd -nk 000154 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    PlantGlutaTransV1
   |flux=    Main
   |étape=   Curation
   |type=    RBID
   |clé=     pubmed:32362257
   |texte=   Is there a role for tau glutathione transferases in tetrapyrrole metabolism and retrograde signalling in plants?
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Curation/RBID.i   -Sk "pubmed:32362257" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Curation/biblio.hfd   \
       | NlmPubMed2Wicri -a PlantGlutaTransV1 

Wicri

This area was generated with Dilib version V0.6.38.
Data generation: Sat Nov 21 15:50:29 2020. Site generation: Sat Nov 21 15:50:53 2020